
w w w.openarchitectureware.org- 1 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Markus Völter
voelter@acm.org
www.voelter.de

Model-Driven Development -
From Frontend to Code

Bernd Kolb
bernd@kolbware.de

www.kolbware.de

Sven Efftinge
sven@efftinge.de
www.efftinge.de

w w w.openarchitectureware.org- 2 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Model Driven Development

• Model Driven Development is about making software
development more domain-related as opposed to
computing related. It is also about making software
development in a certain domain more efficient.

Software Technology
Concepts

Domain Concepts

Software Technology
Concepts

Domain Concepts

mental work
of developers

w w w.openarchitectureware.org- 3 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

MDSD Core Concepts

Model

Domain
Specific

Language

Metamodel
textual

graphical

Domain

Ontology

bounded area of
knowlege/interest

semantics

precise/
executable

multiple

partial

viewpoint

subdomains

composable

Metametamodel
target

software
architecture

software
architecture

transform

compile

interpret

multi-step

single-step

no
roundtrip

knowledge

several

design
expertise

w w w.openarchitectureware.org- 4 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

How does MDSD work?

• Developer develops model(s)
based on certain
metamodel(s).

• Using code generation
templates, the model is
transformed to executable
code.

• Optionally, the generated
code is merged with
manually written code.

• One or more model-to-
model transformation steps
may precede code generation.

ModelModelModel

Transformer Tranformation
Rules

Model

Transformer
Code

Generation
Templates

Generated
Code

Manually
Written
Code

optional

Metamodel

Metamodel

op
tio

na
l,

 c
an

 b
e

re
pe

at
ed

w w w.openarchitectureware.org- 5 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Goals & Challenges

• Goals:
• We need an end-to-end tool chain that allows us to

build models, verify them and generate various artefacts
from them.

• All of this should happen in a homogeneous environment,
namely Eclipse.

• Challenges:
• Good Editors for your models
• Verifying the models as you build them
• Transforming/Modifying models
• Generating Code
• Integrating generated and non-generated code

w w w.openarchitectureware.org- 6 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Roadmap for the two Sessions

• We will start by defining a metamodel for state
machines, based on the UML metamodel

• We will then build a graphical editor for state
machines using the well-known UML-based
notations.

• We will then add additional constraints (e.g.
That states must have different names)

• Next up will be a code generator that creates
a switch-based implementation of state
machines in Java.

• Recipes help developers with the imple-
mentation of the actions associated with states.

• We will then cover model-to-model
transformations and model modifications.

S
 e

 s
 s

 i
 o

 n

1
S

 e
 s

 s
 i
 o

 n

2

• Finally, we will built a textual editor for
rendering the state machines textually.

15‘

15‘

30’

20‘

10‘

20‘

15‘

w w w.openarchitectureware.org- 7 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Defining the Metamodel

• A statemachine consists of a number of states.

• States can be start states, stop states and “normal”
states.

• A transition connects two states. States know their
outgoing and incoming transitions.

• We also support composite states that themselves
contain sub state machines.

• A state machine is itself a composite state.

• A state has actions. Actions can either be entry or
exit actions.

• The metamodel is defined using EMF, the Eclipse
Modelling Framework.

w w w.openarchitectureware.org- 8 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Defining the Metamodel II

w w w.openarchitectureware.org- 9 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Defining the Metamodel III

• The metamodel
is defined using
EMF.

• EMF provides
tree-based
editors to define
the metamodel.

• The metamodel
has its own
project called
oaw4.demo.gmf.
statemachine2

w w w.openarchitectureware.org- 10 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Defining the Metamodel IV

• Note that we have to create the genmodel as well
as the .edit and .editor projects from the ecore
model.

• This is necessary for the graphical editor to work.

w w w.openarchitectureware.org- 11 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Building the graphical Editor

• The editor is based on the metamodel defined
before.

• A number of additional models has to be defined:

• A model defining the graphical notation

• A model for the editor’s pallette and other tooling

• A mapping model that binds these two models to
the domain metamodel

• A generator generates the concrete editor based on
these models.

• The editor is build with the Eclipse GMF, the
Graphical Modelling Framework.

w w w.openarchitectureware.org- 12 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Building the graphical Editor II

w w w.openarchitectureware.org- 13 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Building the graphical Editor III

• We use another project for the GMF models from
which we’ll create the editor:

oaw4.demo.gmf.statemachine2.gmf

• This project contains all the additional models we
talked about before:

w w w.openarchitectureware.org- 14 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Building the graphical Editor IV

• The gmftool model contains the definition of the
palette that will be used in the editor.

• We have creation tools for all the relevant
metamodel elements.

• Each of these tools has a nice icon associated.

w w w.openarchitectureware.org- 15 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Building the graphical Editor V

• The Figure Gallery
contains the figures (as well
as their associated labels)

• Shapes

• Line Style

• Colors

• Decorations

• Diagram Nodes represent
the vertices in the graph
that is being edited.

• Compartments can be
defined as parts of Nodes.

• Connections play the role
of the edges in the graph.

w w w.openarchitectureware.org- 16 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Building the graphical Editor VI

• We map nodes and
links.

• We include all the
other models so
they can be
referenced.

• Better editors will
become available
by GMF final.

• From that, we
generate the editor
plugins:

w w w.openarchitectureware.org- 17 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Building the graphical Editor VII

• Here is the editor, started in the runtime
workbench, with our CD Player example.

These rectangles
are to demo

decorations ☺

Tool
Palette

Overview
Pane

Model
Element

Properties

w w w.openarchitectureware.org- 18 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Constraints

• Constraints are rules that models must conform to in
order to be valid. These are in addition to the structures
that the metamodel defines.

• Formally, constraints are part of the metamodel.

• A constraint is a boolean expression (a.k.a predicate)
that must be true for a model to conform to a metamodel.

• Constraint Evaluation should be available

• in batch mode (when processing the model)

• as well as interactively, during the modelling phase in
the editor

... and we don’t want to implement constraints twice
to have them available in both places!

• Functional languages are often used here.

• UML’s OCL (Object Constraint Language) is a good
example,

• We use oAW’s check language, which is alike OCL

w w w.openarchitectureware.org- 19 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Constraints II

• Constraints are put
into the statemachine2
project, the same as
the metamodel.

• StatemachineBatchErrors
are used in batch validation
mode (automatically evalu-
ated every 2 seconds in the
editor)

• StatemachineLiveErrors prevent erratic modellings
in the first place.

w w w.openarchitectureware.org- 20 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Constraints III

• Here are some examples written in oAW’s Checks
language.

• Note the code completion and error highlighting ☺

For which elements
is the constraint is

applicable

Constraint
Expression

Error message
in case

Expression is
false

ERROR or
WARNING

w w w.openarchitectureware.org- 21 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Constraints IV

• To make the GMF generated editors evaluate our
constraints, we needed to tweak things a little bit;
most of this is in oaw4.demo.gmf.statemachine2.etc

• We wrote our own ConstraintEvaluators and
plugged in the oAW CheckFacade.

• We used AspectJ to weave in Adapters into the EMF
Factory

• We wrote a watchdog that does the batch
evaluations whenever the model does not change for
two seconds.

• Also, you have to
make two important
adjustments in the
gmfgen model

w w w.openarchitectureware.org- 22 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Constraints V

• In this model there
are two errors

• There are two
states with the
same name (Off)

• The start state has
more than one out-
Transition

• The validation is
executed automatically

• Clicking the error
message selects
the respective
“broken” model
element in the dia-
gram.

w w w.openarchitectureware.org- 23 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Code Generation

• Code Generation is used to generate executable
code from models.

• Code Generation is based on the metamodel
and uses templates to attach to-be-generated
source code.

• In openArchitectureWare,
we use a template
language called xPand.

• It provides a number of
advanced features such as
polymorphism, AO support
and a powerful integrated
expression language.

• Templates can access
metamodel properties
seamlessly

w w w.openarchitectureware.org- 24 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Code Generation II

• What kind of code will be generated? How do you
implement a state machine?

• There are many ways of implementing a state
machine:

• GoF’s State pattern

• If/Switch-based

• Decision Tables

• Pointers/Indexed Arrays

• We will use the switch-based alternative. It is
neither the most efficient nor the most elegante
alternative, but it’s simple.

• For more discussion of this topic, see
Practical State Charts in C/C++ by Miro Samek

w w w.openarchitectureware.org- 25 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Code Generation III: Pseudocode

• Generate an enumeration for the states

• Generate an enumeration for the events

• Have a variable that remembers the state in
which the state machine is currently in.

• Implement a function trigger(event) which

• First switches over all states to find out the
current state

• Check whether there’s a transition for the
event passed into the function

• If so,

• execute exit action of current state,

• Set current state to target of transition

• Execute entry action of this new current state

• Return

• And also handle nested states ☺

w w w.openarchitectureware.org- 26 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Code Generation IV

• The generator is located
in the oaw4.demo.gmf.
statemachine2.generator
project.

• There are a number of
code generation
templates.

• Extensions are also
defined.

• There are also workflow
files (.oaw) that control
the workflow of a generator run.

• Different workflow files contain different “parts” of
the overall generator run and call each other.

• Workflow files are in some small way like ant files.

w w w.openarchitectureware.org- 27 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Code Generation V

• The blue text is
generated into
the target file.

• The capitalized
words are
xPand keywords

• Black text are
metamodel
properties

• DEFINE...END-
DEFINE blocks
are called
templates.

• The whole thing
is called a
template file.

Opens a
File

Name is a property
of the State-

Machine class

Like methods in OO,
templates are

associated with a
(meta)class

Iterates
over all

the states
of the
State-

Machine

Calls another
template

Extension Call

Template
name

Namespace and
Extension Import

w w w.openarchitectureware.org- 28 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Code Generation VI

• One can add behaviour to existing
metaclasses using oAW’s Xtend language.

• Extensions can be called using member-style
syntax: myAction.methodName()

• Extensions can be used in Xpand templates,
Check files as well as in other Extension files.

• They are imported into template files using the
EXTENSION keyword

Imports a
namespace

Extensions are
typically defined
for a metaclass

Extensions can also
have more than one

parameter

w w w.openarchitectureware.org- 29 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Code Generation VII

• Workflow loads the model, checks it (same
constraints as in Editor!) and then generates
code.

A component is a
„step“ in the

workflow

A number of
parameters are

passed in

We invoke the
same check file as

in the editor

This starts the
first, „top level“

template

Code is
automatically

beautified

w w w.openarchitectureware.org- 30 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Recipes I

• There are various ways of integrating generated
code with non-generated code:

a)

b)

c) d) e)

generated code non-generated code

w w w.openarchitectureware.org- 31 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Recipes II

• To help developers to “do the right thing” after
the generator has created base classes and the
like, you can use a recipe framework.

• It provides a task-based approach to
“completing” the generated code with manual
parts.

• This works the following way:

• As part of the generator run, you instantiate
checks that you write to a file

• After the generator finishes, the IDE (here:
Eclipse) loads these checks and verifies them
against the complete code base (i.e. Generated +
manual)

• If things don’t conform to the rules, messages
are output helping the developer to fix things.

• For example, in the state machine case, actions
must be implemented in subclasses.

w w w.openarchitectureware.org- 32 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Recipes III

• Here’s an error that suggests that I extend my
manually written class from the generated base
class:

Recipes can be
arranged

hierarchically

This is a
failed check

„Green“ ones
can also be

hidden Here you can see
additional

information about
the selected recipe

w w w.openarchitectureware.org- 33 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Recipes IV

• I now add the respective extends clause, and
the message goes away – automatically.

Adding the extends
clause makes all of

them green

w w w.openarchitectureware.org- 34 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Recipes V

• Now I get a number of compile errors because I have
to implement the abstract methods defined in the
super class:

• I finally implement them sensibly, and everything is
ok.

• The Recipe Framework and the Compiler have guided
me through the manual implementation steps.

• If I didn’t like the compiler errors, we could also add
recipe tasks for the individual operations.

• oAW comes with a number of predefined recipe
checks for Java. But you can also define your own
checks, e.g. to verify C++ code.

w w w.openarchitectureware.org- 35 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Recipes VI

• Here’s the implementation of the Recipes. This
workflow component must be added to the workflow.

You extend one of a
number of suitable

base classes…

…and override a
suitable template

method

You can then create
any number of

checks.

This one checks
that a class extends

another one

And return the
checks to the
framework

w w w.openarchitectureware.org- 36 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Model Transformations I

• Model Transformations create one or more new
models from one or more input models. The input
models are left unchanged.

• Often used for stepwise refinement of models and
modularizing generators

• Input/Output Metamodels are different

• Model Modifications are used to alter or
complete an existing model

• For both kinds, we use the xTend language, an
extension of the openArchitectureWare expression
language.

• Alternative languages are available such as
Wombat, ATL, MTF or Tefkat (soon: various QVT
implementations)

w w w.openarchitectureware.org- 37 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Model Transformation II

• The model modification shows how to add an
additional state and some transitions to an existing
state machine (emergency shutdown)

Extensions can
import other
extensions

The main function

„create extensions“
guarantee that for

each set of
parameters the

identical result will
be returned.

Therefore
createShutDown()
will always return
the same element.

w w w.openarchitectureware.org- 38 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Model Transformation III

• The generator is based on an implementation-
specific metamodel without the concept of
composite states.

• This makes the templates simple, because we
don‘t have to bridge the whole abstraction gap
(from model to code) in the templates.

• Additionally, the generator is more reusable,
because the abstractions are more general.

• We will show a transformation which transforms
models described with our GMF editor into models
expected by the generator.

w w w.openarchitectureware.org- 39 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Model Transformation IV

• We want to transform from the editor’s
metamodel ‘statemachine2’ to the
generator’s metamodel ‘simpleSM’

• We need to ‘normalize’
composite states.

• States inherit outgoing
transitions from their
parent states

• For those transitions the
exit actions are inherited,
too

• Unify action and event
elements with the same
name

w w w.openarchitectureware.org- 40 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Textual Editor I

• A graphical notation is not always the best syntax
for DSLs.

• So, while GMF provides a means to generate
editors for graphical notations, we also need to be
able to come up with editors for textual
syntaxes.

• These editors need to include at least

• Syntax hightlighting

• Syntax error checking

• Semantic constraint checking

w w w.openarchitectureware.org- 41 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Textual Editor II

• We use oAW’s textual DSL generator framework
xText

• Based on a BNF-like language it provides:

• An EMF-based metamodel (representing the
AST)

• An Antlr parser instantiating dynamic EMF-
models

• An Eclipse text editor plugin providing

• syntax highlighting

• An outline view,

• syntax checking

• as well as constraints checking based on a Check
file, as always oAW

w w w.openarchitectureware.org- 42 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Textual Editor III

• The grammar (shown in
the boostrapped editor)

The first rule
describes the
root element

of the AST

• The generated eCore
AST model

A
literal

States contain
a number of

entry actions,
transitions and

exit actions

Assigns an
indentifier to

a variable
(here: state)

These variables
will become
attributes of
the AST class

Rule
name

Rule names
will

become the
AST classes

w w w.openarchitectureware.org- 43 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Textual Editor IV

• You can define additioal constraints that should be
validated in the generated editor.

• This is based on oAW’s Check language

• i.e. These are constraints like all the others you’ve
already come across

w w w.openarchitectureware.org- 44 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Textual Editor V

Literals
have

become
keywords

• The generated editor and it’s outline view

Constraints
are

evaluated
in real time

w w w.openarchitectureware.org- 45 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Tooling Versions

Eclipse 3.1 or Eclipse 3.2, suitable EMF version

Eclipse >= 3.2M6, GMF >= 1.0M6

Eclipse >= 3.1, oAW >= 4.0

Eclipse >= 3.1, oAW >= 4.0

Eclipse >= 3.1, oAW >= 4.0

Eclipse 3.2, oAW >= 4.1

Eclipse 3.2, oAW >= 4.1

w w w.openarchitectureware.org- 46 -

Model-Driven Development – From Frontend to Code

© 2006 Völter, Efftinge, Kolb

Summary

• The tool chain we’ve just shown provides an end-
to-end solution for MDSD,

• Completely Open Source

• Using standards wherever worthwhile,

• And pragmatic solutions wherever necessary.

• To get the tools, go to

• www.eclipse.org/emf

• www.eclipse.org/gmf

• www.openarchitectureware.org,
www.eclipse.org/gmt/oaw

• THANK YOU.

