
i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 1 -

DSL Best Practices

Markus Völter
voelter@acm.org
www.voelter.de

DSL Best Practices
illustrated with Eclipse Tools

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 2 -

DSL Best Practices

Markus Völter
voelter@acm.org
www.voelter.de

• Independent Consultant

• Based out of Heidenheim,
Germany

• Focus on
• Model-Driven Software

Development
• Software Architecture
• Middleware

About me

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 3 -

DSL Best Practices

Custom Metamodel
When working with „generic“ languages such as
UML, always transform to your own metamodel

first

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 4 -

DSL Best Practices

Custom Metamodel

• A DSL always consists of
• Abstract syntax (Metamodel)
• Concrete syntax
• Semantics

• If you use a general purpose language
(such as UML) on which to build your
DSL, consider it concrete syntax!

• You should still have a domain-specific metamodel the first
step must be a transformation from the GP language to
the custom metamodel.

Model

Domain
Specific

Language

Metamodel
textual

graphical

semantics

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 5 -

DSL Best Practices

Custom Metamodel II

• Why is this important? Basically, because the GP
metamodel is typically very complicated (UML ☺)
• Constraint checking can be more specific in a DS

metamodel
• Model modifications are much easier (try to write to the

UML metamodel!)
• Subsequent transformation/code generation is also much

easier

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 6 -

DSL Best Practices

Take care of your Metamodel
The meta model is the central asset. It will grow
over time. Make sure you use appropriate means

to model and manage the metamodel.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 7 -

DSL Best Practices

Take Care of your Metamodel

• The meta model is the central asset that defines the
semantics of your domain and your DSL(s).

• Make sure it is described using a scalable means, such as
a textual DSL or a UML tool
• The EMF tree editors don‘t scale!
• The Ecore Editor provided with GMF also does not really

scale…

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 8 -

DSL Best Practices

Take Care of your Metamodel II

• One approach is to use
a UML tool (one which
supports Eclipse UML2
export) and
transform the model
into an Ecore meta
model.

• An alternative is to use
a suitable textual
notation
(make sure you can
distribute the model
over several files…!)

oAW uml2ecore

• Ecore File
• Name Management

(qualified, namespaces)
• Various constraints

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 9 -

DSL Best Practices

Checks First & Separate
Before you do anything else with the model

(transformation, generation) make sure you
check constraints – these must not be part of

the transformation to avoid duplication

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 10 -

DSL Best Practices

Checks First & Separate

• There‘s no point in
transforming a „buggy“
model into something else.

• A buggy model is a model
where the constraints defined
as part of the metamodel
do not hold.

• Make sure you have such constraints!

• Make sure they are not part of the transformation:
• Would make transformation more complicated
• If you have several transformations from the same model,

you‘d need to have the checks several time.

• Make constraint checking a separate, and early step in
the transformation workflow

Model

Domain
Specific

Language

Metamodel
textual

graphical

semantics

precise/
executable

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 11 -

DSL Best Practices

Checks First & Separate II

• Here are some examples written in oAW’s Checks
language.

• Note the code completion & error highlighting ☺

For which elements
is the constraint is

applicable

Constraint
Expression

Error message
in case

Expression is
false

ERROR or
WARNING

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 12 -

DSL Best Practices

Checks First & Separate III

• More complex constraints: Versioning and Evolution

<<component>>
SomeCompV1

<<interface>>
SomeInterface

soSomething(int, ValueObject)

<<component>>
SomeCompV2

<<newVersionOf>>
<<interface>>

AnotherInterface

<<vo>>
ValueObject

<<component>>
SomeCompV3

<<newVersionOf>>

<<interface>>
SomeInterfaceV3

soSomething(int, ValueObjectV2)
anAdditionalOperation()

<<newVersionOf>>

<<vo>>
ValueObjectV3

<<newVersionOf>>

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 13 -

DSL Best Practices

Multiple Viewpoints
Use several models to describe a system from

several viewpoints – each viewpoint will have a
suitable concrete syntax and metamodel

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 14 -

DSL Best Practices

Multiple Viewpoints

• Complex Systems typically
consist of several aspects,
concerns or viewpoints.

• Often (though not always)
these are described by
different people at different
times in the development
process.

• In most cases, different forms
of concrete syntax are suitable
for these different viewpoints.

• Therefore, provide separate models for each of
these viewpoints.

Model

Domain
Specific

Language

Metamodel
textual

graphical

semantics

precise/
executable

multiple

partial

viewpoint

subdomains

composable

Metametamodel

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 15 -

DSL Best Practices

Multiple Viewpoints II: CBD Example

<configurations>
 <configuration name="addressStuff">
 <deployment name="am" type="AddressManager">
 <wire name="personDAO" target="personDAO"/>
 </deployment>
 <deployment name="personDAO" type="PersonDAO"/>
 </configuration>
 <configuration name="customerStuff">
 <deployment name="cm" type="CustomerManager">
 <wire name="addressStore" target=":addressStuff:am"/>
 </deployment>
 </configuration>
 <configuration name="test" includes="addressStuff, customerStuff"/>
</configurations>

<<component>>
AddressManager

<<interface>>
AddressStore

addOrUpdateContact(p: Person) : void
addAddress(p: Person, a: Address) : void
getAddresses(p: Person) : Address[]

<<entity>>
Person

name: String
firstName: String

<<valuetype>>
Address

street: String
zip: String
City: String

0..n

<<component>>
CustomerManager

address-
Store

<systems>
 <system name="production">
 <node name="server" type="spring" configuration="addressStuff"/>
 <node name="client" type="eclipse" configuration="customerStuff"/>
 <system>
 <system name="test">
 <node name="test" type="spring" configuration="test"/>
 <system>
</systems>

Type Model

Composition Model System Model

person

• Type Model: Components, Interfaces, Data Types
• Composition Model: Instances, “Wirings”
• System Model: Nodes, Channels, Deployments

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 16 -

DSL Best Practices

Multiple Viewpoints III: CBD Example Metamodels

Types

Composition

Deployment

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 17 -

DSL Best Practices

Multiple Viewpoints IV: Aspect Models

• Often, the described three viewpoints are not enough,
additional aspects need to be described.

• These go into separate aspect models, each describing
a well-defined aspect of the system.
• Each of them uses a suitable DSL/syntax
• The generator acts as a weaver

• Typical Examples are
• Persistence
• Security
• Forms, Layout, Pageflow
• Timing, QoS in General
• Packaging and Deployment
• Diagnostics and Monitoring

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 18 -

DSL Best Practices

Architecture First
You can generate all the „adaption code“ to run

the system on a given platform – you don‘t need
to care about these things when implementing

business logic

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 19 -

DSL Best Practices

Architecture First

Domain
Platform

Technical
Platform/
Middleware

Operating System

Programming Language

- Persistence
- Transactions
- Distribution
- Scheduling
- Hardware Access

- Core Entities
- Core Valuetypes
- Business Rules
- Business Services

Applications

• A successful system is built based on a well-defined
architecture, often along the lines of the illustration
below.

• Various parts/layers of
this stack can be generated,
or developed with meta-
model and generator
support.

• Use Model-2-Model Trans-
formations to implement
higher layers based on the
abstractions provided by
lower layers.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 20 -

DSL Best Practices

Architecture First II

MDSD
Infrastructure

Input Models

Output Models

Basic Technical
MDSD Infrastructure

Code for Target Platform

Input Models

Functional Domain 1
MDSD Infrastructure

Domain 1 Model

Functional Domain 2
MDSD Infrastructure

Domain 2 Model

...

...

...

...

...

...

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 21 -

DSL Best Practices

Architecture First III: Generated Stuff

• What can be generated?
• Base classes for component implementation
• Build-Scripts
• Descriptors
• Remoting Infrastructure
• Persistence
• …

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 22 -

DSL Best Practices

Architecture First IV: Code Generation

• Code Generation is used to generate executable code from
models.

• Code Generation is based on the metamodel & uses
templates to attach to-be-generated source code.

• In openArchitectureWare,
we use a template language
called xPand.

• It provides a number of
advanced features such as
polymorphism, AO support
and a powerful integrated
expression language.

• Templates can access
metamodel properties
seamlessly

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 23 -

DSL Best Practices

Architecture First V: Code Generation

• The blue text is
generated into the
target file.

• The capitalized words
are xPand keywords

• Black text is access to
metamodel properties

• DEFINE...END-DEFINE
blocks are called
templates.

• The whole thing is
called a template file.

Opens a
File

Name is a property
of the State-

Machine class

Like methods in OO,
templates are

associated with a
(meta)class

Iterates
over all

the states
of the
State-

Machine

Calls another
template

Extension Call

Template
name

Namespace &
Extension Import

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 24 -

DSL Best Practices

Extendible Metamodel
When generating/transforming models, you

often need additional properties on your
metaclasses, or whole even new metaclasses;

make sure you can add them, without touching
the metamodel itself!

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 25 -

DSL Best Practices

Extendible Metamodel

• Assume you want to generate code for Java from a
given model. You‘ll need all kinds of additional
properties on your model elements, such as:
• Class::javaClassName
• Class::package
• Class::fileName

• If you add these to your domain metamodel, you‘ll pollute
the metamodel with target platform-specific properties.

• This gets even worse if you generate for several targets
from the same model…

• Therefore allow metaclasses to be annotated with
additional (derived) properties externally.
• Somewhat like open classes/AOP/C#3.0 extension

methods

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 26 -

DSL Best Practices

Extendible Metamodel II

• One can add behaviour to existing
metaclasses using oAW’s Xtend language.

• Extensions can be called using member-style
syntax: myAction.methodName()

• Extensions can be used in Xpand templates,
Check files as well as in other Extension files.

• They are imported into template files using the
EXTENSION keyword

Imports a
namespace

Extensions are
typically defined
for a metaclass

Extensions can also
have more than one

parameter

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 27 -

DSL Best Practices

Active Programming Model
You should restrict the freedom of developers …

making the code more consistent and structured.
Help developers write correct code!

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 28 -

DSL Best Practices

Active Programming Model

• You want to make sure developers have only limited
freedom when implementing those aspects of the code that
are not generated.
-> well structured system
-> keeps the promises made by the models

• An important challenge is thus: How do we combine
generated code and manually written code in a controlled
manner (and without using protected regions)?

• Solution: Patterns, Recipe Framework

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 29 -

DSL Best Practices

Active Programming Model II: Integration Patterns

• There are various ways of integrating generated code with
non-generated code

a)

b)

c) d) e)

generated code non-generated code

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 30 -

DSL Best Practices

Active Programming Model III: Recipes I

• Here’s an error that suggests that I extend my
manually written class from the generated base
class:

Recipes can be
arranged

hierarchically

This is a
failed check

„Green“ ones
can also be

hidden Here you can see
additional

information about
the selected recipe

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 31 -

DSL Best Practices

Active Programming Model IV: Recipes II

• I now add the respective extends clause, & the
message goes away – automatically.

Adding the extends
clause makes all of

them green

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 32 -

DSL Best Practices

Active Programming Model V: Recipes III

• Now I get a number of compile errors because I have
to implement the abstract methods defined in the
super class:

• I finally implement them sensibly, & everything is ok.

• The Recipe Framework & the Compiler have guided
me through the manual implementation steps.

• If I didn’t like the compiler errors, we could also add
recipe tasks for the individual operations.

• oAW comes with a number of predefined recipe
checks for Java. But you can also define your own
checks, e.g. to verify C++ code.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 33 -

DSL Best Practices

Managing the Architecture
MDSD can help to make sure an architecture is used

consistently and „correctly“ in larger teams

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 34 -

DSL Best Practices

Managing the Architecture

• It is relatively easy check architectural constraints (such
as dependencies) on the level of models.

• However, if the model analysis tells you that everything is
ok (no constraint violations) it must be ensured that the
manually written code does not compromise the
validity of the constraints.

• E.g. how do you ensure
that there are no more
dependencies in the code
than those that are
modeled in the model?

<<application>>
SMSApp TextEditor

UIManager
GSMStack

CallIFSMSIF EMSIF

SMSIF

MenuUtilities

lookAndFeel: String

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 35 -

DSL Best Practices

Managing the Architecture II

public class SMSAppImpl {
public void tueWas() {

TextEditor editor =
Factory.getComponent(“TextEditor”);

editor.setText(someText);
editor.show();

}
}

• The programming model shown below is bad:

• Problems:
•Developers can lookup, use, and thus, depend on whatever they

like
•Developers are not guided (by IDE, compiler, etc.) what they are

allowed to access and what is prohibited

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 36 -

DSL Best Practices

Managing the Architecture III

public interface SMSAppContext extends ComponentContext {
public TextEditorIF getTextEditorIF();
public SMSIF getSMSIF();
public MenuIF getMenuIF();

}

• Better, because:
•Developers can only access what they are allowed to…
•… and this is always in sync with the model
• IDE can help developer (ctrl+space in eclipse)
• Architecture (here: Dependencies) are enforced and controlled

public class SMSAppImpl implements Component {
private SMSAppContext context = null;
public void init(ComponentContext ctx) {

this.context = (SMSAppContext)ctx;
}
public void tueWas() {

TextEditor editor = context.getTextEditorIF();
editor.setText(someText); editor.show();

} }

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 37 -

DSL Best Practices

Graphical vs. Textual Syntax
Textual DSLs are often neglected in the MDSD/MDA

space. Graphical DSLs are often ignored in other circles.
When do you use which flavour?

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 38 -

DSL Best Practices

Graphical vs. Textual Syntax

• This is an example of an editor built with Eclipse
GMF, based on a metamodel for state machines.

These rectangles
are to demo

decorations ☺

Tool
Palette

Overview
Pane

Model
Element

Properties

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 39 -

DSL Best Practices

Graphical vs. Textual Syntax II

Literals
have

become
keywords

• This is a textual editor for the same metamodel

Constraints
are

evaluated
in real time

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 40 -

DSL Best Practices

Graphical vs. Textual Syntax III: Comparison

• Both kinds of editors…
• Can be built on the same meta model
• Can verify constraints in real time
• Will write ordinary EMF models

• Graphical Editors
• are good to show structural relationships

• Textual Editors
• are better for „algorithmic“ aspects
• Integrate better with CVS etc. (diff, merge)

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 41 -

DSL Best Practices

Don‘t Duplicate – Transform!
Direct Model-to-Code Transformation is often not enough,

since you’ll either have to duplicate stuff into code
generation templates or you have to add “obvious” stuff

to your models. Neither is desirable.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 42 -

DSL Best Practices

Don‘t Duplicate – Transform!

openArchitectureWareModel
(UML)

Model
(XMI)

Parser
Model

(Object Graph)

Model
Trans-
former

Modified Model
(Object Graph)

export

Generated
Code

Code
Generator

(may be repeated)

• M2M Transformations should be kept inside the tool, use
them to modularize the transformation chain.
• Never ever modify the result of a transformation manually

• Use example models and model-specific constraints to
verify that the transformation works as advertised.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 43 -

DSL Best Practices

Don‘t Duplicate – Transform! II

• Consider you want to generate a state machine
implementation for C++ and Java:
• You have a model of a state machine,
• And you have two sets of templates – one for C++, one for

Java

• Assume further, that you want to have an emergency
stop feature in your state machines (a new transition
from each ordinary state to a special stop state)
• You can either add it manually to the model (which is

tedious and error prone)
• Or you can modify the templates (two sets, already…!) and

hard-code the additional transitions and state.

• Both solutions are not satisfactory.

• Better Alternative: Use a Model-Modification to add these
transitions and state automatically

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 44 -

DSL Best Practices

Don‘t Duplicate – Transform! III

• The model modification shows how to add an dditional state &
some transitions to an existing state machine (emergency
shutdown)

Extensions can
import other
extensions

The main function

„create extensions“
guarantee that for

each set of
parameters the

identical result will
be returned.

Therefore
createShutDown()
will always return
the same element.

No code generation templates
need not be modified for the
new feature to work

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 45 -

DSL Best Practices

Partitions/Layers/Cascading
Architecture can be nicely layered and architected to be

as small an consistent as possible

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 46 -

DSL Best Practices

Partitions/Layers/Cascading

MDSD
Infrastructure

Input Models

Output Models

Basic Technical
MDSD Infrastructure

Code for Target Platform

Input Models

Functional Domain 1
MDSD Infrastructure

Domain 1 Model

Functional Domain 2
MDSD Infrastructure

Domain 2 Model

...

...

...

...

...

...

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 47 -

DSL Best Practices

Partitions/Layers/Cascading II

<configurations>
 <configuration name="addressStuff">
 <deployment name="am" type="AddressManager">
 <wire name="personDAO" target="personDAO"/>
 </deployment>
 <deployment name="personDAO" type="PersonDAO"/>
 </configuration>
 <configuration name="customerStuff">
 <deployment name="cm" type="CustomerManager">
 <wire name="addressStore" target=":addressStuff:am"/>
 </deployment>
 </configuration>
 <configuration name="test" includes="addressStuff, customerStuff"/>
</configurations>

<<component>>
AddressManager

<<interface>>
AddressStore

addOrUpdateContact(p: Person) : void
addAddress(p: Person, a: Address) : void
getAddresses(p: Person) : Address[]

<<entity>>
Person

name: String
firstName: String

<<valuetype>>
Address

street: String
zip: String
City: String

0..n

<<component>>
CustomerManager

address-
Store

<systems>
 <system name="production">
 <node name="server" type="spring" configuration="addressStuff"/>
 <node name="client" type="eclipse" configuration="customerStuff"/>
 <system>
 <system name="test">
 <node name="test" type="spring" configuration="test"/>
 <system>
</systems>

Type Model

Composition Model System Model

person

<<component>>
SomeComponent

<<generate>>
<<man-code>>

SomeCompo-
nent.java

<<interface>>
SomeInterface

<<gen-code>>
Some-

Interface.java

<<generate>>

<<gen-code>>
Some

Component
Base.java

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 48 -

DSL Best Practices

Partitions/Layers/Cascading III

<<gen-code>>
SomeEntity.java

<<entity>>
SomeEntity

<<generate>>

<<interface>>
SomeEntityDAO

<<transform>>
<<generate>> <<gen-code>>

SomeEntity-
DAO.java

<<component>>
SomeEntityDAO

<<transform>>
<<generate>> <<gen-code>>

SomeEntity-
DAOBase

.java

<<gen-code>>
SomeEntity-

DAO.java

<<generate>>

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 49 -

DSL Best Practices

Partitions/Layers/Cascading IV

<<generate>>

<<gen-code>>
AProcess-
Data.java

<<proc-component>>
AProcess

<<gen-code>>
AProcessBase

.java

<<gen-code>>
AProcessProcBase.java

<<trigger-interface>>
AProcessInterface

*

1

sm AProcess

<<entity>>
AProcessData

<<
tra

ns
fo

rm
>>

s1

s2

s3

<<generate>> <<generate>>operations...

attributes...

data

1

<<
tra

ns
fo

rm
>>

guard operations... (abstract)
action methods... (abstract)

<<man-code>>
AProcess.java

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 50 -

DSL Best Practices

Configuration over Composition
Architecture can be nicely layered and architected to be

as small an consistent as possible

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 51 -

DSL Best Practices

Configuration over Composition

• Structural Variations
Example Metamodel

• Non-Structural Variations
Example Feature Models

Dynamic Size, ElementType: int,
Counter, Threadsafe

Static Size (20),
ElementType: String

Dynamic Size, Speed-Optimized,
Bounds Check

• Based on this sample
metamodel,
you can build a wide
variety of models:

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 52 -

DSL Best Practices

Configuration over Composition II

• This slide (adopted from K. Czarnecki) is important for the
selection of DSLs in the context of MDSD in general:
• The more you can move your DSL „form“ to the configuration

side, the simpler it typically gets.
• We will see why this is especially important for behavior

modelling.

Framworks

Routine
Configuration

Creative
Construction

Wizards

Property Files

Feature-Model
Based

Configuration

Graph-Like
Languages

Tabular
Configurations

Manual
Programming

Guidance,
Efficiency

Complexity,
Flexibility

Configuration
Parameters

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 53 -

DSL Best Practices

Specific Implementation DSLs
Architecture can be nicely layered and architected to be

as small an consistent as possible

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 54 -

DSL Best Practices

Specific Implementation DSLs

• We have not yet talked about the implementation code
that needs to go along with components.
• As a default, you will provide the implementation by a

manually written subclass

• However, for special kinds of components (“component
kind” will be defined later) can use different
implementation strategies -> Cascading!

<<component>>
SomeComponent

<<generate>>
<<man-code>>

SomeCompo-
nent.java

<<interface>>
SomeInterface

<<gen-code>>
Some-

Interface.java

<<generate>>

<<gen-code>>
Some

Component
Base.java

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 55 -

DSL Best Practices

Specific Implementation DSLs II

• Remember
the example
of the process
components
from before:

• Various other
implementation
stragies can be used,
such as:
• Rule-Engines
• “Procedural” DSLs or action

semantics

• Note that, here, interpreters can often be used sensibly
instead of generating code

-> JRuby, but that’s another talk ☺

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 56 -

DSL Best Practices

Thanks!
Please ask questions!

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 57 -

DSL Best Practices

Some advertisement ☺

• For those, who speak
(or rather, read) german:

Völter, Stahl:

Modellgetriebene
Softwareentwicklung
Technik, Engineering, Management

dPunkt, 2005

www.mdsd-buch.de

• An very much updated translation is
under way:
Model-Driven
Software Development,
Wiley, Q2 2006

www.mdsd-book.org

