
1

MDSD Best Practices

Best Practices for

Markus Völter

Best Practices for
Model-Driven Development

OOPSLA 2007 Tutorial

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 1 -

Markus Völter
voelter@acm.org
www.voelter.de

www.mdsd-buch.de

www.mdsd-book.org
Copyright is held by the author/owner(s).

OOPSLA 2007, October 21–25, 2007,
Montréal, Québec, Canada.

ACM 07/0010.

MDSD Best Practices

About me

Markus Völter
voelter@acm.org
www.voelter.de

• Independent Consultant

• Based out of Göppingen,
Germany

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 2 -

• Focus on
• Model-Driven Software

Development
• Software Architecture
• Product Lines

2

MDSD Best Practices

C O N T E N T S

• What is MDSD?
• Custom Metamodel
• Take care of your

Metamodel

• Cascading MDSD
• Extendible (Meta)model
• Graphical vs. Textual

Syntax
• Checks First & Separate
• Care about Generated

Code
• Managing the Architecture
• Active Programming

Model

y
• Don‘t Duplicate –

Transform!
• Configuration over

Composition
• Leverage Testing
• The Bridge to Frameworks

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 3 -

• Multiple Viewpoints
• Rich Platform

• Behaviour Modeling
• Variant Management

MDSD Best Practices

C O N T E N T S

• What is MDSD?
• Custom Metamodel
• Take care of your

Metamodel

• Cascading MDSD
• Extendible (Meta)model
• Graphical vs. Textual

Syntax
• Checks First & Separate
• Care about Generated

Code
• Managing the Architecture
• Active Programming

Model

y
• Don‘t Duplicate –

Transform!
• Configuration over

Composition
• Leverage Testing
• The Bridge to Frameworks

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 4 -

• Multiple Viewpoints
• Rich Platform

• Behaviour Modeling
• Variant Management

3

MDSD Best Practices

Model-Driven Software Development

• Model-Driven Software Development is about making
software development more domain-related as opposed
to computing related. It is also about making software
development in a certain domain more efficient.

Domain Concepts Domain Concepts

mental work
of developers

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 5 -

Software Technology
Concepts

Software Technology
Concepts

MDSD Best Practices

How MDSD works

• Developer develops model(s)
based on certain
metamodel(s), expressed
using a DSL.

• Using code generation

ModelModelModel

T f ti

Metamodel

te
d• Using code generation

templates, the model is
transformed to executable
code.

• Alternative: Interpretation

• Optionally, the generated
code is merged with

ll itt d

Transformer Tranformation
Rules

Model

Code

Metamodel

op
tio

na
l,

 c
an

 b
e

re
pe

at

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 6 -

manually written code.

• One or more model-to-
model transformation steps
may precede code generation.

Transformer
Code

Generation
Templates

Generated Code
Manually
Written
Code

optional

4

MDSD Best Practices

Reasons for MDSD

• Software Development is too complex and too
expensive (now, this is a really new finding ☺) …

… because:
h li l• There is too little reuse

• Technology changes faster than developers can learn
• Knowledge and practices are hardly captured explicitly

and made available for reuse
• Domain experts cannot understand all the technology

stuff involved in software development

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 7 -

• MDSD aims at attacking some of these problems.
We shall see how on the following slides.

MDSD Best Practices

MDSD Core Concepts and MDA

subdomains

Metametamodel

MOFseveral target
software

architecture
software

architecture

design

Model

Domain
Specific

Language

Domain

Ontology

bounded area of
knowlege/interest

semantics

precise/
executable

multiple

partial

viewpoint

composable

transform

compile

interpret

multi-step

single-step

no
roundtrip

UML+OCL, Action
Semantics

PIM, PSM, QVT

Applicationdesign
expertise

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 8 -

Metamodel
textual

graphical
ProfilesSemantics

5

MDSD Best Practices

MDSD Core Values

• We prefer to validate software-under-construction
over validating software requirements

• We work with domain-specific assets, which can be
anything from models components frameworks anything from models, components, frameworks,
generators, to languages and techniques.

• We strive to automate software construction from
domain models; therefore we consciously distinguish
between building software factories and building software
applications

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 9 -

• We support the emergence of supply chains for
software development, which implies domain-specific
specialization and enables mass customization

MDSD Best Practices

Other related approaches

• Microsoft’s Software Factories:
Focus on Reuse, Efficient Development, DSLs

• Domain-Specific (Visual) Modelling:p () g
Focus on (Visual) DSLs

• Generative Programming:
Focus on Efficiency, “Automatic Manufactoring”, Software
System Families

• L O i t d P i

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 10 -

• Language-Oriented Programming:
Focus on DSLs instead of Frameworks, incl.
Editor/Debugger Support

all basically the same ☺

6

MDSD Best Practices

C O N T E N T S

• What is MDSD?
• Custom Metamodel
• Take care of your

Metamodel

• Cascading MDSD
• Extendible (Meta)model
• Graphical vs. Textual

Syntax
• Checks First & Separate
• Care about Generated

Code
• Managing the Architecture
• Active Programming

Model

y
• Don‘t Duplicate –

Transform!
• Configuration over

Composition
• Leverage Testing
• The Bridge to Frameworks

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 11 -

• Multiple Viewpoints
• Rich Platform

• Behaviour Modeling
• Variant Management

MDSD Best Practices

Custom Metamodel

• Building your own meta model helps
you understand and clarify your
domain‘s concepts.

• A customized general-purpose
t d l ill l t i

Model

Domain
Specific

Language

semantics

meta-model will always contain
a lot of unnecessary complexity.
(think UML Profile)

• If you use a general purpose
language (such as UML) on
which to build your DSL,
consider it concrete syntax!

Metamodel
textual

graphical

(Profiled)
UML Model UML-MM«instanceof»

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 12 -

• You should still have a domain-
specific metamodel the first
step must be a transformation
from the GP language to the
custom metamodel.

Domain
Speific Model DSL-MM«instanceof»

T

T G

7

MDSD Best Practices

Custom Metamodel II

• Why is this important? Basically, because the GP
metamodel is typically very complicated (UML ☺)
• Constraint checking can be more specific in a DS

metamodel
• M d l difi ti h i (t t it t th • Model modifications are much easier (try to write to the

UML metamodel!)
• Subsequent transformation/code generation is also much

simple
• And you are able to easily change the concrete syntax

to something more appropriate without the need to change
your backend

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 13 -

MDSD Best Practices

C O N T E N T S

• What is MDSD?
• Custom Metamodel
• Take care of your

Metamodel

• Cascading MDSD
• Extendible (Meta)model
• Graphical vs. Textual

Syntax
• Checks First & Separate
• Care about Generated

Code
• Managing the Architecture
• Active Programming

Model

y
• Don‘t Duplicate –

Transform!
• Configuration over

Composition
• Leverage Testing
• The Bridge to Frameworks

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 14 -

• Multiple Viewpoints
• Rich Platform

• Behaviour Modeling
• Variant Management

8

MDSD Best Practices

Use a suitable editor

• The meta model is the central asset that defines the
semantics of your domain and your DSL(s).

• Make sure it is described using a scalable means, such as
a textual DSL or a UML toola textual DSL or a UML tool
• The EMF tree editors don‘t scale!
• The Ecore Editor provided with GMF also does not really

scale…

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 15 -

MDSD Best Practices

Using UML to define meta models

• One approach is to use
a UML tool (one which
supports Eclipse UML2
export) and
transform the model a s o e ode
into an Ecore meta
model.

• An alternative is to use
a suitable textual
notation
(make sure you can oAW uml2ecore

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 16 -

(y
distribute the model
over several files…!)

oAW uml2ecore

• Ecore File
• Name Management

(qualified, namespaces)
• Various constraints

9

MDSD Best Practices

How do I come up with a good metamodel?

• Incrementally!

• Based on experience from previous projects, and by
„mining“ domain experts.

• A very good idea is to start with a (typically) very well
known domain: the target software architecture
(platform) Architecture-Centric MDSD

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 17 -

MDSD Best Practices

Talk Metamodel

• In order to continuously improve and validate the
FORMAL META MODEL for a domain, it has to be
exercised with domain experts as well as by the
development team.

• In order to achieve this, it is a good idea to use it during
discussions with stakeholders by formulating sentences
using the concepts in the meta model.

• As soon as you find that you cannot express something
using sentences based on the meta model,
• you have to reformulate the sentence

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 18 -

• the sentence’s statement is just wrong
• you have to update the meta model.

10

MDSD Best Practices

Talk Metamodel II

Component

Port
owns *

Interface
implements 1

provides

• Example:

• A component owns any number of ports.
• Each port implements exactly one interface.
• Th t ki d f t i d t d id d

Required Port Provided Port

operations
defined by

provides access to operations defined by

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 19 -

• There are two kinds of ports: required ports and provided
ports.

• A provided port provides the operations defined by its
interface.

• A required port provides access to operations defined by
its interface.

MDSD Best Practices

C O N T E N T S

• What is MDSD?
• Custom Metamodel
• Take care of your

Metamodel

• Cascading MDSD
• Extendible (Meta)model
• Graphical vs. Textual

Syntax
• Checks First &

Separate
• Care about Generated

Code
• Managing the Architecture
• Active Programming

M d l

y
• Don‘t Duplicate –

Transform!
• Configuration over

Composition
• Leverage Testing
• The Bridge to Frameworks

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 20 -

Model
• Multiple Viewpoints
• Rich Platform

• Behaviour Modeling
• Variant Management

11

MDSD Best Practices

Define constraints in separate artefacts

• There‘s no point in
transforming a „buggy“
model into something else.

• A buggy model is a model

Model

Domain
Specific

Language

semantics

precise/
executableggy

where the constraints defined
as part of the metamodel
do not hold.

• Make sure you have such constraints!

• Make sure they are not part of the transformation:
• Would make transformation more complicated

Language

Metamodel
textual

graphical

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 21 -

p
• If you have several transformations from the same model,

you‘d need to implement the checks several times

• Make constraint checking a separate, and early step in
the transformation workflow

MDSD Best Practices

Using oAW‘s Check language to define constraints

• Here are some examples written in oAW’s Checks
language. For which elements

is the constraint is
applicable

• Note the code completion & error highlighting ☺

Constraint
Expression

Error message
in case

Expression is
false

ERROR or
WARNING

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 22 -

12

MDSD Best Practices

Constraints can handle non-trivial things

• More complex constraints: Versioning and Evolution

<<component>>
S C V1

<<interface>>
S I t fSomeCompV1 SomeInterface

soSomething(int, ValueObject)

<<component>>
SomeCompV2

<<newVersionOf>>
<<interface>>

AnotherInterface

<<vo>>
ValueObject

<<newVersionOf>>

<<newVersionOf>>
<<newVersionOf>>

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 23 -

<<component>>
SomeCompV3

<<newVersionOf>>

<<interface>>
SomeInterfaceV3

soSomething(int, ValueObjectV2)
anAdditionalOperation()

<<vo>>
ValueObjectV3

MDSD Best Practices

C O N T E N T S

• What is MDSD?
• Custom Metamodel
• Take care of your

Metamodel

• Cascading MDSD
• Extendible (Meta)model
• Graphical vs. Textual

Syntax
• Checks First & Separate
• Care about Generated

Code
• Managing the Architecture
• Active Programming

Model

y
• Don‘t Duplicate –

Transform!
• Configuration over

Composition
• Leverage Testing
• The Bridge to Frameworks

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 24 -

• Multiple Viewpoints
• Rich Platform

• Behaviour Modeling
• Variant Management

13

MDSD Best Practices

Separate Generated and Non-Generated Code

• Keep generated and non-generated code in separate
files.

• Never modify generated code.

• D i hit t th t l l d fi hi h • Design an architecture that clearly defines which
artifacts are generated, and which are not.

• Use suitable design approaches to “join” generated and
non-generated code. Interfaces as well as design patterns
such as factory, strategy, bridge, or template method are
good starting points.

Connected by Patterns, etc.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 25 -

GeneratorApplication
Model

Generated
Source

Manually
Written
Source

Compiler/
Build Tool

Complete
System

MDSD Best Practices

Code Integration using Patterns and Idioms

• A) Generated code can
call non-generated code
contained in libraries

• B) A non-generated
framework can callframework can call
generated parts.

• C) Factories can be used to
„plug-in“ the generated
building blocks

• D) Generated classes can
also subclass non-generated
classes.

a)

b)

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 26 -

classes.

• E) The base class can also
contain abstract methods that
it calls, they are implemented
by the generated subclasses
(template method pattern)

c) d) e)

generated code non-generated code

14

MDSD Best Practices

Produce Nice-Looking Code … whenever possible!

• PRODUCE NICE-LOOKING CODE … WHEREVER POSSIBLE!

• When designing your code generation templates, also
keep the developer in mind who has to – at least to
some extent – work with the generated code, for exampleso e e e o e ge e a ed code, o e a p e
• When verifying the generator
• Or debugging the generated code

• Using this pattern helps to gain acceptance for code
generation in general.

• Examples:

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 27 -

p
• Comments
• Use pretty printers/code formatters
• Location string („generated from model::xyz“)

MDSD Best Practices

Believe in Re-Incarnation

• The final, implemented application should be built by a
build process that includes re-generation of all
generated/transformed parts.
• …which includes more than just code – see LEVERAGE THE

MODELMODEL

• As soon as there is one manual step, or one line of
code that needs to be changed after generation, then
sooner or later (sooner is the rule) the generator will be
abandoned, and the code will become business-as-usual.

• Note that this pattern does not receommend to

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 28 -

generate as much stuff as possible.
• You should use a rich domain specific platform,
• And use existing frameworks and platform where possible

15

MDSD Best Practices

Leverage the Model

• The information captured in a model should be leveraged
to avoid duplication and to minimize manual tasks.

• Hence you may generate much more than code:
• build scriptsbuild scripts
• packaging and deployment files
• infrastructure configuration files
• test data and UIs
• …

• Find the right balance between the effort required for
automating manual tasks and the effort of repetitively

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 29 -

automating manual tasks and the effort of repetitively
performing manual tasks

MDSD Best Practices

C O N T E N T S

• What is MDSD?
• Custom Metamodel
• Take care of your

Metamodel

• Cascading MDSD
• Extendible (Meta)model
• Graphical vs. Textual

Syntax
• Checks First & Separate
• Care about Generated

Code
• Managing the

Architecture
• Active Programming

M d l

y
• Don‘t Duplicate –

Transform!
• Configuration over

Composition
• Leverage Testing
• The Bridge to Frameworks

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 30 -

Model
• Multiple Viewpoints
• Rich Platform

• Behaviour Modeling
• Variant Management

16

MDSD Best Practices

Managing the Architecture

• It is relatively easy check architectural constraints (such
as dependencies) on the level of models.

• However, if the model analysis tells you that everything is
ok (no constraint violations) it must be ensured that the ok (no constraint violations) it must be ensured that the
manually written code does not compromise the
validity of the constraints.

• E.g. how do you ensure
that there are no more
dependencies in the code
than those that are <<application>>

SMSApp TextEditor

MenuUtilities

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 31 -

described in the model?
SMSApp

UIManager
GSMStack

CallIFSMSIF EMSIF

SMSIF

lookAndFeel: String

MDSD Best Practices

• The programming model shown below is bad:

Managing the Architecture II

public class SMSAppImpl {
public void tueWas() {

TextEditor editor =
Factory getComponent(“TextEditor”);

• Problems:
•Developers can lookup, use, and thus, depend on whatever they

like

Factory.getComponent(“TextEditor”);
editor.setText(someText);
editor.show();

}
}

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter

•Developers are not guided (by IDE, compiler, etc.) what they are
allowed to access and what is prohibited

- 32 -

17

MDSD Best Practices

Managing the Architecture III

public interface SMSAppContext extends ComponentContext {
public TextEditorIF getTextEditorIF();
public SMSIF getSMSIF();
public MenuIF getMenuIF();

}

bli l SMSA I l i l t C t {public class SMSAppImpl implements Component {
private SMSAppContext context = null;
public void init(ComponentContext ctx) {

this.context = (SMSAppContext)ctx;
}
public void tueWas() {

TextEditor editor = context.getTextEditorIF();
editor.setText(someText); editor.show();

} }

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 33 -

• Better, because:
•Developers can only access what they are allowed to…
•… and this is always in sync with the model
• IDE can help developer (ctrl+space in eclipse)
• Architecture (here: Dependencies) are enforced and controlled

MDSD Best Practices

Relationship Programming Model/Model

• The programming model must be true to the model and the
constraints checked therein:
• If certain constraints on the model hold
• Then the programming model must ensure that these

constraints can’t be violated in the “real” codeconstraints can t be violated in the real code

• Example:
• constraints, saythere are no illegal dependencies in the model...
• The programming model must then be sure that no illegal

dependencies can be created in the manually written code

• If this is not the case constraint checks in the model

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 34 -

• If this is not the case, constraint checks in the model
don’t help you much!

18

MDSD Best Practices

Relationship Programming Model/Model II

• Conformance of the manually written code to guidelines
implied by the generator (and thus, by the constraints) can
be checked by using
• compiler tricks such as static if-false blocks that cast types

around or “call” methods

public class SCMComponentBase ... {

static {
if (false) {

SCMComponentBase i = (SCMComponentBase)
(new SCMBusinessComponent());

}
}

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 35 -

• subsequent checks check the manually written code for
consistency with the guidelines/programming model

Active Programming Model, Recipe Framework

}

MDSD Best Practices

C O N T E N T S

• What is MDSD?
• Custom Metamodel
• Take care of your

Metamodel

• Cascading MDSD
• Extendible (Meta)model
• Graphical vs. Textual

Syntax
• Checks First & Separate
• Care about Generated

Code
• Managing the Architecture
• Active Programming

Model

y
• Don‘t Duplicate –

Transform!
• Configuration over

Composition
• Leverage Testing
• The Bridge to Frameworks

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 36 -

• Multiple Viewpoints
• Rich Platform

• Behaviour Modeling
• Variant Management

19

MDSD Best Practices

Guiding developers beyond the generator run

• You want to make sure developers have only limited
freedom when implementing those aspects of the code that
are not generated.

well structured system
keeps the promises made by the modelskeeps the promises made by the models

• An important challenge is thus: How do we combine
generated code and manually written code in a controlled
manner (and without using protected regions)?

• Solution: Patterns and the Recipe Framework

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 37 -

a)

b)

c) d) e)

generated code non-generated code

MDSD Best Practices

Relationship Programming Model/Model III

• The openArchitectureWare RecipeFramework can be used to
subsequently check manually written code

• During the generator run, we generate the generated code;

• in addition based on the model we instantiate checks that • in addition, based on the model, we instantiate checks that
need to be verified later on the manually-written code

• In the IDE, the failed checks are shown to the user hinting at
“problems” with the manualy code that need to be fixed.

• Once a problem is fixed, the complaint goes away.

• For many failed checks, a “fix this” button can be activated to fix
th bl t ti ll

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 38 -

the problem automatically.

• A fairly small number of such Checks can get you a long way...

20

MDSD Best Practices

Recipe Framework

• Here’s an error that suggests that I extend my
manually written class from the generated base
class:

Recipes can be
arranged

hierarchically

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 39 -

This is a
failed check

„Green“
ones can
also be
hidden

Here you can see
additional

information about
the selected

recipe

MDSD Best Practices

Recipe Framework II

• I now add the respective extends clause, & the
message goes away – automatically.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 40 -

Adding the extends
clause makes all of

them green

21

MDSD Best Practices

Recipe Framework III

• Now I get a number of compile errors because I have
to implement the abstract methods defined in the
super class:

• I finally implement them sensibly, & everything is ok.

• The Recipe Framework & the Compiler have guided
me through the manual implementation steps.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 41 -

• If I didn’t like the compiler errors, we could also add
recipe tasks for the individual operations.

• oAW comes with a number of predefined recipe
checks for Java. But you can also define your own
checks, e.g. to verify C++ code.

MDSD Best Practices

C O N T E N T S

• What is MDSD?
• Custom Metamodel
• Take care of your

Metamodel

• Cascading MDSD
• Extendible (Meta)model
• Graphical vs. Textual

Syntax
• Checks First & Separate
• Care about Generated

Code
• Managing the Architecture
• Active Programming

Model

y
• Don‘t Duplicate –

Transform!
• Configuration over

Composition
• Leverage Testing
• The Bridge to Frameworks

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 42 -

• Multiple Viewpoints
• Rich Platform

• Behaviour Modeling
• Variant Management

22

MDSD Best Practices

Multiple Viewpoints

• Complex Systems typically
consist of several aspects,
concerns or viewpoints.

• Often (though not always)
multiple

partial

viewpoint

subdomains

composable

Metametamodel

• Often (though not always)
these are described by
different people at different
times in the development
process.

• In most cases, different forms
of concrete syntax are suitable

Model

Domain
Specific

Language

Metamodel
textual

graphical

semantics

precise/
executable

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 43 -

of concrete syntax are suitable
for these different viewpoints.

• Therefore, provide separate models for each of
these viewpoints.

MDSD Best Practices

Viewpoints: Component-Based Development Example

<<entity>>

Type Model

• Type Model: Components, Interfaces, Data Types
• Composition Model: Instances, “Wirings”
• System Model: Nodes, Channels, Deployments

<<component>>
AddressManager

<<interface>>
AddressStore

addOrUpdateContact(p: Person) : void
addAddress(p: Person, a: Address) : void
getAddresses(p: Person) : Address[]

y
Person

name: String
firstName: String

<<valuetype>>
Address

street: String
zip: String
City: String

0..n

<<component>>
CustomerManager

address-
Store

Composition Model System Model

person

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 44 -

<configurations>
 <configuration name="addressStuff">
 <deployment name="am" type="AddressManager">
 <wire name="personDAO" target="personDAO"/>
 </deployment>
 <deployment name="personDAO" type="PersonDAO"/>
 </configuration>
 <configuration name="customerStuff">
 <deployment name="cm" type="CustomerManager">
 <wire name="addressStore" target=":addressStuff:am"/>
 </deployment>
 </configuration>
 <configuration name="test" includes="addressStuff, customerStuff"/>
</configurations>

<systems>
 <system name="production">
 <node name="server" type="spring" configuration="addressStuff"/>
 <node name="client" type="eclipse" configuration="customerStuff"/>
 <system>
 <system name="test">
 <node name="test" type="spring" configuration="test"/>
 <system>
</systems>

23

MDSD Best Practices

CBD Meta Models for the three viewpoints

Types

Composition

Deployment

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 45 -

MDSD Best Practices

Additional Viewpoints: Aspect Models

• Often, the described three viewpoints are not enough,
additional aspects need to be described.

• These go into separate aspect models, each describing
a well-defined aspect of the system.a well defined aspect of the system.
• Each of them uses a suitable DSL/syntax
• The generator acts as a weaver

• Typical Examples are
• Persistence
• Security
• F L t P fl

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 46 -

• Forms, Layout, Pageflow
• Timing, QoS in General
• Packaging and Deployment
• Diagnostics and Monitoring

24

MDSD Best Practices

C O N T E N T S

• What is MDSD?
• Custom Metamodel
• Take care of your

Metamodel

• Cascading MDSD
• Extendible (Meta)model
• Graphical vs. Textual

Syntax
• Checks First & Separate
• Care about Generated

Code
• Managing the Architecture
• Active Programming

Model

y
• Don‘t Duplicate –

Transform!
• Configuration over

Composition
• Leverage Testing
• The Bridge to Frameworks

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 47 -

• Multiple Viewpoints
• Rich Platform

• Behaviour Modeling
• Variant Management

MDSD Best Practices

Rich Domain-Specific Platform

• Define a rich domain-specific application platform
consisting of
• Libraries
• Frameworks - Core Domain

Classes (Entities

Generated Applications

• base classes
• interpreters, etc.

• The transformations will
“generate code” for this
domain-specific application
platform.

Domain
Platform

Technical
Platform/
Middleware

Programming Language

- Persistence
- Transactions
- Distribution
- Scheduling
- Hardware Access
- ...

 Classes (Entities,
 Value Types, ...)
- Business Rules
- Business Services
- ...

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 48 -

• As a consequence, the trans-
formations become simpler.

• DSLs and Frameworks are two sides of the same coin

Operating System

Programming Language

25

MDSD Best Practices

Code Generation vs. Platform

• There is no point in generating 100% of an
application’s code. You might want to
generate 100% for a certain part/aspect,
but other code will always be reused
from a platform. Generated

C dp

• The ratio of generated code and
platform code varies
• From system to system
• And also in one system over time

• If the platform gets too complicated
or too slow, generate more code.

Code

Platform
Stalagmite

Stalagtite

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 49 -

, g
• If the generator gets too complicated

or generates lots of identical code,
move it to the platform

• Generated code is often framework completion code – DSLs
make frameworks easier to use!

MDSD Best Practices

C O N T E N T S

• What is MDSD?
• Custom Metamodel
• Take care of your

Metamodel

• Cascading MDSD
• Extendible (Meta)model
• Graphical vs. Textual

Syntax
• Checks First & Separate
• Care about Generated

Code
• Managing the Architecture
• Active Programming

Model

y
• Don‘t Duplicate –

Transform!
• Configuration over

Composition
• Leverage Testing
• The Bridge to Frameworks

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 50 -

• Multiple Viewpoints
• Rich Platform

• Behaviour Modeling
• Variant Management

26

MDSD Best Practices

Architecture First

• A successful system is built based on a
well-defined architecture, often along
the lines of the illustration on the right.

• Various parts/layers of this stack can be

Domain
Platform

Technical
Platform/
Middleware

- Persistence
- Transactions
- Distribution
- Scheduling
- Hardware Access
- ...

- Core Domain
 Classes (Entities,
 Value Types, ...)
- Business Rules
- Business Services
- ...

Generated Applications

Various parts/layers of this stack can be
generated, or developed with metamodel
and generator support.

• It has proven useful to start with the lower layers to
lay a stable foundation:
• Often, the software architecture is better understood

than the application logic (by the developers)

Operating System

Programming Language

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 51 -

pp g (y p)
• The architecture is fairly general and can be reused in

many projects
• More specific layers can be cascaded on top of that

using model-to-model transformations

MDSD Best Practices

Partitions/Layers/Cascading

MDSD
Infrastructure

Input Models

Output Models...

...

...

...

...

...

Input Models

Functional Domain 1
MDSD Infrastructure

Domain 1 Model

Functional Domain 2
MDSD Infrastructure

Domain 2 Model

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 52 -

Basic Technical
MDSD Infrastructure

Code for Target Platform

27

MDSD Best Practices

Example for Cascading I

<<component>>
AddressManager

<<interface>>
AddressStore

<<entity>>
Person

name: String
firstName: String

<<valuetype>>
Address

0..n

address-
Store

Type Model

person

<configurations>
 <configuration name="addressStuff">
 <deployment name="am" type="AddressManager">
 <wire name="personDAO" target="personDAO"/>
 </deployment>
 <deployment name="personDAO" type="PersonDAO"/>
 </configuration>
 <configuration name="customerStuff">
 <deployment name="cm" type="CustomerManager">
 <wire name="addressStore" target=":addressStuff:am"/>

addOrUpdateContact(p: Person) : void
addAddress(p: Person, a: Address) : void
getAddresses(p: Person) : Address[]

street: String
zip: String
City: String

<<component>>
CustomerManager

<systems>
 <system name="production">
 <node name="server" type="spring" configuration="addressStuff"/>
 <node name="client" type="eclipse" configuration="customerStuff"/>
 <system>
 <system name="test">
 <node name="test" type="spring" configuration="test"/>
 <system>
</systems>

Composition Model System Model

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 53 -

 </deployment>
 </configuration>
 <configuration name="test" includes="addressStuff, customerStuff"/>
</configurations>

<<component>>
SomeComponent

<<generate>>
<<man-code>>

SomeCompo-
nent.java

<<interface>>
SomeInterface

<<gen-code>>
Some-

Interface.java

<<generate>>

<<gen-code>>
Some

Component
Base.java

MDSD Best Practices

Example for Cascading II

<<entity>>
SomeEntity

<<interface>>
SomeEntityDAO

<<transform>>
<<generate>> <<gen-code>>

SomeEntity-
DAO.java

<<gen-code>>
SomeEntity.java

<<generate>>

<<component>>
SomeEntityDAO

<<transform>>
<<generate>> <<gen-code>>

SomeEntity-
DAOBase

.java

<<gen-code>>
SomeEntity-

DAO.java

<<generate>>

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 54 -

28

MDSD Best Practices

Example for Cascading III

<<proc-component>>
AProcess 1

sm AProcess

<<entity>>
AProcessData

m
>>

s1

s2
attributes...

<<
tra

ns
fo

rm
>>

<<generate>>

<<gen-code>>
AProcess-
Data.java

<<gen-code>>
AProcessBase

.java

<<gen-code>>
AProcessProcBase.java

<<trigger-interface>>
AProcessInterface

*

<<
tra

ns
fo

rm

s3

<<generate>> <<generate>>operations...

data

1

guard operations (abstract)

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 55 -

guard operations... (abstract)
action methods... (abstract)

<<man-code>>
AProcess.java

MDSD Best Practices

C O N T E N T S

• What is MDSD?
• Custom Metamodel
• Take care of your

Metamodel

• Cascading MDSD
• Extendible

(Meta)model
• Graphical vs. Textual

• Checks First & Separate
• Care about Generated

Code
• Managing the Architecture
• Active Programming

Model

p
Syntax

• Don‘t Duplicate –
Transform!

• Configuration over
Composition

• Leverage Testing
• Th B id t F k

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 56 -

• Multiple Viewpoints
• Rich Platform

• The Bridge to Frameworks
• Behaviour Modeling
• Variant Management

29

MDSD Best Practices

Extendible Metamodel

• Assume you want to generate code for Java from a
given model. You‘ll need all kinds of additional
properties on your model elements, such as:
• Class::javaClassName
• Cl k• Class::package
• Class::fileName

• If you add these to your domain metamodel, you‘ll pollute
the metamodel with target platform-specific properties.

• This gets even worse if you generate for several targets
from the same model

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 57 -

from the same model…

• Therefore allow metaclasses to be annotated with
additional (derived) properties externally.
• Somewhat like open classes/AOP/C#3.0 extension

methods

MDSD Best Practices

• Define a set of functions that calculate derived properties.
• Depending on the tooling, they can be accessed as if they were

properties.
• Defined in a separate file, the original meta model does not need to

be changed.

Extension Functions

• Disadvantage: Since the extensions are functions, you cannot

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 58 -

Disadvantage: Since the extensions are functions, you cannot
store additional information with the model; you can only
calculate derived values from information already in the model.

• Tooling: using oAW’s Xtend facility you can access the “derived
properties”, i.e. the functions almost as if they were regular
properties: you have to use () after the name

30

MDSD Best Practices

Extendible Metamodel II

• One can add behaviour to existing
metaclasses using oAW’s Xtend language.

Imports a
namespace

Extensions are

• Extensions can be called using member-style
syntax: myAction methodName()

Extensions are
typically defined
for a metaclass

Extensions can also
have more than one

parameter

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 59 -

syntax: myAction.methodName()

• Extensions can be used in Xpand templates,
Check files as well as in other Extension files.

• They are imported into template files using the
EXTENSION keyword

MDSD Best Practices

• Create a new meta model, extending classes defined in some
other (base) meta model.
• Useful to specialize a complete language and work with that new

language in your system.
• A typical candidate for extension is the UML meta model.

Specialization

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 60 -

• Disadvantage: you cannot remove items you do not need in your
language from the base meta model.
• This is an especially serious problem with complex base meta

models such as UML.

31

MDSD Best Practices

• Tooling:

• Ecore does not provide a means to have one meta model package
“extend” another one. You can only extend meta classes.

• This means you have to define a new meta model package, and

Specialization II

y p g ,
reference meta classes in another one to have your new classes
extend the original ones.

• Your meta classes will use the new package’s name for
qualification. The old meta classes (those “inherited” from the
original meta model) will still be available under in the old package.

• Thus, you have to work with two meta model packages. This can
be a problem in some tool environments

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 61 -

be a problem in some tool environments.

MDSD Best Practices

• Define a set of functions that calculate derived properties.
• Depending on the tooling, they can be accessed as if they were

properties.
• Defined in a separate file, the original meta model does not need to

be changed.

Extension Functions

• Disadvantage: Since the extensions are functions, you cannot

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 62 -

Disadvantage: Since the extensions are functions, you cannot
store additional information with the model; you can only
calculate derived values from information already in the model.

• Tooling: using oAW’s Xtend facility you can access the “derived
properties”, i.e. the functions almost as if they were regular
properties: you have to use () after the name

32

MDSD Best Practices

• You use an aspect weaver to weave additional properties,
relationships or meta classes into the base meta model.
• Depending on the weaver, you can add new properties, new

relationships and also new meta classes.

Weaving

• Tooling: We use oAW’s XWeave.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 63 -

g
• The aspect elements are actually physically woven into the

original model, physically altering its structure.
• The result of the weaving process is an updated model.
• Subsequent tooling cannot tell the difference between a

woven model and a “normal” model.

MDSD Best Practices

• You take two or more existing
meta models and add
relationships joining them.
• The meta models keep their

own identities.

Joining

own identities.
• Subsequent tools must be

able to work with several
meta models.

• The two (or more) partial models
do not need to know about the
other ones.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 64 -

• Tooling: oAW comes with a
join facility called XJoin.

33

MDSD Best Practices

• Associate a set of name-value pairs with a meta model element.
• This allows the storage of all kinds of additional information with

model elements.
• The values can be primitive values or even additional model

fragments.

Dynamic Properties

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 65 -

• Tooling: oAW provides a library that can store any number of
name-value pairs with any model element.
• The value can be anything, including a model fragment.

MDSD Best Practices

• External models that store additional information about a
model element of the original model.
• In order to establish the relationship with the original model,

the annotation meta model either contains a reference to
the target meta class, or references the target by some

Annotation

the target meta class, or references the target by some
unique (typically qualified) name or ID.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 66 -

• Tooling: In EMF, a model can reference elements in another
model by using inter-resource references.

34

MDSD Best Practices

C O N T E N T S

• What is MDSD?
• Custom Metamodel
• Take care of your

Metamodel

• Cascading MDSD
• Extendible (Meta)model
• Graphical vs. Textual

Syntax
• Checks First & Separate
• Care about Generated

Code
• Managing the Architecture
• Active Programming

Model

y
• Don‘t Duplicate –

Transform!
• Configuration over

Composition
• Leverage Testing
• The Bridge to Frameworks

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 67 -

• Multiple Viewpoints
• Rich Platform

• Behaviour Modeling
• Variant Management

MDSD Best Practices

Graphical vs. Textual Syntax

• This is an example of an editor built with Eclipse
GMF, based on a metamodel for state machines.

These rectangles

Tool
Palette

Overview
Pane

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 68 -

These rectangles
are to demo

decorations ☺ Model
Element

Properties

35

MDSD Best Practices

Graphical vs. Textual Syntax II

Literals
have

become
keywords

• This is a textual editor for the same metamodel

Constraints
are

evaluated
in real time

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 69 -

MDSD Best Practices

Graphical vs. Textual Syntax III: Comparison

• Both kinds of editors…
• Can be built on the same meta model
• Can verify constraints in real time
• Will write ordinary EMF modelsy

• Graphical Editors
• are good to show structural relationships

• Textual Editors
• are better for „algorithmic“ aspects
• Integrate better with CVS etc (diff merge)

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 70 -

• Integrate better with CVS etc. (diff, merge)

36

MDSD Best Practices

C O N T E N T S

• What is MDSD?
• Custom Metamodel
• Take care of your

Metamodel

• Cascading MDSD
• Extendible (Meta)model
• Graphical vs. Textual

Syntax
• Checks First & Separate
• Care about Generated

Code
• Managing the Architecture
• Active Programming

Model

y
• Don‘t Duplicate –

Transform!
• Configuration over

Composition
• Leverage Testing
• The Bridge to Frameworks

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 71 -

• Multiple Viewpoints
• Rich Platform

• Behaviour Modeling
• Variant Management

MDSD Best Practices

Motivating Example – State Machines

• Consider you want to generate a state machine
implementation for C++ and Java:
• You have a model of a state machine,
• And you have two sets of templates – one for C++, one for

JavaJava

• Assume further, that you want to have an emergency
stop feature in your state machines (a new transition
from each ordinary state to a special stop state)
• You can either add it manually to the model (which is

tedious and error prone)
• Or you can modify the templates (two sets, already…!) and

hard code the additional transitions and state

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 72 -

hard-code the additional transitions and state.

• Both solutions are not satisfactory.

• Better Alternative: Use a Model-Modification to add these
transitions and state automatically

37

MDSD Best Practices

Motivating Example – State Machines II

• The model modification shows how to add an dditional state &
some transitions to an existing state machine (emergency
shutdown)

Extensions can
import other
extensions

The main functionThe main function

„create extensions“
guarantee that for

each set of
parameters the

identical result will
be returned.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 73 -

Therefore
createShutDown()
will always return
the same element.

No code generation templates
need not be modified for the
new feature to work

MDSD Best Practices

M2M: Model Modifications

• An existing model is modified “in place”.

• Implications of model modification

• An existing model is enhanced at generation time, by
adding elements

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 74 -

g

• The model is based on the same metamodel before and
after the modification

• Little initial implementation overhead (e.g. using Java
code)

38

MDSD Best Practices

Don‘t Duplicate – Transform!

• M2M Transformations should be kept inside the tool, use
them to modularize the transformation chain.
• Never ever modify the result of a transformation manually

• U l d l d d l ifi t i t t

openArchitectureWareModel
(UML)

Model
(XMI)

Parser
Model

(Object Graph)

export (may be repeated)

• Use example models and model-specific constraints to
verify that the transformation works as advertised.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 75 -

Model
Trans-
former

Modified Model
(Object Graph)

Generated
Code

Code
Generator

MDSD Best Practices

M2M: Model Merging

• Several models are merged with each other.

• Implications of model merging

• Typically easy to implement (no actual transformation)

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 76 -

Typically easy to implement (no actual transformation)

• Meta models are obviously the same

• Useful if models need to be modularized (team issues,
performance, …) and then put together for a complete
build

39

MDSD Best Practices

M2M: Model Modifications

• An existing model is modified “in place”.

• Implications of model modification

• An existing model is enhanced at generation time, by
adding elements

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 77 -

g

• The model is based on the same metamodel before and
after the modification

• Little initial implementation overhead (e.g. using Java
code)

MDSD Best Practices

M2M: Model Transformations

• A model is transformed into another model; the
input model is left unchanged.

• Implications of model transformations

• clean separation: separate models, separate

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 78 -

metamodels

• different domains can evolve independently

• identical copy operations must be programmed explicitly

• runtime and memory overhead

40

MDSD Best Practices

M2M: Mixin Models (aka Markup Models)

• The modification or transformation needs to be
parameterized.

Model M

• Implications of mixin models

Model
Trans/Mod

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 79 -

• Provide additional (mark up) information about how a
given model should be processed in a modification or
transformation

• Obviously used together with the other forms

MDSD Best Practices

M2M: Model Weaving

• This is like model merging, but with the additional
ability to specify pointcuts.

• Here is a model of a simple state machine. It serves as
th b d l i t d l ill b i t itthe base model, i.e. aspect models will be woven into it.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 80 -

41

MDSD Best Practices

M2M: Model Weaving II

• This is the desired result of the aspect weaving process.

• We want to add an emergency shutdown feature to the
original state machine.

• That means, from each normal state, we want to have aThat means, from each normal state, we want to have a
transition to a newly added Emergency Stop state.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 81 -

MDSD Best Practices

M2M: Model Weaving III

• These are two aspect models that accomplish this task.

• The left one uses the asterisk to select all instances of
the metaclass denoted by the rounded rectancle (i.e.,
SimpleStates). p)

• The right model uses a pointcut expression to achieve
the same goal. The expression is referenced via the
special form %expressionName and is defined
elsewhere.
• In this case, the expression

also selects all instances of

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 82 -

the metaclass SimpleState,
making the two aspect
models similar in effect.

42

MDSD Best Practices

C O N T E N T S

• What is MDSD?
• Custom Metamodel
• Take care of your

Metamodel

• Cascading MDSD
• Extendible (Meta)model
• Graphical vs. Textual

Syntax
• Checks First & Separate
• Care about Generated

Code
• Managing the Architecture
• Active Programming

Model

y
• Don‘t Duplicate –

Transform!
• Configuration over

Composition
• Leverage Testing
• The Bridge to Frameworks

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 83 -

• Multiple Viewpoints
• Rich Platform

• Behaviour Modeling
• Variant Management

MDSD Best Practices

Structural vs. Non-Structural Variability

• Structural Variations
Example Metamodel

• Based on this sample
metamodel,
you can build a wide
variety of models:

• Non-Structural Variations
Example Feature Models

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 84 -

Dynamic Size, ElementType: int,
Counter, Threadsafe

Static Size (20),
ElementType: String

Dynamic Size, Speed-Optimized,
Bounds Check

43

MDSD Best Practices

Configuration and Creative Construction Languages

Routine
Configuration

Creative
Construction

Feature-Model
Based

Graph-Like
Languages

Manual
Programming

Guidance,
Efficiency

Complexity,
Flexibility

Configuration
Parameters

• This slide (adopted from K. Czarnecki) is important for the
selection of DSLs in the context of MDSD in general:
• The more you can move your DSL „form“ to the configuration

Framworks

Wizards

Property Files
Configuration

g g

Tabular
Configurations

g g

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 85 -

y y „ g
side, the simpler it typically gets.

• We will see why this is especially important for behavior
modelling.

MDSD Best Practices

C O N T E N T S

• What is MDSD?
• Custom Metamodel
• Take care of your

Metamodel

• Cascading MDSD
• Extendible (Meta)model
• Graphical vs. Textual

Syntax
• Checks First & Separate
• Care about Generated

Code
• Managing the Architecture
• Active Programming

Model

y
• Don‘t Duplicate –

Transform!
• Configuration over

Composition
• Leverage Testing
• The Bridge to Frameworks

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 86 -

• Multiple Viewpoints
• Rich Platform

• Behaviour Modeling
• Variant Management

44

MDSD Best Practices

The Role of Testing in SW Development

• In all but very few cases, the correctness of software
cannot be verified theoretically or formally.

• Thus the only way of verifying a system does what it should
do is by testing it extensively.

• There are different kinds of things that can be tested:
• Ensuring that the software does what the developer

wanted it to do
• Ensuring that what the developer programmed is actually

what the system should do (i.e. what the customer wants)
• Ensuring that the system performs and scales adequately
• Ensuring that other non-functional properties work as

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 87 -

• Ensuring that other non-functional properties work as
specified (such as transactions, security, ...)

• Ensuring that the tools and technologies used in the
implementation work together well

• We will now look at each of these in the context of MDD.

MDSD Best Practices

Unit Testing

• Ensuring that the code does what the developer wants is
called Unit Testing.

• Tools such as JUnit provide a framework to implement
and repeatedly execute unit tests

• They are written by the developer as he develops his
code.

• Typically, they test functionality, not nun-functional
properties

• You can always write unit tests manually, even if you
use MDSD

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 88 -

45

MDSD Best Practices

Unit Testing II

• In the context of MDD, unit tests can be generated from
models, too

• Tests for static properties can be generated directly
from the model.

• For behavioral aspects, it should be a different model –
because if tests are created from the same model as the
implementation code, tests will always pass.

• Additional Testcases can also be generated from OCL
expressions (invariants, as well as pre- and
postconditions).

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 89 -

• When the code is generated, we can even embed OCL
constraint evaluation into the generated code and
check these at runtime.

• It is also possible to generate input to tools that
verify/proof dynamic properties of models/systems

MDSD Best Practices

Unit Testing Example

• Consider the following model:
Vehicle Person

age: int
Vehicle.setDriver(p):
pre: p.age >= 18

setDriver(Person p)

Person:
inv: age > 0
 && age <=100

driver

• This could result in the following code:

class Vehicle {
...
public void setDriver(Person p) {

if (p.getAge() < 18) throw new ConstraintViolated();
}

}

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 90 -

• A similar approach could be taken for the invariant in Person.

• In case of the invariant, it is easy to automatically create a
set of unit tests that check ages like 0, 16, 78, 120, -1, 3.4
and see if the system behaves accurately.

46

MDSD Best Practices

Requirements Testing

• Here we want to make sure that the system does what the
customer (or the requirements) say.

• We use the same technical approach here as for unit
testing. However, here the test cases are written by domain g , y
experts and not by the developer.

• If models are annotated with OCL constraints, they are
significantly more rich that „typical“ requirements. A lot of
test cases can be generated from these models.

• If we have a suitable, high-level modeling notation, the
d i t if t t d l hi lf

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 91 -

domain expert can even specify test models himself, or
with some support by a technical person.
• A DSL for test specification, MD-Testing

• Because of the domain-specific notation, developer/
customer communication about tests is simplified.

MDSD Best Practices

Performance and Scalability Testing

• This kind of testing basically works by simulating a certain
number of clients and then measuring response times
and resource consumption.

• Running such tests always requires a setup of an • Running such tests always requires a setup of an
environment similar to the production environment.
This is typically done manually, although some deployment
artifacts can be generated from models.

• The simulated clients can often be generated completely.
The input is basically
• Which operations to call

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 92 -

Which operations to call
• At which sequence and intervals
• In how many parallel threads or processes
• And where to store the timing measurements and in which

format

47

MDSD Best Practices

Performance and Scalability Testing Example

• A statechart can be used to specify this behaviour:

login() checkOut()

[tm(5000)] [tm(2000)]

• Note that we do not care about errors and functional
testing here. This is done in other tests!

• This statechart can be code generated into a client.

doSearch(...) buyItem()[tm(5000)] buyItem(...)[tm(4000)]

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 93 -

• An additional (textual) specification defines how many
parallel threads and processes we have.
• Tools for this task are also available outside MDD.

MDSD Best Practices

Additional Tests: Model Verification

• In many cases it is possible to detect design errors
already in the models. This step is called model
verification.
• Note that this kind of „testing“ is not available in classical

development techniques – there are no semantically richer development techniques there are no semantically richer
models

• It is easily possible to verify modeling constraints in the
model before model transformation or code generation steps
are executed.

• The most „extreme“ form is to simulate certain aspects of

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 94 -

„ p
the model and proof certain properties.
• Petri nets, for example, can be used to prove deadlock

freedom in concurrent systems

48

MDSD Best Practices

Additional Tests: Generator Testing

• Many if not all of the previous statements on testing were
based on the assumption that the generator works fine.

• Of course, this has to be tested also, at least in the early
stages of the generator or the metamodelstages of the generator or the metamodel.

• Over time, however, the generator will become a stable
asset that works reliably. Or you can buy one and trust it
Just as you trust C++/Java/etc. compilers.

• If you have a cascaded generator, make sure you test each
step separately.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 95 -

• In cases of M2M, this can be done by writing test model-
specific constraints

• In case of M2C, you should typically test the semantics of
the code by running it and writing unit tests – testing the
textual structure should be the last resort

MDSD Best Practices

Generator Testing: 2 Channel Concepts

• In safety-critical systems, the concept of independent
channels is used
• It is used to ensure that a failure in a system cannot go

undetected by a second channel;
• d t th t i i lik l th t f il d t • and to ensure that is is very unlikely that a failure does not

affect both channels at the same time.

• The following diagram shows how to apply this idea to
testing generators:

Generator 1
+

Configuration 1

Implementation
Code

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 96 -

Model

Configuration 1

Generator 2
+

Configuration 2
Test Code

49

MDSD Best Practices

Generator Testing: 2 Channel Concepts II

• If one generator or configuration fails, it is assumed that
the other one does not fail and will thus detect the failure.

• This does not detect failures in the model, of course. To
detect those we would need to extend the 2 channel detect those, we would need to extend the 2 channel
concept to include the model.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 97 -

MDSD Best Practices

C O N T E N T S

• What is MDSD?
• Custom Metamodel
• Take care of your

Metamodel

• Cascading MDSD
• Extendible (Meta)model
• Graphical vs. Textual

Syntax
• Checks First & Separate
• Care about Generated

Code
• Managing the Architecture
• Active Programming

Model

y
• Don‘t Duplicate –

Transform!
• Configuration over

Composition
• Leverage Testing
• The Bridge to

F k

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 98 -

• Multiple Viewpoints
• Rich Platform

Frameworks
• Behaviour Modeling
• Variant Management

50

MDSD Best Practices

Descriptive Metaobjects

• The generated application often needs information
about some model elements at run time to control
different aspects of the applicaton plaform.

• Use the information available at generation time to code-
gene ate meta objects that desc ibe the gene ated generate meta objects that describe the generated
artifacts.

• Provide a means to associate a generated artifact with
its meta object.
• You add a getMetaObject() operation to the generated

artifact.
• You can also use a central registry that provides a lookup

function MetaRegistry getMetaObjectFor(anArtefact) The

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 99 -

function MetaRegistry.getMetaObjectFor(anArtefact). The
implementation for the operations will be generated, too.

• Make sure the meta objects have a generic interface
that can be accessed by the RICH DOMAIN-SPECIFIC
PLATFORM.

MDSD Best Practices

Descriptive Metaobjects II

• Example:

getAttributeNames() : String[]
getAttribute(name:String):AttributeMetaObject

<<interface>>
ClassMetaObject

getName() : String
getValue() : Object
setValue(Object newVal) : void

<<interface>>
AttributeMetaObject

<<pk>> name : String
 {label="Nachname"}
firstname : String
 {label="Vorname"}
age : int
 {label="Alter",

min=0 max=100}

SomeClass

:SomeClassMetaObject

getLabel()

getRegexp() : String

<<interface>>
StringAttributeMetaObject

getMin() : int
getMax() : int

<<interface>>
NumAttributeMetaObject

meta
:StringAttributeMetaObject

<<instanceof>>

<<instanceof>> <<instanceof>>

Model

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 100 -

 min=0, max=100}
zip : String
 {label="PLZ",
 regexp="99999"}

name : String
vorname : String
age : int
zip : String

SomeClass

attributeNames : String =
 {"name", "firstname",
 "age", "zip"}

name : String = "zip"
label : String = "PLZ"

name : String = "age"
label : String = "Alter"
min : int = 0
max : int = 100

:NumAttributeMetaObject

...
Generated
Code

51

MDSD Best Practices

Generated Reflection Layer

• You can even go one
step further and generate
an “interpreter”, a
reflection layer that allows
you to

public interface RClass {
// initializer – associates with
// base-level object

public setObject(Object o);
// retrieve information about
//the object

public ROperation[] getOperations();
you to
• “script” the system
• build IDEs

• Since the reflection layer
is separate from the core
classes, it can be excluded
f th l“ t f

public RAttribute[] getAttributes();
// create new instance

public Object newInstance();
}

public interface ROperation {
// retrieve information about op

public RParameter[] getParams();
public String getReturnType();
// invoke

public Object invoke(Object params)
}

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 101 -

from the „real“ system for
(performance reasons)

}

public interface RAttribute {
// retrieve information about op

public String getName();
public String getType();
// set / get

public Object get();
public void set(Object data);

}

MDSD Best Practices

C O N T E N T S

• What is MDSD?
• Custom Metamodel
• Take care of your

Metamodel

• Cascading MDSD
• Extendible (Meta)model
• Graphical vs. Textual

Syntax
• Checks First & Separate
• Care about Generated

Code
• Managing the Architecture
• Active Programming

Model

y
• Don‘t Duplicate –

Transform!
• Configuration over

Composition
• Leverage Testing
• The Bridge to Frameworks

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 102 -

• Multiple Viewpoints
• Rich Platform

• Behaviour Modeling
• Variant Management

52

MDSD Best Practices

Behavioural Configuration

• The easiest way to model behaviour is to reduce the
behaviour to simple descriptive tags if that is
possible.

• For example, to describe communication between
components, if you are able to identify a limited number
of well defined alternatives (synchronous, asynchronous,
etc.), then the behaviour can be described by just marking
it with the respective alternative.

• You don’t have to actually describe the behaviour, you just
denote which alternative you need, and the
transformation or the code generator can make sure

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 103 -

the generated system does indeed behave as specified.

• Selecting a valid option can be as easy as specifying a
certain property or as complex as a sophisticated
selection based on a feature diagram.

MDSD Best Practices

Behavioural Configuration II

Connector

• An example feature diagram for configuration of
communication behaviour among components.

Client/Server Message-based

Synchronous Asynchronous

CAN Local

Technology

ReceiverSender
[incomplete]

[incomplete]

Paradigm

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 104 -

Polling CallbackTimeout

Blocking Non-blocking

PushPull

Queued Non-queued
[incomplete] [incomplete]

[incomplete]

53

MDSD Best Practices

Using a specific formalism

• You can use a well-known formalism for specifying specific
kinds of behaviour. Examples include
• state charts or petri nets
• first order predicate logic or business rule engines.

• Of thi h l k i th i d • Of course this approach only works in case the required
behaviour can actually be described in the selected
formalism.

• Advantages:
• the description and the semantics

of the behaviour is often quite clear
• editors and other tools are available.

Measuring

measure

start

stop

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 105 -

• It is easy to implement „engines“ for
the particular formalism in order to
execute the specifications.

• Within the constraints of the selected formalism, this approach
already constitutes creative construction, not configuration.

Created Ready
start

stop

MDSD Best Practices

Defining your own Formalism

• In case no formalism is readily available you may want to invent
your own.
• For example, in the insurance domain, you might want to use

textual languages that specify verification constraints for
insurance contracts.

• In that case you have to define the formalism (the language)
yourself, and you have to build all the tooling. Writing engines
might not always be easy because it’s not trivial to get the
semantics of the „invented“ formalism right.

PlausiGruppe SchuldnerGui <Schuldner> {
Fehler "namePflichtfeld": name == null;
Fehler "nameLaenge": name.length <3 || name.length > 50;

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 106 -

Warnung "hausnummer": adresse.hausnummer == null;
Warnung "aktivaPassiva“: bilanz.summeAktive != bilanz.summePassiva;

}

PlausiGruppe SchuldnerB2B <Schuldner> {
Fehler "namePflichtfeld": name == null;
Warnung "vornamePflichtfeld": vorname == null;

}

double ortsFaktor (Schuldner s):
switch (s.adresse.stadt) {
case "Pusemuckel": 0.5;
default: 0.8;

};

betrag restWert (Forderung f):
ortsFaktor (f.hauptSchuldner)

* f.nominalwert;

54

MDSD Best Practices

Last reort: Turing-complete Language

• The last alternative you have is to use existing Turing-
complete languages
• such as a 3GL or
• UML action semantics languages

• Here you can specify any kind of behaviour - albeit using a
very general language that is not domain-specific for the kind
of behaviour at hand.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 107 -

MDSD Best Practices

Integration with Structural Models

• It is always necessary to associate a piece of behaviour
with a structural element.

• Structural „behaviour wrappers“ provide a natural point of
integration between structural models and behavioural
models models.

• You should thus define certain subtypes of structural
elements that implement their behaviour with a certain
formalism, and not just allow developers to „implement“ the
structural element. So, in case of components,
• process components represent business processes;

behaviour is modelled using state machines
• b i l (f h i)

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 108 -

• business rule components capture (often changing)
business rules; behaviour is modelled using predicate logic

• insurance contract calculation components are
implemented with a specific textual DSL.

• And finally, 3GLs are used to implement the beaviour for the
rest of the components; this should be a limited number.

55

MDSD Best Practices

C O N T E N T S

• What is MDSD?
• Custom Metamodel
• Take care of your

Metamodel

• Cascading MDSD
• Extendible (Meta)model
• Graphical vs. Textual

Syntax
• Checks First & Separate
• Care about Generated

Code
• Managing the Architecture
• Active Programming

Model

y
• Don‘t Duplicate –

Transform!
• Configuration over

Composition
• Leverage Testing
• The Bridge to Frameworks

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 109 -

• Multiple Viewpoints
• Rich Platform

• Behaviour Modeling
• Variant Management

MDSD Best Practices

• To make those possible, you’ll need model extension and
weaving – see above

the oAW XWeave model weaver

• You also need variants of workflows, templates, transformations,
constraints

Variant Management

constraints
oAW supports the template, transformation and workflow
aspects

• All of these “low-level” variation mechanisms must be tied to a
configuration model

oAW supports the use of any kind of model as a configuration
model, specifically we support feature modeling tools (such as
pure::variants)

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 110 -

pure::variants)

• But that’s another talk ☺

56

MDSD Best Practices

C O N T E N T S

• What is MDSD?
• Custom Metamodel
• Take care of your

Metamodel

• Cascading MDSD
• Extendible (Meta)model
• Graphical vs. Textual

Syntax
• Checks First & Separate
• Care about Generated

Code
• Managing the Architecture
• Active Programming

Model

y
• Don‘t Duplicate –

Transform!
• Configuration over

Composition
• Leverage Testing
• The Bridge to Frameworks

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 111 -

• Multiple Viewpoints
• Rich Platform

• Behaviour Modeling
• Variant Management

THE END.

MDSD Best Practices

Some advertisement ☺

• For those, who speak
(or rather, read) german:

Völter, Stahl, Haase, Efftinge:

Modellgetriebene

2nd Edition –
significantly

updated

Modellgetriebene
Softwareentwicklung
Technik, Engineering, Management
2. Auflage

dPunkt, 2007

www.mdsd-buch.de

• A translation is available

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2003 - 2006 Markus Völter- 112 -

Model-Driven
Software Development,
Wiley, May 2006

www.mdsd-book.org

