Managing Variability
IN Product-Lines

JAOO

conference
2007

Seplember 23 - 28. Aarhus, Oenmar]

Markus VVoelter
voelter@acm.org
http:/7/www.voelter.de

This work is supported by

T
.VOIt?!'/EEI

wul

Nl

Managing Variability in Product Lines | o

About me

volter

ingenieurbiiro fiir softwaretechnologie

® Independent Consultant Markus Volter
-] voelter@acm.org
® Based out of GOppingen, www.voelter.de
Germany
® Focus on

® Model-Driven Software
Development and DSLs

® Software Architecture
® Product Line Engineering

= .
.VOIt?D‘i EIEEQOQ‘?O -2- ©2005-7 Markus Volter

Managing Variability in Product Lines ,

About AMPLE

armosle

® AMPLE == Aspect-Oriented, Model-Driven Product Line
Engineering

(buzzwords are important to get funded ©)
® EU-funded research project

® | am working with SIEMENS, building practically useful
tooling and verifying it with a case study

® Resulting tooling based on Eclipse/openArchitectureWare
and is freely available from eclipse.org/gmt/oaw

® Version 4.2 that includes all of them has been released Sept 17

iva@‘a ;' _3- ©2005-7 Markus Vélter

Managing Variability in Product Lines g

About openArchitectureWare

® Well-known (and much used) toolkit for most -7
' rie 1rc
aspects of model-driven software development .

® Open Source at Eclipse GMT
® integrates w/Eclipse Modeling projects (eg. EMF, GMF) OM

openArchitectureWare
® Contributes to various Eclipse Modeling projects
(Workflow Engine, Model-to-Text, Textual Modeling Framework)

® Version 4.2 is current, has been released Sept. 2007

® Some Features:
® Constraint Checking, Code Generation, Model-to-Model Transformation

® OCL-like expression language used throughout the tool
® Xtext Framework for building textual DSLs and Editors
® Support PLE in models, generators and transformations via AOP
® Editors and Debuggers for all those languages integrated in Eclipse
= .o
.VOIt?!/E EIEEQF\D:O -4 - ©2005-7 Markus Volter

Managing Variability in Product Lines |

CONTENTS

® Introduction and Concepts
® PLE and Variabilities
® MDSD and AOSD
® MDSD-AO-PLE

® Implementation Techniques
® Intro to Case Study
® Models, Code, Transformations
® Orthogonal Variability
® Transformation and Template AO
® AO Modeling
® Aspects on Code Level
® Negative Variability

® Summary

iva@‘a ;' -5- ©2005-7 Markus Vélter

Managing Variability in Product Lines | o

CONTENTS

® Introduction and Concepts
® PLE and Variabilities
® MDSD and AOSD
® MDSD-AO-PLE

® Implementation Techniques
® Intro to Case Study
® Models, Code, Transformations
® Orthogonal Variability
® Transformation and Template AO
® AO Modeling
® Aspects on Code Level
® Negative Variability

® Summary

iva@‘a ;' . ©2005-7 Markus Vélter

Managing Variability in Product Lines il

Product Line Engineering

® The idea of PLE is to not develop software products
as single artifacts, but rather to develop a family
of related products as efficiently as possible.

® \We consider a set of programs to constitute a
family whenever it is worthwhile to study programs
from the set by first studying the common
properties of the set and then determining the

special properties of the individual family
members.

Definition by Parnas

ivé@ﬁ

© 2005-7 Markus Volter

Managing Variability in Product Lines g

Variability Analysis: A central building block for PLE

® Variability analysis discovers the variable and fixed parts of
a product in a domain. Parts can be

® Structural or behavioral
® Functional or non-functional (technical)
® Modularized or aspectual

® Central challenges wrt. to variabilities are:

® Jdentification: where are the variabilities, what are the
options?

® Kind of variability: see above
® Description: how do | describe the allowed alternatives

® Management: what are the constraints between the various
variation points

® Implementation: how do | implement the respective
varibility in my software system?

= .
.VOIt?D‘i EIEEQO:?;Q -8 - ©2005-7 Markus Vélter

Managing Variability in Product Lines

Negative vs. Positive Variability

a) A b) o

~~— Option A | " T Option A
i ____?-———--x Option B j — Option B
‘N-.______,-- — Optien C T .~ OptionC

® Negative Variability (a) takes optional parts away from
an ,,overall whole*

® Challenge: the ,,overall whole* can become really big an
unmanageable

® Positive Variability (b) adds optional parts to a minimal
core.

® Challenge: How to specify where and how to join the
optional parts to the minimal core

® |INn Practice: combine both

iVé@‘i ;' ~9- ©2005-7 Markus Vélter

Managing Variability in Product Lines |

Structural vs. Non-Structural Variability

® Structural Variations ® Based on this sample
Example Metamodel metamodel,
__ you can build a wide
hame: String variety of models:

T a) b)

Data |—> Attribute
| 0..n n St <<entity>> <<entity>> | <<dependentOb>>
T ype: >inng Customer Party on Address

- - name: String name: String city: String
. Entity T..n>| DependentObject | zip: String
id: Iong street: String

® Non-Structural Variations [_— Stack
H—

Counter

Example Feature Models /O\

Dynamic Size, ElementType: int, | Fixed Dynamic Optimization

Counter, Threadsafe l ./O\.

Static Size (20), value ElementType Speed Memory Additional
ElementType: String [open] Usage Features
Dynamic Size, Speed-Optimized, -/<l>\-

Bounds Check int float String

ByGlter)

Ll SiEvensml o oo

Managing Variability in Product Lines |

Routine Configuration vs. Creative Contruction

® The expressive power of the language used to bind the
variability (select an option) van vary widely

< Guidance, Complexity,
Efficiency Flexibility P
Routine Creative
Configuration Construction
Configuration Feature-Model Graph-Like
Parameters Based Languages
Configuration

Property Files

Tabular

Wizards Configurations

® This slide (adopted from K. Czarnecki) is important for the
selection of DSLs in the context of MDSD in general:

® The more you can move your DSL to the configuration side, the
simpler it typically gets.

= .
.VOItef/‘i EIEEQrﬁplO -11 - ©2005-7 Markus Volter

Managing Variability in Product Lines g

Typical Binding Times & Techniques

® For each of the variable features you need to define when
you'll bind the feature

® modeling time: DSLs, transformations, generators
® source time: manual programming

® Compile time: function overloading, precompiler, template
evaluation, static aspect weaving

® deployment/configuration time: component deployment
(impl. for an interface), environment variables

® link time: DLLs, class loading

® run time: virtual functions, inheritance & polymorphism,
factory-based instance creation, delegation, meta
programming, data driven (tables, interpreters)
= .
.VOIt?!/‘! EIEECW\D:O - - ©2005-7 Markus Vélter

Managing Variability in Product Lines g

Typical Binding Times & Techniques

® For each of the variable features you need to define when
you'll bind the feature

® modeling time: DSLs, transformations, generators
® source time: manual programming

® Compile time: function overloading, precompiler, template
evaluation, static aspect weaving

® deployment/configuration time: component deployment
(impl. for an interface), environment variables

® link time: DLLs, class loading

® run time: virtual functions, inheritance & polymorphism,
factory-based instance creation, delegation, meta
programming, data driven (tables, interpreters)
= .
.VOIt?!/‘! EIEECW\D:O - - ©2005-7 Markus Vélter

Managing Variability in Product Lines | o

CONTENTS

® Introduction and Concepts
® PLE and Variabilities
® MDSD and AOSD
® MDSD-AO-PLE

® Implementation Techniques
® Intro to Case Study
® Models, Code, Transformations
® Orthogonal Variability
® Transformation and Template AO
® AO Modeling
® Aspects on Code Level
® Negative Variability

® Summary

iva@‘a (s ;' - 14 - ©2005-7 Markus Vélter

Managing Variability in Product Lines |

What is MDSD?

® DSL is defined for a domain } P i
.. . Model ||[~—--- » | Metamodel !
formalizing domain concepts I L ;
Into a custom meta model. i ____________________________ A
® Developer develops model(s) I g
based on DSL i Transformer < Rules E:J.J-
® Using code generators, the | l : E
model is transformed to g — 1%
executable code (interpreters | Model [oo > | Metamodel | 12
are also possible) o e DU
® Optionally, the generated - —
COde iS merged W|th [Transformer] D — Generation
. Templates
manually written code. l
® One or more model-to- o §
model transformation steps cenerated |1 | i | |
may precede code generation. i code — |
. /\ ! optional §
.VOIt?!/‘! EIEEQ(\DLO - - ©2005-7 Markus Vélter

Managing Variability in Product Lines g

@ N rmr~ddAl
A 111TULUICTI

concept.

® It only contains the aspect of the real world artifact that is
relevant to what should be achieved with the model.

® A model is therefore less detailed than the real world
artifact.

| \arvrlA
1 VWUI IU

® MDD models are precise and processable.
® Complete regarding the abstraction level or viewpoint.

® The concepts used for building the model are actually
formally defined.

® The way to do this is to make every model conform to a
meta model.

® The meta model defines the “terms” and the grammar
we can use to build the model.

® Models are instances of their respective meta models.

= .
.VOIt?D‘i EIEEQO:?;Q - 16 - ©2005-7 Markus Vélter

Managing Variability in Product Lines

Domain Specific Language

Q/—\\Dunlclii"‘lSpe ific "‘.g'ge(S)

build models. It encompasses
® the meta model of the models to be built

® some textual or graphical (or other)
concrete syntax that is used to
represent (“draw”) the models.

v yry

r\f\-Fﬁ ~
1vliiica

s w A
| LV

iISITi

® |In the context of product
line engineering DSLs are
used to bind variabilities.

® Consequently, feature
diagrams are a special kind
of DSL, one that can be used
to express configurative

Specific
Language

graphical

variability.
iVé@‘i ;' -17 - ©2005-7 Markus Vélter

Managing Variability in Product Lines |

What is AOSD?

® Developer develops
program code

Normal OO
Program

® Developer develops
(or reuses) aspect
code ‘ ‘

Weaving
Specification

® Developers specifies the l l
weaving rules (defines
pointcuts)

Aspect Weaver

® Aspect Weaver weaves
program and aspects
together and produces v
the ,,aspectized” program T ————

® This may happen statically e _0g © O
or dynamically

= .
.VOItef/‘a EIEEQ(J:?;Q - 18 - ©2005-7 Markus Vélter

Managing Variability in Product Lines | o

CONTENTS

® Introduction and Concepts
® PLE and Variabilities
® MDSD and AOSD
® MD-AO-PLE

® Implementation Techniques
® Intro to Case Study
® Models, Code, Transformations
® Orthogonal Variability
® Transformation and Template AO
® AO Modeling
® Aspects on Code Level
® Negative Variability

® Summary

iva@‘a (s ;' - 10 - ©2005-7 Markus Vélter

Managing Variability in Product Lines |

Core idea of MD-AO-PLE

€ The challenge of implementing and handling variabilities is more
easily addressed on model level than on code level

® Models are more abstract and hence less detailed than code

Transformation Implementation
Artefacts

more abstract less abstract
less detailed more detailed

® Thus, the variability is inherently less scattered, making
variability management on model level simpler!

° oo ° o Transformation
o
0 = Variation Point
.VOIt?DEEIEEQHDLO - 20 - ©2005-7 Markus Volter

Managing Variability in Product Lines F _

MD-AO-PLE building blocks

® Variability can be described more concisely since it is
described on model level.

® The mapping from problem to solution space can be
formally described using model-to-model transformations.

® AO enables the explicit expression and modularization of
crosscutting variability :

® In models: weaving models and meta models

® |n transformation: weave variant aspects into
transformations and generators

® In code: implement fine-grained implementation variants.

® Additional benefit: Fine grained traceability is supported
since tracing is done on model element level rather than
on the level of artifacts.

in@‘i ;" - 21 - ©2005-7 Markus Vélter

Managing Variability in Product Lines |

MD-AO-PLE Definition and Thumbnail

® MNMAafFirmitimim -
= eliriuioll.

MDD-AO-PLE uses models to describe product lines.

Variants are defined on model-level. Transformations
generate running applications. AO techniques are used to
help define the variants in the models as well as in the
transformers and generators.

Problem Space

Solution Space

Domain
Requirements

Formal

Formal

Core Assets

Domain Solution Space
MetaModel MetaModel I_:‘ D I_:‘
- : :
Product
Requirements
N Formal Formal — | eceecmeeecadt
" Domain M Solution Space Product
Model Model | oM

S
~
%
®
]
Application Engineering Domain Engineering

© 2005-7 Markus Volter

Managing Variability in Product Lines ,

CONTENTS

® Introduction and Concepts
® PLE and Variabilities
® MDSD and AOSD
® MDSD-AO-PLE

® Implementation Techniques
® Intro to Case Study
® Models, Code, Transformations
® Orthogonal Variability
® Transformation and Template AO
® AO Modeling
® Aspects on Code Level
® Negative Variability

® Summary

iva@‘a (s ;' - 23 - ©2005-7 Markus Vélter

Managing Variability in Product Lines

Intro to Case Study

® A home automation system caiied Smart Home.

® |In homes you will find a wide range of electrical and electronic
devices
® lights
® thermostats
® electric blinds
® fire and smoke detection sensors
® white goods such as washing machines
® as well as entertainment equipment.

® Smart Home connects those devices and enables inhabitants

1 I I A

to monitor and control them from a commmon UL.

® The home network also allows the devices to coordinate their
behavior in order to fulfill complex tasks without human
intervention.

iVé@‘i ;' - ©2005-7 Markus Vélter

Problem Space Modeling

® The domain expert
(i.e. a building architect)
uses a suitable modeling
language for building
smart homes.

® Currently, we use
a simple tree editor
for that (based on Exeed,
and it is basically an EMF
tree view with customized
icons and labels)

Managing Variability in Product Lines

=9 Building LargeHouse
= & cellar on level 0
-) Room cellarCarridor
E_] LightSwitch cellarLightSwitch For cellarLight
ElHE| wWindow cellarCorridoriWindow
Window Sensar
Light cellarLight switched by cellarLightSwitch
~/"4) Room stockroom
E] LightSwitch skockroomLightSwitch For skockroomLight
E_] LightSwitch skockroomLight3witchz For stockroomLight
ElHE| Window srindow
: Window Sensar

E' Light Regulataor
,[u Door cellarDoor connects cellarCorridor and stockr o

[+ | platform: fresourcefsmarthome, ps. mmfsrc-genfpsmm, ecore

® Note that problem space modeling uses a creative
construction DSL since describing a Smart Home is not just a

matter of “ticking boxes”.

® A more convenient editor will be provided later.

ivé@ﬁ

Rl
> |
ul

:Eomplo

© 2005-7 Markus Volter

E| Light stockroomLight switched by stackroomLightSwitch and skockroombightSwits

Managing Variability in Product Lines g

Models and Transformations Overview

® Soiution Space is made up of a component-based architecture
(CBD level) subsequently mapped to OSGi (OSGi-level)

® Various meta models desribe all these different levels

common.mm//datamm.ecore
common.mm//operationsmm.ecore

cbd.mm//cbdmm.ecore :
. MM-

Ay geeee. > ffoeeensy
pS.mme’smm.ecore : COMMON osgi.mm//osgimm.ecore
MM-PS MM-CBD MM-0SGI |~
M-PS ——>»| M-CBD SN EICT S—— »»i Code

ps.trafo.ps2cbd//ps2cbd.ext
osgi.trafo.fromCbd//cbd2osgi.ext

ivé@ﬁ

Rl
=
ul

1
EQFJDEC‘ ©2005-7 Markus Volter

Managing Variability in Product Lines | o

CONTENTS

® Introduction and Concepts
® PLE and Variabilities
® MDSD and AOSD
® MDSD-AO-PLE

® Implementation Techniques
® Intro to Case Study
® Models, Code, Transformations
® Orthogonal Variability
® Transformation and Template AO
® AO Modeling
® Aspects on Code Level
® Negative Variability

® Summary

iva@‘a (s ;' - 27 - ©2005-7 Markus Vélter

Managing Variability in Product Lines g

Application Domain to Software Domain Transformation

® We use an M2M transformation to map from the appiication
domain to the software domain.

® Here are some examples of what that transformation
has to do:
® Lighting:
- For each light in a room, instantiate a light driver component
- For each light switch, instantiate a light switch component
- For each room with lights, instantiate a light controller, that
manages lights and the connected switches

® Windows:
- For each window, instantiate a window sensor component

® Note how the transformation only instantiates and connects
software components. The components themselves are pre-
built and are available in libraries.

iVé@‘i ;" 28 - ©2005-7 Markus Vélter

Managing Variability in Product Lines

Example House: A Problem Space Model

EI"‘::TII Building LargeHouse
EI.EE. cellar on level O
E‘ 4 Roorn cellarCorridor

- .‘__'i] LightSwitch cellarLightSwitch For cellarLight
EIEH window cellarCorridorwindow
R Window Sensor

EI Light cellarLight switched by cellarLightSwikch

------ ﬁ Light Regulataor

-1 Room stackroom

----- .‘__'i_] LightSwitch stockroomLightSwitch For stockroomLighk

----- .‘__'i] LightSwitch skockroomLightSwitch For skockroomLight

=-H window srwindow

. - Window Sensaor

= ; Light skockroomLight switched by stockroomLightSwitch and stockroomLightSwitchz

N E' Light Regulakor
e ,[]1 Door cellarDoor connects cellarCorvidor and stockroom

® A house with only one level, and two rooms, connected by
doors.

® The rooms have windows as well as lights and light
switches.

Bvéiter)

— p— 1
P SIEMENSTREE oo
—_— __ L i

Managing Variability in Product Lines

Example House: The Transformed CBD Model

® For each of the lights
and switches we have
Instances of driver
components (the
component types
are taken from the
library)

= 4 Swvskem LargeHouseSystem

=2 < Configuration LargeHouseBuildingC onfiguration

= < Configuration cellarFloorConfiguration

. - < Component Instance cellarLight
- < Component Instance stockroomLight
-4 Component Instance cellarLightSwitch
- < Component Instance stockroomLightSwikch
- < Component Instance stockroomLightSwikchz
-4 Component Instance cellarCorridarwindowsensar
- < Component Instance seWindowSensor
- < Component Instance cellarLightSwitchCoordinator

® We also have a light
switch coordinator
component instance
for each floor that has
light switches.

<= Cuerying Connector cellarLightSwitchCoordinabor2switches

<= Cuerying Conneckor cellarLightSwitchCoordinator2lights

® We use query based connectors to connect the coordinator with the
lights and the switches.

® The query dynamically finds all lights and switches for a given floor,
dynamically at runtime.

® We also have hierarchical configurations for the building and floors.

= .
Bvolte! EaE T

Managing Variability in Product Lines

Example House: The Transformed OSGi Model

Bl Swstem LargeHouseSyskem

® Leaf configurations have been trans- = & fund celaFionCofiater
formed into bundles.

-4 Service ILightSwitch

-4 Service IWindowSensor

-4 Service IwindowSensorCheatInterface
-+ Service Component cellarLight

-+ Service Component stackroomLight

- < Service Component cellarLightSwitch

- Service Component stockroomLightSwitch
-4 Service Component stockroomLightSwitchz2

® Interfaces (from the Lib!) are now
Services in this model.

-4 Service Component cellarCorridorwindowSensor

-4 Service Component seWwindowSensar

-4 Simple Periodic Component Light SwitchCoordinatar
El 4 Service Ref switches

® Component instances have become OSGI-
level components of the appropriate type.

® Those use ServiceRefs with queries to é---;iﬁ?;;ﬁ;fir floor_cellar
find the respective provided services 4 Primitive Fiter floor_callar

[+ <= Enkity LightSwikchCoord3kate

at runtime.

e Note how the mixin model B o X g
. g [=I- 4l plakfarm:fresource/smarthome, example.largeHouse'sec osgimixin, xmi
specifies the root packages B oo
for the bundles to enable - o
Code generatlon . “eo s Bundle Spec cellarFloorConfiguration

[+ | plakfarm;fresourcesmarthome, osgikrafo, fromChbd| srofcbdZosgiMixin, ecore

- —
Problems | Javadoc | Declaration | Search | Console | Progress (._. Properties &3 =

Properky I Malue
Mame '= firstFloarFloorConfiguration
Root Package 1= smnarthome, bundles . firstConfiguration
Bvoiter =
_/ M :mqmp;@ -31 - ©2005-7 Markus Vélter
___ — E

Managing Variability in Product Lines [

Example House: Code Generation

Base Manuall

Library Classes [¥77 Writteny :
°
=
2
0SGi =2
Output Code £
3 8

Build

Files

cbd.generator//*.xpt

M-OSGI

osgi.generator//*.xpt

1
ENSEES 2 cooos7 wankusvoue]

!l
Q:
=
®
E‘
Rl
=
ul

Managing Variability in Product Lines A

Example House: Generated Code

® We generate the OSGI bundle activators which
® |Instantiate the components deployed in that bundle
® Register the services of those components

® Register generated service trackers for each of the component’s
service refs ... using an LDAP expression to dynamically find the

provided services

® \We generate a manifest file
® including the correct package exports and imports

® We generate an ant build file to assemble the bundle JARs
® JAR will contain OSGI-level code as well as the CBD level code

® The used libraries know their Eclipse project so we know from
where we need to grab the implementation source code

® We generate a batch file that runs the OSGI runtime
(Knopflerfish) with the correct configuration (xargs-file)

= .
.VOIt?D‘i EIEEQO:?;Q -33- ©2005-7 Markus Vélter

Managing Variability in Product Lines F _

Component Libraries

€ Library components are predefined building blocks to be used in
products. There are three “flavors”:

® Code-Only: the aspect of the PL that is covered by the library
component is not supported by generators,

® The production process for the product will simply
include/link/instantiate/deploy the component if it’s required as part
of a product.

® Example: an optional SNMP agent running on a system node

® Model-Only: PLA contains generators that can completely generate
the component implementation from a model.

® |f the generator changes, the library component’s implementation is
automatically adapted (since it’s regenerated).

® Example: A reusable business process component specified as a
component with an associated state machine

® Model/Code Mix: This is necessary If you can represent some
aspects of a component via a model, but cannot represent others.

= .
.VOIt?D‘i EIEEQOQ;Q - 34 - ©2005-7 Markus Vélter

Managing Variability in Product Lines g

Model/Code Mix: The different levels of code

® There are two Kinds of source code in the system.

® CBD-level code is partly generated/partly hand-written.

® As the name implies, it does not depend on the concrete
Implementation technology (such as OSGi)

® Base classes (and other skeleton artifacts) are generated, the
manually written code is integrated in well-defined ways

® This is the way, manually written business logic is integrated.

® Implementation-level code is completely generated
® |t is specific to the concrete implementation technology

® |t wraps or uses the CBD-level code and adapts it to the
concrete implementation technology

® The generation process is separated into two phases, one
for each kind of source code.

iVé@‘i ;" - 35 - ©2005-7 Markus Vélter

Managing Variability in Product Lines g

EconomyLib: An example library

® The EconomyLib library contains pre-buiit components,
interfaces and data types that are needed for building Smart
Homes of the Economy variety.

® Interfaces and data types are model-only, whereas
components are model/code mixed, because they contain
manually written code parts.

® Libraries such as the EconomyLib are CBD-level code. There
IS absolutely nothing in there that is specific to the concrete
Implementation technology.

® The library comes with a model file as well as a source code
directory.

® Note that this library depends on another library that defines
basic primitive types.

iVé@‘i ;" - 36 - ©2005-7 Markus Vélter

Managing Variability in Product Lines 3

EconomylLib: Part of the Model

-
i econonmLib, xmi W\

By P

(o)

platform: fresourcefsrarthorne . chd ., ib, economyhaorne 'src fecononmyLib2, mi
=4 Library economyLib

< Periodic Component LightSwitchCoordinatar
----- < Required Port switches
i 4+ Required Port lights
EI < Enbity Lightswitchi_oard=tate
- <= Attribute oneSwitchlsPressed

< Service Component LightSwitchDriver

----- < Provided Port default

----- < Configuration Parameter toggledLights
----- 4 Configuration Parameter id

[#-- <+ Entity LightSwitchDriverState

-4 Service Component LightDriver

----- <+ Provided Port default

----- 4 Configuration Parameter id
[= <= Entity LightDriverstate

----- <= Attribute burning

“o e Abbribute id

“4r Interface ILightSwitch

‘o< Operation isPressed

-4 Interface ILightDriver

----- < Operation burmon
----- <= Operation burnOFf
----- < Operation isOn
----- < Operation getId

< Struck LightSwitchStatus

----- < Attribute pressed
----- <= Attribute toggledLights
----- <= Atkribuke id

[+-# | platform: fresource)smarthome, chd, mm)src-gen)cbdmm, ecore

ﬂ_g platfarm: fresource)smarthome commaon, mm)'skc-gendatannm, ecore
ﬂ_g platfarm: fresource/smarthome common, mm)'skc-0en) oper ationsmm, ecore
III B | platForm; fresourcesmarthome comman, ram)'src-gen)properkissmm, ecore
5}_, platfarm: fresource/smarthome . cbd . lib, shared)srofbypes, xmi

The LightSwitchCoordinator
orchestrates lights and switches

The LightSwitchDriver proxies
a light switch

® The state knows whether the
switch is pressed or not

The LightDriver proxies an
actual light

® |ts state has an ID and it
knows whether it is burning

ILightSwitch is used to query a
switch whether it is pressed

ILightDriver can be used to
turn a light on or off

wul

&l SIEM

1
ENSERE 7 oot vakuswne

Managing Variability in Product Lines [

EconomylLib: Generating CBD-Level code

> P

EE - .

S x SE Manually R

Input - £ Written =

o 3 7 'S

@ : el

: — 9

Y 3

Output Base g

Classes o

=
—» M-Types
i
M- G
EconomylLib
cbd.generator//*.xpt

.VOIt?!/‘! EIEEQF\D:O - 38 - ©2005-7 Markus Volter

Managing Variability in Product Lines

EconomyLib: Manually written code |

=- "-':" Library economyLib

.. E 2 = indi ightSwitchCoord
® This is the package smarthome.eco.witchCoordinat +P;”:;:jferzp; ;rin:w::ihfswmc Coerdnater
: ----- <+ Required Part lights
com ponent that public class LightSwitchCoordinatorl| =4 Entity LightswitchCoordstate
switches li g hts extends LightSwitchCoordinatorn “ < Attribute oneSwitchlsPressed
El -‘»',"- Interface ILightSwitch
base d on th e Statu S @Override + <+ COperation isPressed
. = - =} Interface ILightDriver
public void execute(Q) { @ | T |)
of the switches Col lection<Lightswitchstatus> s{ | oo
switchesAll().isPresseq @ . 4 Operation isOn
J It |S a pe riodiC for (LightSwitchStatus status :| = .. 4 Operation getid
iIT (hasChanged(status.getld() & 4 Interface IwindowhActuatar
Component, hence String changedLights = staty @ - < Operation open
. arseLightsToSwitch(changedl =@ 4 Operatian close
it has on |y an 3 - g (: =<4+ Struct LightSwitchStatus
----- <= Attribute pressed
execu te () } ..._._.__._.______ <= Attribute toggledlights
Ope ratlon .- @ S <+ attribute id

private boolean hasChanged(String id, boolean pressed) {
// is the light switch iIn another position than
// last time around?

® Note how it uses
the switchesAll() }

0perati0n 1o access private void parseLightsToSwitch(String lights) {
all the switches it is // find out which lights this switch affects
// and switch these lights
connected to. }
+
ULV SIEMENSIREE o oo

Managing Variability in Product Lines | o

CONTENTS

® Introduction and Concepts
® PLE and Variabilities
® MDSD and AOSD
® MDSD-AO-PLE

® Implementation Techniques
® Intro to Case Study
® Models, Code, Transformations
® Orthogonal Variability
® Transformation and Template AO
® AO Modeling
® Aspects on Code Level
® Negative Variability

® Summary

iva@‘a (s ;' - 40 - ©2005-7 Markus Vélter

Managing Variability in Product Lines

Orthogonal Variability Management

® Orthogonal Variability: all the artifacts of a system depend on a
central configuration model that describes the variability of
those artifacts.

® Here: the “system” is the MDSD tooling for developing Smart

Homes
Model .
Configuration Model
- * .
(instance of feature model)
I — o =
Meta Model |...--—""" =] =] = =

Trans-
formation

Generator

© 2005-7 Markus Volter

Managing Variability in Product Lines F o

Orthogonal Variability Management 11

® o0AW comes with a feature that allows domain architecture artifacts
to depend on whether certain features are selected.

® An API is available that allows to plug in various feature
modeling tools

® |In the simplest case, that APl can be bound to a simple text file
that contains a list of selected features.

® Another binding is available to Pure Systems’ pure::variants tool

® That configuration model controls various aspects of the model
transformation and code generation process.

® |t is read at the beginning of the workflow and is available globally.

Currently, we use it for the

fOI IOWi n g O pti O N al fe atu reS - = E smarthomeconfigFeatures
. El ? environmentalContral
® TraC| n g @ aironditioning
® Reflective Data Structures e s
® Viewer (Ul) A
@ Auto m atl C Wl N d OWS g :;!:I:;veDataStructures
.VOIt?!/‘i EIEECW\D:O = ©2005-7 Markus Volter

Managing Variability in Product Lines

Orthogonal Variability Management 111

p
smarthome. config. xfm W

® The configuration is done via "8 v | Gratemecorfiofedirss
a pure::variants variant E ------- ﬂg_?___jvxn;fgﬂt:ggﬂn;:;
mOdEI (pS:Vd m) El ----- ﬂ;ﬂ* temﬂManageme.nt.
o] ¥ aukomaticindows
|—;| {.? debug
1 - - e P iewar
® pure::variants supports the interactive - 3g e
selection of features, while evaluating (] 7 tracing

constraints and feature relationships
to r_nake sure only valid variants are ooy ——
deflned. = E smarthomeconfigFeatures

E| -------] ? enviranmentalCantral
i i] 4 airConditioning

® If a constraint is violated, the model - A® tempenagenert
IS either automatically corrected, or Bv ? deg °
. e] viewer
an errOr 1S Shown- b --------- :? reflectiveliatastructures
— 1% tracing

@ Feature I"-’Iu:u:lels] Farnily Madels

Em\ljeclaratiun Search | Console | Progress | Prope

1 error, 0 warnings, 0 infos (Filker maktched 1 of 114 ikems)
Description =
= %= Errors {1 item)
3 “viewer' requirefs) 'reflectiveDataStructures'

iVé@‘i ;' - ©2005-7 Markus Vélter

Managing Variability in Product Lines | o

CONTENTS

® Introduction and Concepts
® PLE and Variabilities
® MDSD and AOSD
® MDSD-AO-PLE

® Implementation Techniques
® Intro to Case Study
® Models, Code, Transformations
® Orthogonal Variability
® Transformation and Template AO
® AO Modeling
® Aspects on Code Level
® Negative Variability

® Summary

iva@‘a (s ;' - 44 - ©2005-7 Markus Vélter

Managing Variability in Product Lines ,

AO for generator artifacts

® Aspect Orientation is used to encapsulate and “inject”
transformation and generator code that is only necessary for
Implementing a given feature.

® Transformation and generator aspects are captured in separate
files.

® These files are only deployed iff a certain feature is selected in
the configuration model

® The workflow ties all these loose ends together.

© 2005-7 Markus Volter

Managing Variability in Product Lines g

Optional Feature: Logging

® Logging is simply about writing a stdout log of the methods
called on Service Components as the system runs.

® The runtime infrastructure (OSGI-level) supports the use of
interceptors for any component.

® Interceptors are available in libraries (just as the light switch
components and their interface and the primitive types)

® |If the model configures interceptors for a given component,
the generated activator actually instantiates them, instantiates a
proxy for each component and adds the interceptors to that
proxy.

® In short: if the feature debug.logging is selected, the
transformation from PS to CBD level must make sure that the
appropriate interceptor is configured for the components.

iVé@‘i ;" - 46 - ©2005-7 Markus Vélter

Managing Variability in Product Lines [

Optional Feature: Logging [Thumbnail]

transformation transformation aspect

C DA} S around ...

() 1

workflow

/
< transform >

configuration model

L)
.
‘>

!l
Q
=
®
E‘
Rl
=
ul

1
ENSERES 4 cooos7 wakusvoue]

Managing Variability in Product Lines

Optional Feature: Logging, Implementation

® The implementation uses AO for the model transformation
language. Here is the aspect:

// logging. ext
import psmm;
import cbdmm;

extension ps2chd;

extension org::openarchitectureware::util::stdlib::io;
extension org::openarchitectureware: :util::stdlib::naming;

around ps2cbd: :transformPs2Cbd(Building building):
let s = ctx.proceed(): (
building.createBuildingConfiguration().
deployedInterceptors.addAll(
{ utilitiesLib().interceptors.findByName(“Logginglnterceptor™) }

) >
S
- |E§ *tracing.ext |] wF-trafoPs2Chd. oam W
) 2 IEIE;}i platForm: fresource/smarthome, example.largeHousetemp-models fcbd. xmi
B- <> Syskem LargeHouseSystem
- = *¢* Configuration LargeHouseEuildingConfiguration
@ We ad V I C e pS 2 C b d : : t ran Sfo r m PS 2 C b d = ﬂ‘? Configuration cellarFloor Configuration
< Component Instance cellarLight
- . -4 Component Instance stockroomLight
® We th e n exeC u te t h e O r I g I n al ---¢ Compaonent Instance cellarlightSwitch
- - - - 4 Component Instance stockroomLightSwitch
d efl n I t I O n (CtX . p roce e d ()) ---¢ Component Instance stockroomLightSwitchz
[) T h e n We ad d ; to th e to p I eve I CO nfi g ; F‘:I:Leen:ts | Declaration | Search | Console | Profr::lzi: Froperties E3 SYM Resoul
h 1 Deploved Interceptors '= Inkerceptar TracingInterceptar
t e LO g g I n g I n te rce pto r Marne 1= LargeHouseBuildingConfiguration

L "/\ Parent
Gl SiEvEnsIREE . o

| I |

Managing Variability in Product Lines |

Optional Feature: Logging, Implementation 11

® Remember we only want to have these interceptors in the system
Iff the feature debug.tracing is selected in the global
configuration model.

® That dependency is expressed in the workflow:

<component i1d="xtendComponent.ps2cbd” class=""oaw.xtend.XtendComponent">
</component>

<feature exists="'debug.logging'>
<component adviceTarget=""xtendComponent.ps2cbd"” class="oaw.xtend.XtendAdvice'>
<I-- references tracing.ext, file that contains aspect on prev. slide --—>
<extensionAdvices value=*“logging'/>
</component>
</fTeature>

® The stuff inside the <feature>...</feature> tag is only executed if
the respective feature is selected in the global configuration

® The XtendAdvice component type is an aspect component for
the Xtend component used for transforming models.

= .
.VOItef/‘a EIEEQ(J:?;Q - ©2005-7 Markus Vélter

Managing Variability in Product Lines |

Optional Feature: Logging, Implementation 111

<component i1d="xtendComponent.ps2cbhd” class="oaw.xtend.XtendComponent'>
</component>

<feature exists="debug.logging'>
<component adviceTarget=""xtendComponent.ps2cbd” class="oaw.xtend.XtendAdvice">
<I-- references tracing.ext, file that contains aspect on prev. slide -->
<extensionAdvices value=*“logging'/>
</component>
</feature>

® An Advice component basically takes the sub-elements and adds
them to the component refenced by the adviceTarget attribute.

® In the case here, that target is the one that runs the PS to CBD
M2M transformation

® Using this mechanism, the configuration of aspect code (the
<extensionAdvices> element is non-invasive.

iva@‘a (s ;' - ©2005-7 Markus Vélter

Managing Variability in Product Lines

Optional Feature: Component State Viewer

® The viewer Ul shown before is not
generated. It is a generic piece of
code that reflects on the data
structures that it is supposed to render. S | e | s |

® To make this work, the following two additions have to be made to
the generated system:

® The component state data structures must feature a generated
reflection layer

® Whenever a component is instantiated in the activator, its state
has to be registered with the viewer.

® These things are implemented using generator aspects,
depending on the selection of the debug.viewer feature.

iVé@‘i ;' - ©2005-7 Markus Vélter

Managing Variability in Product Lines [t

Optional Feature: Component State Viewer [Thumbnail]

template file template aspect
| s o SERINNY Y16 TU] 1o
workflow | TTTTTTTTTITTITTTTTITIITITTOT
—< generate (0sgi) >
configuration model
" generator-
aspect
< generate (cbd) > | T
generator-
aspect
template file template aspect
o
|) e UARGUND
| . X() | | |
extend file extend aspect
®
G D S el o

P SIEMENSTREE . oo

Managing Variability in Product Lines | o

CONTENTS

® Introduction and Concepts
® PLE and Variabilities
® MDSD and AOSD
® MDSD-AO-PLE

® Implementation Techniques
® Intro to Case Study
® Models, Code, Transformations
® Orthogonal Variability
® Transformation and Template AO
® AO Modeling
® Aspects on Code Level
® Negative Variability

® Summary

iva@‘a (s ;' - 53 - ©2005-7 Markus Vélter

Managing Variability in Product Lines

AO on Model Level

® AO Modeling (aka Model Weaving) is about applying AO
techniques for models and meta models.

® Aspect Models capture the parts of models that represent elements
necessary for a “implementing” a given feature.

® Pointcut expressions are used to determine where and how those
aspect models are “woven” into base models.

® A model weaver does the weaving.

® Note that AO modeling is NOT about drawing UML diagrams of AspectJ
code... contrary to what some people suggest!

iVé@‘i ;' - 54 - ©2005-7 Markus Vélter

Managing Variability in Product Lines [

Optional Feature: Automatic Windows [Thumbnail]

building model building aspect
44 """"""""""" :"‘,
¢ configuration model
¢

< read
< weave >
woven building model
| —< transform > |7
i transform-
aspect
.VOItMEIEEO‘WplO - 55/ - ©2005-7 Markus Vélter

Managing Variability in Product Lines g

Optional Feature: Automatic Windows

® Automatic windows are an optionai feature on the PS ievei.
® |If we have at least one thermometer in a room,

® We can automatically open the windows if the temperatures are
above 25°C average, and close them if we are below 20°C.

® \We also need windows actuators for that

® We want this feature, if the global configuration model has the
environmentalControl.tempManagement.automaticWindows
feature selected.

® To implement it,
® \We weave the necessary elements into the PS model

® Advice the PS to CBD transformation to consider these
additional elements

® .. and then (for debugging purposes) write the modified model
to an XMl file.

iVé@‘i ;" - 56 - ©2005-7 Markus Vélter

Managing Variability in Product Lines |

Optional Feature: Automatic Windows, Implementation

® Here is the aspect for the problem space model:

(P ciect i % WY

SR rlatForm: fresourcesmarthome. ps. ibysrc fwindowaoutomation/ aspect, xmi
B4 Room %rooms
: ----- % Thermometer Pthermaoklame
E- < wWindow “windows
: L Window Actuator
-] platform: fresource/smarthame. ps. mm/src-gen)psmm . ecare

® Here are the pointcut expressions used in the aspect model:

rooms(Building this):
floors.rooms.select(e]e.windows.size > 0) ;
windows(Building this):
rooms() -windows;
thermoName(Thermometer this):
((Room)eContainer) .name.toFirstLower()+"Thermometer";

® rooms returns all the rooms that have windows
® windows returns the windows in these rooms

® thermoName calculates a sensible name for the thermo device

ivé@ﬁ

Rl
> |
ul

1
EQK\D\C’ - ©2005-7 Markus Volter
— L 3

Managing Variability in Product Lines g

Optional Feature: Automatic Windows, Implementation 11

SRR 0 atf orm: fresource/smarthorme, example . |largeHouse kermp-rnode

® Here is the result of the example 54 Buiding Largetouse
house after weaving. o ot
< Light Switch cellarLightSwitch
® The rooms nOW have a thermometer <‘> Thermometer cellarCarridar Thermometer
with a suitable name ?‘"*;“f___‘*jj”dﬂjﬁﬁﬂjﬂﬂggfmw‘“mw
® The windows have an actuator | Window Actuator

El*-'»i‘* Light cellarLight
b e Light Regulakor
[E- 4 Room stockroom

® The transformation must now be = Lioht Swkch stockroomLightwitch
enhanced to transform those new e oo
devices into instances of software H---g___jindujiv:;;:ﬂ;::ir
CompOnentS. - 4= Window Actuator

=l 4 Light stockroomLight
b e Light Regulakor

® Also we need some kind of driver -] pormissaatelsmatiome ps s genipsnmcor
component that periodically checks
the temperature of all thermometers,
calculates the average, and then opens or closes the windows.

® This whole additional transformation is located Iin a separate

aspect transformation file and is “adviced” into the original
transformation.

ivé@ﬁ

| I |

T?EC\K\D:C‘ - ©2005-7 Markus Volter

Managing Variability in Product Lines

Optional Feature: Automatic Windows, Implementation 111

® Here is the workflow fragment that configures all of this:

<feature exists="environmentalControl.tempManagement.automaticWindows'>

<I-- the stuff that enhances the M2M transformation -->
<component adviceTarget=""xtendComponent.ps2cbhd"
class=""org.openarchitectureware.xtend.XtendAdvice'>
<extensionAdvice value="windowAutomation::extensionAdvices'/>
</component>

<I-- this launches the model weaver that adds the aspect to the PS model -->

<cartridge fTile="org/openarchitectureware/util/xweave/wf-weave-expr"
baseModelSlot="psmodel""
aspectFile=""platform:/resource/smarthome.ps.lib/src/windowAutomation/aspect.xmi"
expressionFile="windowAutomation: :expressions'/>

<I-- and here we write the model for debugging purposes -->
<component class="org.eclipse.mwe.emf.Writer">
<useSingleGlobalResourceSet value=""true'/>
<uri value=""${dumpFileUriPrefix}/psWithWindowAutomation.xmi" />
<cloneSlotContents value="true"/>
<modelSlot value=""psmodel’ />
</component>

</feature>

P SIEMENSTREE o oo
—_— __ L i

Managing Variability in Product Lines A

Optional Feature: Burglar Alarm

® |n the configuration feature model, you can Crx — smarthﬂmmﬂmm:s
select whether your house should feature a jjjjjjjfg omeneaicontel
burglar alarm system; and if so, which B ﬂ;___sﬂecu?ritvbwglarmm
kinds of alarm devices it should have. éﬁﬁﬁfﬁﬁﬁfﬁﬂi
w3 light

® There is a library of pre-built components
for these devices in the securehome library

project

® The ps2cbd transformation
® |Instantiates a control panel component (turn on/off)
® Instantiates the burglar alarm detection agent
® ... connects those two ...

® And then instantiates an instance of each of the alarm devices
selected in the feature model

® ... and connects those to the agen.

iVé@‘i ;" - ©2005-7 Markus Vélter

Managing Variability in Product Lines

Optional Feature: Burglar Alarm 11

transformation

® Thumbnalil:

configuration model

® Here is (part of) the code:

create System transformPs2Cbd(Building building):
hasFeature("burglarAlarm™) ? (handleBurglarAlarm() -> this) : this;

handleBurglarAlarm(System this):
let conf = createBurglarConfig(Q: (
configurations.add(conf) ->

conf.connectors.add(connectSimToPanel(createSimulatorinstance(),
createControlPanellnstance())) ->
hasFeature("siren”) ? conf.addAlarmDevice("'AlarmSiren™) : null ->
hasFeature("bell”™) ? conf.addAlarmDevice("AlarmBell™) : null ->
hasFeature("light”) ? conf.addAlarmDevice("'AlarmLight™) : null

® Note how we query the feature model from within the
transformation instead of using aspects to contribute the additional
behaviour to the transformation.
= .
.VOIt?!'/EEI

wul

1
ENSERES o cooos7 wanusvoue]

Managing Variability in Product Lines | o

CONTENTS

® Introduction and Concepts
® PLE and Variabilities
® MDSD and AOSD
® MDSD-AO-PLE

® Implementation Techniques
® Intro to Case Study
® Models, Code, Transformations
® Orthogonal Variability
® Transformation and Template AO
® AO Modeling
® Aspects on Code Level
® Negative Variability

® Summary

iva@‘a (s ;' - 62 - ©2005-7 Markus Vélter

Managing Variability in Product Lines F o

Code Level Aspects

® Sometimes the simplest way to implement variability is to aspects
on code level (AOP)

® Since we’re using Java as the implementation language, we’ll use
Aspectd as the implementation language for code level aspects

® The following challenges must be addressed:

® A certain aspect shall only be woven iff a certain feature is
selected in the global configuration model

® |t might be necessary to define (in the models!) to which
joinpoints an aspect should be woven

® We assume that aspect functionality is hand-written, they are
available in libraries. We distinguish
® Complete aspects: advice and pointcut handwritten, inclusion is
optional based on feature configuration

® Incomplete aspects: advice is handwritten, pointcut is generated
based on information in the models

= .
.VOIt?D‘i EIEEQOQ;Q - 63 - ©2005-7 Markus Vélter

Managing Variability in Product Lines i

Code Level Aspects [Thumbnail]

configuration model

system model

O —a

> <<manual>>
... abstract ... <

generate >

Aspectd aspect

<<generated>>

AspectJ aspect

ivé@ﬁ

Rl
> |
ul

1
_EQOQ.‘O - 64 - ©2005-7 Markus Vélter

Managing Variability in Product Lines ,

Code Level Aspects: Implementation |

® Here is a sample aspect (trivialized authentication):

public abstract aspect AuthenticationAspect {

pointcut pc(): call (public * smarthome.ecolib.components..*(..));

before() : pc(Q {
// do some fancy authentication here
¥

}

® The aspect contains all the relevant code (hence the pointcut is
extremely generic) and is completely handwritten

® The aspect is abstract to make sure it is not woven by default!

® If it should be woven (see later for how this is determined) a
concrete sub-aspect is automatically generated

® Which is then grabbed by the weaver and automatically woven

public aspect AuthenticationAspectimpl extends AuthenticationAspect {

}

iva@‘a (s ;' - ©2005-7 Markus Vélter

Managing Variability in Product Lines |

Code Level Aspects: Implementation 11

® As with interceptors, components and E b
i + Test Specification ight Tester
other code-related architectural -4 Test Specfiation DoodleTester
. o <+ Complete Code Aspect Authenticationdspeck
e I e m e n tS y aS p eCtS are I"e p rese n te d I n """ 4+ Component Level Aspect WindowStatusPrinker dspect
th e I I b rary m Od e I | Propetties &3 (£ Problems |_{.:;;. Declaration} 1
® provides awareness of the generated il o —

build file, etc.

® Allows the use of model-level negative
variability (see below)

® Using a naming convention (enforced and checked by the recipe
framework) the manually written code is associated with the model

© 2005-7 Markus Volter

Managing Variability in Product Lines | o

CONTENTS

® Introduction and Concepts
® PLE and Variabilities
® MDSD and AOSD
® MDSD-AO-PLE

® Implementation Techniques
® Intro to Case Study
® Models, Code, Transformations
® Orthogonal Variability
® Transformation and Template AO
® AO Modeling
® Aspects on Code Level
® Negative Variability

® Summary

iva@‘a (s ;' - 67 - ©2005-7 Markus Vélter

Managing Variability in Product Lines |

Negative Variability

® In negative variability, elements of a structural model are
associated with features in a configuration model. If that
feature is not selected, the respective elements of the structural
models are removed.
® The oAW XVar tool does that

® The dependencies between the structural model and the
configuration model are externalized into a dependency

model.
® This makes sure the meta model of the structural model need not

be changed in order to make it “configurable”

Dependency
Model

Structural Model
AN

SO VA --»{_feature, feature,
O ----------------- > feature;

Configuration Model

© 2005-7 Markus Volter

Managing Variability in Product Lines

Negative Variability for Aspects

® We use negative variability to remove the aspect definitions

(see previous topic) from the library model if a specific feature is
not selected.

® Since the aspect model elements are removed from the model, no
aspect-subclasses are generated, and hence, no aspect is

woven.
-
1 W d d Model,xmi &3
® Here Is the dependency e dependencytiodel s
El;g}_, platform: fresource/smarthome, cbd. lib, economyhomestcfdependency Madel, xmi
mOdel - - B4 Dependency Model
----- <+ Dependency authentication
® Structu ral Elements are i Dependency windowStatusPrinter
. E_g platform: fresourceforg.openarchitectureware, ukil, xvar fsroffeaturedependency, ecore
refe ren Ced d Ire Ctly ’ W platform:fresourcefsmarthome, cbd.lib . econormyhorme 'srcfeconanmy Lib, =mi

=8| platform: fresource/smarthome. chd.mmysrc-genfchdmm. ecore

® [eatures are referenced

t--#t | platform: fresourcefsmarthame, cammon, mm)'src-gen)'datanmm, ecore
-] plakform: /resource/smarthome, common. mmysrc-gen/operationsmm. ecore
by name #| o ! I fsrc-genfop

i - , 1 -
[| Properties &3 AL Pru:ul:-lemsw |_{.;-|> De-:laratiu:unw 7 Search} = Cnnsule} @ F'ru:ugress\l %h, Pl

Propert Yalue

Feature IS windowStatusPrinker
Model Elements 1= Component Level dspect WindowstatusPrinkeraspect

iVé@‘i ;' - ©2005-7 Markus Vélter

Managing Variability in Product Lines

Negative Variability for Aspects 11

® A cartridge call to the XVar tool in the APl-level code generator
workflow configures the structural model.

<workflow abhstract="trues"x>
<readConfig uri="4%{globalConfigurationModel} "/ >

<read
uri="platform:/resource/swarthome. chd. lib. economyhome/ sre/economyLib . xmi™
model3lot="ecomodes 1"/ >

<patridge file="orgfopenarchitectureware/ uctil/wvar/ wf-xvar.oaw"”
dependencyFilelUri="platform:/resource/smarthome . chd. lik. econowmyhome/ a2rc/ dependencyode 1. xmi ™
haseModel3lot="ecomode 1"/ >

<feature exists="dunmpCEDAfterXVar™:>
<oloneindiirite uri="temp-models/chdifteriVar. xmi"
model3 lot="ecomode 1" /=
</ featurer

<l— more... ——=x

</workflows

© 2005-7 Markus Volter

Managing Variability in Product Lines F o

Customizing Code

® Remember that our libraries contain a mixture of models
and code — the implementation (“business logic”) is
Implemented manually in Java.

® Hence, if you want to define variants of library components,
It IS not enough to vary the models (and with it the
generated code). You also need to vary manually written
code.

® Consider making the lights dimmable:
® The interface ILightDriver needs an operation setLightLevel()

® The state of the light driver component needs an additional
attribute to keep track of the light level

® And the implementation code needs to change — it needs to
Implement the optional setLightLevel() operation.

® The variability in the models is handled as explained before.

= .
.VOIt?D‘i EIEEQOQ;Q - 71 - ©2005-7 Markus Vélter

Managing Variability in Product Lines .

Customizing Code 11

® Variable code sections can be marked up using special
syntax:

public class LightDriverlmplementation extends LightDriverimplBase {

@Override
protected String getldinternal() {
return getConfigParamValueForld();

}

//# dimmableLights

@Override

protected int setLightLevellnternal(int level) {
state() .setEffectiveLightLevel (level);
return level;

}
//~# dimmableLights

® This piece of code is in a .jJavav file
® Hence it is not compiled
® |t is customized into a .java file based on the configuration
iVO@EEI

Rl

1
EO(JQ;\O -72 - ©2005-7 Markus Volter

Managing Variability in Product Lines |

Customizing Code 111

® Here is the workflow component that handles the
customization.

<workflow abstract="tru=s":

<patridge file="org/openarchitectureware/ util/wvar/file/wf-xvarfile.oaw"”
gourcePath="platform: /resource/smarthome.chd. lik. economyhome/ sro'™
sourceExt="Jawvavw"
genPath="platform:/resource/swarthome.chd. likb.economyhome/ sroc—gen™
genExt="Jawva’"
uselomments="falze"/>

</workf low:-

® The component
® |ooks for sourceExt-files in the sourcePath directory
® customizes them,

® And writes the result to genExt-files in the genPath
directory.

ivé@ﬁ

Rl
> |
ul

1
EQK\D\C’ - ©2005-7 Markus Volter
— L 3

Managing Variability in Product Lines |

CONTENTS

® Introduction and Concepts
® PLE and Variabilities
® MDSD and AOSD
® MDSD-AO-PLE

® Implementation Techniques
® Intro to Case Study
® Models, Code, Transformations
® Orthogonal Variability
® Transformation and Template AO
® AO Modeling
® Aspects on Code Level
® Negative Variability

® Summary

iva@‘a (s ;' - 74 - ©2005-7 Markus Vélter

Managing Variability in Product Lines g

® |t is essential to explicitly describe the variabilities wrt. to the
various product in a product line.

® While you can directly map variabilities to implementation code, it is
much better to use a model-driven approach and map the
variability to models

® pbecause they are more coarse grained and there’s less to vary

® Variant management tools integrate well with the model-driven
tool chain

® (Generators, transformation languages and all the other MDD
tooling Is mature and can be used In practice.

® Advanced tools have sufficient features to build variants of
generators, transformations or models based on configuration data

e THANKS!

Vo ep‘i Y 7" = - ©2005-7 Markus Vélter

Managing Variability in Product Lines F _

Resources

® Videos of a the full presentation of these slides are at
http://ample.holos.pt/pageview.aspx?pageid=50&langid=1

® Papers on the topic:

® Product Line Implementation using Aspect-Oriented and Model-Driven
Software Development (SPLC 2007)

http://www.voelter.de/publications/index/detail-1395240160.html

® Feature-Based Variability in Structural Models (MVSPL 2007)
http://www.voelter.de/conferences/index/detail-1817579497.html

® Handling Variability in Model Transf. and Generators (DSM 2007)
http://www.voelter.de/conferences/index/detail-966723965.html

Tooling: openArchitectureWare 4.2,
eclipse.org/gmt/oaw, includes 3 hours of tutorial videos

® AMPLE Project: http://ample-project.net

software
® Podcasts on PLE and MDSD at "g'“e,‘?;‘d?;',
Software Engineering Radio: http://se-radio.net ®
' se-radio.n et
= .
.VOIt?D‘i EIEEQOQ;Q - 76 - ©2005-7 Markus Vélter

