
Managing Variability in Product Lines

Managing Variability
in Product-Linesin Product-Lines

Markus Voelter
voelter@acm.org

http://www.voelter.dep //

This work is supported by

© 2005-7 Markus Völter- 1 -

Managing Variability in Product Lines

About me

Markus Völter• Independent Consultant Markus Völter
voelter@acm.org
www.voelter.de

Independent Consultant

• Based out of Göppingen,
Germanyy

• Focus on
• Model-Driven Software

Development and DSLs
• Software Architecture
• P d t Li E i i

© 2005-7 Markus Völter- 2 -

• Product Line Engineering

Managing Variability in Product Lines

About AMPLE

• AMPLE == Aspect-Oriented, Model-Driven Product Line
E i iEngineering
(buzzwords are important to get funded ☺)

• EU f d d h j t• EU-funded research project

• I am working with SIEMENS, building practically useful
t li d if i it ith t dtooling and verifying it with a case study

• Resulting tooling based on Eclipse/openArchitectureWare
d i f l il bl f li / t/and is freely available from eclipse.org/gmt/oaw

• Version 4.2 that includes all of them has been released Sept 17

© 2005-7 Markus Völter- 3 -

Managing Variability in Product Lines

About openArchitectureWare

• Well-known (and much used) toolkit for most
aspects of model-driven software development

• Open Source at Eclipse GMT
• integrates w/Eclipse Modeling projects (eg. EMF, GMF)
• Cont ib tes to a io s Eclipse Modeling p ojects• Contributes to various Eclipse Modeling projects

(Workflow Engine, Model-to-Text, Textual Modeling Framework)

• V i 4 2 i t h b l d S t 2007• Version 4.2 is current, has been released Sept. 2007

• Some Features:
• Constraint Checking, Code Generation, Model-to-Model Transformation
• OCL-like expression language used throughout the tool
• Xtext Framework for building textual DSLs and Editorsg
• Support PLE in models, generators and transformations via AOP
• Editors and Debuggers for all those languages integrated in Eclipse

© 2005-7 Markus Völter- 4 -

Managing Variability in Product Lines

C O N T E N T S

• Introduction and Concepts
• PLE and Variabilities
• MDSD and AOSD• MDSD and AOSD
• MDSD-AO-PLE

• Implementation Techniques
• Intro to Case Study
• Models, Code, Transformations, ,
• Orthogonal Variability
• Transformation and Template AO
• AO Modeling• AO Modeling
• Aspects on Code Level
• Negative Variability

• Summary

© 2005-7 Markus Völter- 5 -

Managing Variability in Product Lines

C O N T E N T S

• Introduction and Concepts
• PLE and Variabilities
• MDSD and AOSD• MDSD and AOSD
• MDSD-AO-PLE

• Implementation Techniques
• Intro to Case Study
• Models, Code, Transformations, ,
• Orthogonal Variability
• Transformation and Template AO
• AO Modeling• AO Modeling
• Aspects on Code Level
• Negative Variability

• Summary

© 2005-7 Markus Völter- 6 -

Managing Variability in Product Lines

Product Line Engineering

•The idea of PLE is to not develop software products
as single artifacts, but rather to develop a family
of related products as efficiently as possible.

•We consider a set of programs to constitute a
family whenever it is worthwhile to study programs
f om the set b fi st st d ing the common from the set by first studying the common
properties of the set and then determining the
special properties of the individual family special properties of the individual family
members.

Definition by Parnas

© 2005-7 Markus Völter- 7 -

Managing Variability in Product Lines

Variability Analysis: A central building block for PLE

• Variability analysis discovers the variable and fixed parts of
a product in a domain. Parts can be
• Structural or behavioral• Structural or behavioral
• Functional or non-functional (technical)
• Modularized or aspectual

• Central challenges wrt. to variabilities are:
• Identification: where are the variabilities, what are the Identification: where are the variabilities, what are the

options?
• Kind of variability: see above
• D i i h d I d ib h ll d l i• Description: how do I describe the allowed alternatives
• Management: what are the constraints between the various

variation pointsp
• Implementation: how do I implement the respective

varibility in my software system?

© 2005-7 Markus Völter- 8 -

Managing Variability in Product Lines

Negative vs. Positive Variability

• Negative Variability (a) takes optional parts away from
 ll h l “an „overall whole“

• Challenge: the „overall whole“ can become really big an
unmanageableg

• Positive Variability (b) adds optional parts to a minimal
core.core.
• Challenge: How to specify where and how to join the

optional parts to the minimal core

• In Practice: combine both

© 2005-7 Markus Völter- 9 -

Managing Variability in Product Lines

Structural vs. Non-Structural Variability

• Structural Variations
Example Metamodel

• Based on this sample
metamodel,
you can build a wide you can build a wide
variety of models:

• Non-Structural Variations
Example Feature Models

StackSize
Example Feature Models

Dynamic Size, ElementType: int,
Counter, Threadsafe

Optimization

Counter

Fixed Dynamic

Static Size (20),
ElementType: String

Dynamic Size, Speed-Optimized,

ElementType
[open] Speed Memory

Usage
Additional
Features

Thread Bounds Type

value

© 2005-7 Markus Völter- 10 -

Bounds Check int Stringfloat Thread
Safety

Bounds
Check

Type
Check

Managing Variability in Product Lines

Routine Configuration vs. Creative Contruction

• The expressive power of the language used to bind the
variability (select an option) van vary widely

Guidance Complexity

Routine
Configuration

Creative
Construction

Guidance,
Efficiency

Complexity,
Flexibility

FramworksProperty Files

Feature-Model
Based

Configuration

Graph-Like
Languages

Manual
Programming

Configuration
Parameters

Framworks

Wizards

Property Files

Tabular
Configurations

• This slide (adopted from K. Czarnecki) is important for the
selection of DSLs in the context of MDSD in general:

• Th DSL t th fi ti id th • The more you can move your DSL to the configuration side, the
simpler it typically gets.

© 2005-7 Markus Völter- 11 -

Managing Variability in Product Lines

Typical Binding Times & Techniques

• F h f th i bl f t d t d fi h• For each of the variable features you need to define when
you‘ll bind the feature

• modeling time: DSLs, transformations, generators

• source time: manual programmingp g g

• Compile time: function overloading, precompiler, template
evaluation, static aspect weavinge a uat o , stat c aspect ea g

• deployment/configuration time: component deployment
(impl. for an interface), environment variables(impl. for an interface), environment variables

• link time: DLLs, class loading

• run time: virtual functions, inheritance & polymorphism,
factory-based instance creation, delegation, meta
programming data driven (tables interpreters)

© 2005-7 Markus Völter- 12 -

programming, data driven (tables, interpreters)

Managing Variability in Product Lines

Typical Binding Times & Techniques

• F h f th i bl f t d t d fi h• For each of the variable features you need to define when
you‘ll bind the feature

• modeling time: DSLs, transformations, generators

• source time: manual programmingp g g

• Compile time: function overloading, precompiler, template
evaluation, static aspect weavinge a uat o , stat c aspect ea g

• deployment/configuration time: component deployment
(impl. for an interface), environment variables(impl. for an interface), environment variables

• link time: DLLs, class loading

• run time: virtual functions, inheritance & polymorphism,
factory-based instance creation, delegation, meta
programming data driven (tables interpreters)

© 2005-7 Markus Völter- 13 -

programming, data driven (tables, interpreters)

Managing Variability in Product Lines

C O N T E N T S

• Introduction and Concepts
• PLE and Variabilities
• MDSD and AOSD• MDSD and AOSD
• MDSD-AO-PLE

• Implementation Techniques
• Intro to Case Study
• Models, Code, Transformations, ,
• Orthogonal Variability
• Transformation and Template AO
• AO Modeling• AO Modeling
• Aspects on Code Level
• Negative Variability

• Summary

© 2005-7 Markus Völter- 14 -

Managing Variability in Product Lines

What is MDSD?

• DSL is defined for a domain
formalizing domain concepts
into a custom meta model

ModelModelModel Metamodel

into a custom meta model.

• Developer develops model(s)
based on DSL Transformer Tranformation

Rules ep
ea

te
d

based on DSL

• Using code generators, the
model is transformed to na

l,
 c

an
 b

e
re

executable code (interpreters
are also possible)

Model Metamodel

op
tio

n

• Optionally, the generated
code is merged with
manually written code.

Transformer
Code

Generation
Templates

manually written code.

• One or more model-to-
model transformation steps Generated

Code

Manually
Written

© 2005-7 Markus Völter- 15 -

p
may precede code generation.

Code Code

optional

Managing Variability in Product Lines

Models & Meta Models

• A model is an abstraction of a real world system or • A model is an abstraction of a real world system or
concept.
• It only contains the aspect of the real world artifact that is

relevant to what should be achieved with the model.
• A model is therefore less detailed than the real world

artifactartifact.

• MDD models are precise and processable.
• Complete regarding the abstraction level or viewpoint • Complete regarding the abstraction level or viewpoint.
• The concepts used for building the model are actually

formally defined.
• The way to do this is to make every model conform to a

meta model.

• The meta model defines the “terms” and the grammar
we can use to build the model.
• Models are instances of their respective meta models

© 2005-7 Markus Völter- 16 -

• Models are instances of their respective meta models.

Managing Variability in Product Lines

Domain Specific Language

• A Domain Specific Language (DSL) is a formalism to • A Domain Specific Language (DSL) is a formalism to
build models. It encompasses
• the meta model of the models to be built
• some textual or graphical (or other)

concrete syntax that is used to
represent (“draw”) the models represent (draw) the models.

• In the context of product
line engineering DSLs are line engineering DSLs are
used to bind variabilities.
• Consequently, feature

diagrams are a special kind
of DSL, one that can be used
to express configurativep g
variability.

© 2005-7 Markus Völter- 17 -

Managing Variability in Product Lines

What is AOSD?

• Developer develops
program code Aspect

Aspect
Aspect

AspectNormal OO
Program A t

• Developer develops
(or reuses) aspect
code

pProgram Aspect

code

• Developers specifies the
Weaving

Specification

weaving rules (defines
pointcuts)

Aspect Weaver

• Aspect Weaver weaves
program and aspects
together and producestogether and produces
the „aspectized“ program
• This may happen statically

d ll

Woven Program

© 2005-7 Markus Völter- 18 -

or dynamically

Managing Variability in Product Lines

C O N T E N T S

• Introduction and Concepts
• PLE and Variabilities
• MDSD and AOSD• MDSD and AOSD
• MD-AO-PLE

• Implementation Techniques
• Intro to Case Study
• Models, Code, Transformations, ,
• Orthogonal Variability
• Transformation and Template AO
• AO Modeling• AO Modeling
• Aspects on Code Level
• Negative Variability

• Summary

© 2005-7 Markus Völter- 19 -

Managing Variability in Product Lines

• The challenge of implementing and handling variabilities is more

Core idea of MD-AO-PLE

• The challenge of implementing and handling variabilities is more
easily addressed on model level than on code level

• Models are more abstract and hence less detailed than code• Models are more abstract and hence less detailed than code

• Thus, the variability is inherently less scattered, making
variability management on model level simpler!

© 2005-7 Markus Völter- 20 -

Managing Variability in Product Lines

• Variability can be described more concisely since it is

MD-AO-PLE building blocks

• Variability can be described more concisely since it is
described on model level.

• The mapping from problem to solution space can be
formally described using model-to-model transformations.

• AO enables the explicit expression and modularization of
crosscutting variability :
• In models: weaving models and meta models• In models: weaving models and meta models
• In transformation: weave variant aspects into

transformations and generators
• I d i l t fi i d i l t ti i t• In code: implement fine-grained implementation variants.

• Additional benefit: Fine grained traceability is supported
since tracing is done on model element level rather than
on the level of artifacts.

© 2005-7 Markus Völter- 21 -

Managing Variability in Product Lines

• Definition:

MD-AO-PLE Definition and Thumbnail

• Definition:
MDD-AO-PLE uses models to describe product lines.
Variants are defined on model-level. Transformations
generate running applications AO techniques are used to generate running applications. AO techniques are used to
help define the variants in the models as well as in the
transformers and generators.

er
in

g
om

ai
n

En
gi

ne
e

D
o

ne
er

in
g

pl
ic

at
io

n
En

gi
n

© 2005-7 Markus Völter- 22 -

A
pp

Managing Variability in Product Lines

C O N T E N T S

• Introduction and Concepts
• PLE and Variabilities
• MDSD and AOSD• MDSD and AOSD
• MDSD-AO-PLE

• Implementation Techniques
• Intro to Case Study
• Models, Code, Transformations, ,
• Orthogonal Variability
• Transformation and Template AO
• AO Modeling• AO Modeling
• Aspects on Code Level
• Negative Variability

• Summary

© 2005-7 Markus Völter- 23 -

Managing Variability in Product Lines

Intro to Case Study

• A h t ti t ll d S t H • A home automation system called Smart Home.

• In homes you will find a wide range of electrical and electronic
devices devices
• lights
• thermostats
• electric blinds
• fire and smoke detection sensors
• white goods such as washing machineswhite goods such as washing machines
• as well as entertainment equipment.

• Smart Home connects those devices and enables inhabitants Smart Home connects those devices and enables inhabitants
to monitor and control them from a common UI.

• The home network also allows the devices to coordinate their The home network also allows the devices to coordinate their
behavior in order to fulfill complex tasks without human
intervention.

© 2005-7 Markus Völter- 24 -

Managing Variability in Product Lines

Problem Space Modeling

• Th d i t• The domain expert
(i.e. a building architect)
uses a suitable modeling
l f b ildi language for building
smart homes.

• Currently we use • Currently, we use
a simple tree editor
for that (based on Exeed,
and it is basically an EMF and it is basically an EMF
tree view with customized
icons and labels)

• Note that problem space modeling uses a creative
construction DSL since describing a Smart Home is not just a
matter of “ticking boxes”matter of ticking boxes .

• A more convenient editor will be provided later.

© 2005-7 Markus Völter- 25 -

Managing Variability in Product Lines

Models and Transformations Overview

• S l ti S i d f t b d hit t • Solution Space is made up of a component-based architecture
(CBD level) subsequently mapped to OSGi (OSGi-level)

• Various meta models desribe all these different levels• Various meta models desribe all these different levels

© 2005-7 Markus Völter

Managing Variability in Product Lines

C O N T E N T S

• Introduction and Concepts
• PLE and Variabilities
• MDSD and AOSD• MDSD and AOSD
• MDSD-AO-PLE

• Implementation Techniques
• Intro to Case Study
• Models, Code, Transformations, ,
• Orthogonal Variability
• Transformation and Template AO
• AO Modeling• AO Modeling
• Aspects on Code Level
• Negative Variability

• Summary

© 2005-7 Markus Völter- 27 -

Managing Variability in Product Lines

Application Domain to Software Domain Transformation

• W M2M t f ti t f th li ti • We use an M2M transformation to map from the application
domain to the software domain.

• Here are some examples of what that transformation • Here are some examples of what that transformation
has to do:
• Lighting:

F h li ht i i t ti t li ht d i t- For each light in a room, instantiate a light driver component
- For each light switch, instantiate a light switch component
- For each room with lights, instantiate a light controller, that

manages lights and the connected switchesmanages lights and the connected switches
• Windows:

- For each window, instantiate a window sensor component

• Note how the transformation only instantiates and connects
software components. The components themselves are pre-
built and are available in librariesbuilt and are available in libraries.

© 2005-7 Markus Völter- 28 -

Managing Variability in Product Lines

Example House: A Problem Space Model

• A house with only one level, and two rooms, connected by
doorsdoors.

• The rooms have windows as well as lights and light
switches

© 2005-7 Markus Völter- 29 -

switches.

Managing Variability in Product Lines

Example House: The Transformed CBD Model

• For each of the lights
and switches we have
instances of driver
components (the components (the
component types
are taken from the
library)library)

• We also have a light
switch coordinator

t i t component instance
for each floor that has
light switches.

• We use query based connectors to connect the coordinator with the
lights and the switches.
• The query dynamically finds all lights and switches for a given floor, q y y y g g ,

dynamically at runtime.

• We also have hierarchical configurations for the building and floors.

© 2005-7 Markus Völter- 30 -

Managing Variability in Product Lines

Example House: The Transformed OSGi Model

• Leaf configurations have been trans-
formed into bundles.

• I t f (f th Lib!) • Interfaces (from the Lib!) are now
Services in this model.

• Component instances have become OSGI• Component instances have become OSGI-
level components of the appropriate type.
• Those use ServiceRefs with queries to

fi d th ti id d ifind the respective provided services
at runtime.

• Note how the mixin model• Note how the mixin model
specifies the root packages
for the bundles to enable
code generationcode generation.

© 2005-7 Markus Völter- 31 -

Managing Variability in Product Lines

Example House: Code Generation

© 2005-7 Markus Völter- 32 -

Managing Variability in Product Lines

Example House: Generated Code

• We generate the OSGi bundle activators which
• Instantiate the components deployed in that bundle
• Register the services of those componentsg o o o po
• Register generated service trackers for each of the component’s

service refs … using an LDAP expression to dynamically find the
provided servicesprovided services

• We generate a manifest file
• including the correct package exports and importsincluding the correct package exports and imports

• We generate an ant build file to assemble the bundle JARs
• JAR will contain OSGI-level code as well as the CBD level codeJAR will contain OSGI level code as well as the CBD level code
• The used libraries know their Eclipse project so we know from

where we need to grab the implementation source code

• We generate a batch file that runs the OSGi runtime
(Knopflerfish) with the correct configuration (xargs-file)

© 2005-7 Markus Völter- 33 -

Managing Variability in Product Lines

• Library components are predefined building blocks to be used in

Component Libraries

• Library components are predefined building blocks to be used in
products. There are three “flavors”:

• Code-Only: the aspect of the PL that is covered by the library Code Only: the aspect of the PL that is covered by the library
component is not supported by generators,
• The production process for the product will simply

include/link/instantiate/deploy the component if it’s required as part include/link/instantiate/deploy the component if it s required as part
of a product.

• Example: an optional SNMP agent running on a system node

• Model-Only: PLA contains generators that can completely generate
the component implementation from a model.
• If the generator changes the library component’s implementation is • If the generator changes, the library component s implementation is

automatically adapted (since it’s regenerated).
• Example: A reusable business process component specified as a

component with an associated state machinecomponent with an associated state machine

• Model/Code Mix: This is necessary if you can represent some
aspects of a component via a model, but cannot represent others.

© 2005-7 Markus Völter- 34 -

aspects of a component via a model, but cannot represent others.

Managing Variability in Product Lines

Model/Code Mix: The different levels of code

• Th t ki d f d i th t• There are two kinds of source code in the system.

• CBD-level code is partly generated/partly hand-written.
• A th i li it d t d d th t • As the name implies, it does not depend on the concrete

implementation technology (such as OSGi)
• Base classes (and other skeleton artifacts) are generated, the

ll d i d ll d f dmanually written code is integrated in well-defined ways
• This is the way, manually written business logic is integrated.

• I l t ti l l d i l t l t d• Implementation-level code is completely generated
• It is specific to the concrete implementation technology
• It wraps or uses the CBD-level code and adapts it to the p p

concrete implementation technology

• The generation process is separated into two phases, one
for each kind of source code.

© 2005-7 Markus Völter- 35 -

Managing Variability in Product Lines

EconomyLib: An example library

• Th E Lib lib t i b ilt t • The EconomyLib library contains pre-built components,
interfaces and data types that are needed for building Smart
Homes of the Economy variety.

• Interfaces and data types are model-only, whereas
components are model/code mixed, because they contain
manually written code partsmanually written code parts.

• Libraries such as the EconomyLib are CBD-level code. There
is absolutely nothing in there that is specific to the concrete is absolutely nothing in there that is specific to the concrete
implementation technology.

• The library comes with a model file as well as a source code The library comes with a model file as well as a source code
directory.

• Note that this library depends on another library that defines Note that this library depends on another library that defines
basic primitive types.

© 2005-7 Markus Völter- 36 -

Managing Variability in Product Lines

EconomyLib: Part of the Model

• The LightSwitchCoordinator
orchestrates lights and switches

• The LightSwitchDriver proxies
a light switch
• The state knows whether the

switch is pressed or not

• The LightDriver proxies an
actual light
• Its state has an ID and it

knows whether it is burningg

• ILightSwitch is used to query a
switch whether it is pressed

• ILightDriver can be used to
turn a light on or off

© 2005-7 Markus Völter- 37 -

Managing Variability in Product Lines

EconomyLib: Generating CBD-Level code

© 2005-7 Markus Völter- 38 -

Managing Variability in Product Lines

EconomyLib: Manually written code I

• This is the
component that
switches lights

package smarthome.eco…witchCoordinator;

public class LightSwitchCoordinatorImplementation
extends LightSwitchCoordinatorImplBase {g

based on the status
of the switches

@Override
public void execute() {

Collection<LightSwitchStatus> states =
switchesAll().isPressed();

• It is a periodic
component, hence
it has only an

() ()
for (LightSwitchStatus status : states) {

if (hasChanged(status.getId(), status.getPressed())) {
String changedLights = status.getToggledLights();
parseLightsToSwitch(changedLights);

}y
execute()
operation.

}
}

}

private boolean hasChanged(String id, boolean pressed) {
// i h li h i h i h i i h• Note how it uses

the switchesAll()
operation to access

// is the light switch in another position than
// last time around?

}

private void parseLightsToSwitch(String lights) {

all the switches it is
connected to.

// find out which lights this switch affects
// and switch these lights

}

}

© 2005-7 Markus Völter- 39 -

}

Managing Variability in Product Lines

C O N T E N T S

• Introduction and Concepts
• PLE and Variabilities
• MDSD and AOSD• MDSD and AOSD
• MDSD-AO-PLE

• Implementation Techniques
• Intro to Case Study
• Models, Code, Transformations, ,
• Orthogonal Variability
• Transformation and Template AO
• AO Modeling• AO Modeling
• Aspects on Code Level
• Negative Variability

• Summary

© 2005-7 Markus Völter- 40 -

Managing Variability in Product Lines

Orthogonal Variability Management

• Orthogonal Variability: all the artifacts of a system depend on a
central configuration model that describes the variability of
those artifacts.

• Here: the “system” is the MDSD tooling for developing Smart
Homes

© 2005-7 Markus Völter- 41 -

Managing Variability in Product Lines

Orthogonal Variability Management II

• AW ith f t th t ll d i hit t tif t • oAW comes with a feature that allows domain architecture artifacts
to depend on whether certain features are selected.

• An API is available that allows to plug in various feature • An API is available that allows to plug in various feature
modeling tools
• In the simplest case, that API can be bound to a simple text file

that contains a list of selected features.that contains a list of selected features.
• Another binding is available to Pure Systems’ pure::variants tool

• That configuration model controls various aspects of the model
transformation and code generation process.
• It is read at the beginning of the workflow and is available globally.

• Currently we use it for the • Currently, we use it for the
following optional features:
• Tracing
• R fl ti D t St t• Reflective Data Structures
• Viewer (UI)
• Automatic Windows

© 2005-7 Markus Völter- 42 -

Managing Variability in Product Lines

Orthogonal Variability Management III

• The configuration is done via
a pure::variants variant
model (ps:vdm)

• pure::variants supports the interactive
selection of features, while evaluating

t i t d f t l ti hiconstraints and feature relationships
to make sure only valid variants are
defined.

• If a constraint is violated, the model
is either automatically corrected, or

 i han error is shown.

© 2005-7 Markus Völter- 43 -

Managing Variability in Product Lines

C O N T E N T S

• Introduction and Concepts
• PLE and Variabilities
• MDSD and AOSD• MDSD and AOSD
• MDSD-AO-PLE

• Implementation Techniques
• Intro to Case Study
• Models, Code, Transformations, ,
• Orthogonal Variability
• Transformation and Template AO
• AO Modeling• AO Modeling
• Aspects on Code Level
• Negative Variability

• Summary

© 2005-7 Markus Völter- 44 -

Managing Variability in Product Lines

AO for generator artifacts

• Aspect Orientation is used to encapsulate and “inject”
transformation and generator code that is only necessary for
implementing a given feature.

• Transformation and generator aspects are captured in separate
files.

• These files are only deployed iff a certain feature is selected in
the configuration model

• The workflow ties all these loose ends together.

© 2005-7 Markus Völter- 45 -

Managing Variability in Product Lines

Optional Feature: Logging

• Logging is simply about writing a stdout log of the methods
called on Service Components as the system runs.

• Th ti i f t t (OSGI l l) t th f • The runtime infrastructure (OSGI-level) supports the use of
interceptors for any component.

• Interceptors are available in libraries (just as the light switch • Interceptors are available in libraries (just as the light switch
components and their interface and the primitive types)

• If the model configures interceptors for a given component, t e ode co gu es te cepto s o a g e co po e t,
the generated activator actually instantiates them, instantiates a
proxy for each component and adds the interceptors to that
proxy.p y

• In short: if the feature debug.logging is selected, the
transformation from PS to CBD level must make sure that the
appropriate interceptor is configured for the components.

© 2005-7 Markus Völter- 46 -

Managing Variability in Product Lines

Optional Feature: Logging [Thumbnail]

transformation

aro nd

transformation aspect

around ...

workflow

transform
configuration model

transform-
aspect

© 2005-7 Markus Völter- 47 -

Managing Variability in Product Lines

Optional Feature: Logging, Implementation

• Th i l t ti AO f th d l t f ti • The implementation uses AO for the model transformation
language. Here is the aspect:

// logging. ext
import psmm;
import cbdmm;

extension ps2cbd;

extension org::openarchitectureware::util::stdlib::io;
extension org::openarchitectureware::util::stdlib::naming;

around ps2cbd::transformPs2Cbd(Building building):
let s = ctx proceed(): (let s = ctx.proceed(): (

building.createBuildingConfiguration().
deployedInterceptors.addAll(

{ utilitiesLib().interceptors.findByName(“LoggingInterceptor") }
) ->

• We advice ps2cbd::transformPs2Cbd

s
);

• We then execute the original
definition (ctx.proceed())

• Then we add, to the top level config,

© 2005-7 Markus Völter- 48 -

, p g,
the LoggingInterceptor

Managing Variability in Product Lines

Optional Feature: Logging, Implementation II

• Remember we only want to have these interceptors in the system
iff the feature debug.tracing is selected in the global
configuration model.

• That dependency is expressed in the workflow:

<component id="xtendComponent.ps2cbd" class="oaw.xtend.XtendComponent">
…

</component>

<feature exists="debug.logging">
<component adviceTarget="xtendComponent.ps2cbd" class="oaw.xtend.XtendAdvice"><component adviceTarget xtendComponent.ps2cbd class oaw.xtend.XtendAdvice >

<!-- references tracing.ext, file that contains aspect on prev. slide -->
<extensionAdvices value=“logging"/>

</component>
</feature>

• The stuff inside the <feature>…</feature> tag is only executed if
the respective feature is selected in the global configuration

• The XtendAdvice component type is an aspect component for
the Xtend component used for transforming models.

© 2005-7 Markus Völter- 49 -

Managing Variability in Product Lines

Optional Feature: Logging, Implementation III

t id " t dC t 2 bd" l " t d Xt dC t"<component id="xtendComponent.ps2cbd" class="oaw.xtend.XtendComponent">
…

</component>

<feature exists="debug.logging">
<component adviceTarget="xtendComponent.ps2cbd" class="oaw.xtend.XtendAdvice">

<!-- references tracing.ext, file that contains aspect on prev. slide -->
<extensionAdvices value=“logging"/>

</component>
</feature>

• An Advice component basically takes the sub-elements and adds
them to the component refenced by the adviceTarget attribute

</feature>

them to the component refenced by the adviceTarget attribute.

• In the case here, that target is the one that runs the PS to CBD
M2M transformationM2M transformation

• Using this mechanism, the configuration of aspect code (the
<extensionAdvices> element is non-invasive.

© 2005-7 Markus Völter- 50 -

Managing Variability in Product Lines

Optional Feature: Component State Viewer

• The viewer UI shown before is not
generated. It is a generic piece of
code that reflects on the data
structures that it is supposed to render.

• To make this work, the following two additions have to be made to
th t d tthe generated system:

• The component state data structures must feature a generated
reflection layer reflection layer

• Whenever a component is instantiated in the activator, its state
has to be registered with the viewer.has to be registered with the viewer.

• These things are implemented using generator aspects,
depending on the selection of the debug.viewer feature.p g g

© 2005-7 Markus Völter- 51 -

Managing Variability in Product Lines

Optional Feature: Component State Viewer [Thumbnail]
template aspecttemplate file

workflow

p pp

AROUND

generate (osgi)

generator-
aspect

configuration model

aspect

generate (cbd)

template file template aspect

generator-
aspect

template file

AROUND

template aspect

… x() ...… x() ...

extend file extend aspect

© 2005-7 Markus Völter- 52 -

around ...x(): ...

Managing Variability in Product Lines

C O N T E N T S

• Introduction and Concepts
• PLE and Variabilities
• MDSD and AOSD• MDSD and AOSD
• MDSD-AO-PLE

• Implementation Techniques
• Intro to Case Study
• Models, Code, Transformations, ,
• Orthogonal Variability
• Transformation and Template AO
• AO Modeling• AO Modeling
• Aspects on Code Level
• Negative Variability

• Summary

© 2005-7 Markus Völter- 53 -

Managing Variability in Product Lines

AO on Model Level

• AO Modeling (aka Model Weaving) is about applying AO
techniques for models and meta models.

• Aspect Models capture the parts of models that represent elements • Aspect Models capture the parts of models that represent elements
necessary for a “implementing” a given feature.

• Pointcut expressions are used to determine where and how those Pointcut expressions are used to determine where and how those
aspect models are “woven” into base models.

• A model weaver does the weaving.

• Note that AO modeling is NOT about drawing UML diagrams of AspectJ
code… contrary to what some people suggest!

© 2005-7 Markus Völter- 54 -

Managing Variability in Product Lines

Optional Feature: Automatic Windows [Thumbnail]

building model building aspectbuilding model building aspect

configuration model

read

weave

transform

woven building model

transform-
aspect

© 2005-7 Markus Völter- 55 -

Managing Variability in Product Lines

Optional Feature: Automatic Windows

• A t ti i d ti l f t th PS l l• Automatic windows are an optional feature on the PS level.
• If we have at least one thermometer in a room,
• We can automatically open the windows if the temperatures are

above 25°C average, and close them if we are below 20°C.
• We also need windows actuators for that

• We want this feature, if the global configuration model has the
environmentalControl.tempManagement.automaticWindows
feature selected.

• To implement it,
• We weave the necessary elements into the PS model
• Advice the PS to CBD transformation to consider these

additional elements
• … and then (for debugging purposes) write the modified model… and then (for debugging purposes) write the modified model

to an XMI file.

© 2005-7 Markus Völter- 56 -

Managing Variability in Product Lines

Optional Feature: Automatic Windows, Implementation

• Here is the aspect for the problem space model:

• Here are the pointcut expressions used in the aspect model:
rooms(Building this):

fl l t(| i d i > 0)floors.rooms.select(e|e.windows.size > 0) ;
windows(Building this):

rooms().windows;
thermoName(Thermometer this):

((Room)eContainer).name.toFirstLower()+"Thermometer";

• rooms returns all the rooms that have windows

• windows returns the windows in these rooms• windows returns the windows in these rooms

• thermoName calculates a sensible name for the thermo device

© 2005-7 Markus Völter- 57 -

Managing Variability in Product Lines

Optional Feature: Automatic Windows, Implementation II

• Here is the result of the example
house after weaving.
• The rooms now have a thermometer

with a suitable name
• The windows have an actuator

• The transformation must now be
enhanced to transform those new
devices into instances of software
components.

• Also we need some kind of driver
component that periodically checks
the temperature of all thermometers,
calculates the average, and then opens or closes the windows.

• This whole additional transformation is located in a separate
aspect transformation file and is “adviced” into the original

f

© 2005-7 Markus Völter- 58 -

transformation.

Managing Variability in Product Lines

Optional Feature: Automatic Windows, Implementation III

• Here is the workflow fragment that configures all of this:
<feature exists="environmentalControl.tempManagement.automaticWindows">

<!-- the stuff that enhances the M2M transformation --><! the stuff that enhances the M2M transformation >
<component adviceTarget="xtendComponent.ps2cbd"

class="org.openarchitectureware.xtend.XtendAdvice">
<extensionAdvice value="windowAutomation::extensionAdvices"/>

</component>

<!-- this launches the model weaver that adds the aspect to the PS model -->
<cartridge file="org/openarchitectureware/util/xweave/wf-weave-expr"

baseModelSlot="psmodel"
aspectFile="platform:/resource/smarthome.ps.lib/src/windowAutomation/aspect.xmi"
expressionFile="windowAutomation::expressions"/>

<!-- and here we write the model for debugging purposes -->
<component class="org.eclipse.mwe.emf.Writer">

<useSingleGlobalResourceSet value="true"/><useSingleGlobalResourceSet value true />
<uri value="${dumpFileUriPrefix}/psWithWindowAutomation.xmi" />
<cloneSlotContents value="true"/>
<modelSlot value="psmodel" />

</component>

</feature>

© 2005-7 Markus Völter- 59 -

Managing Variability in Product Lines

Optional Feature: Burglar Alarm

• In the configuration feature model, you can
select whether your house should feature a
burglar alarm system; and if so, which
kinds of alarm devices it should have.

• There is a library of pre-built components
f th d i i th h libfor these devices in the securehome library
project

• The ps2cbd transformation • The ps2cbd transformation
• Instantiates a control panel component (turn on/off)
• Instantiates the burglar alarm detection agent
• … connects those two …
• And then instantiates an instance of each of the alarm devices

selected in the feature modelselected in the feature model
• … and connects those to the agen.

© 2005-7 Markus Völter- 60 -

Managing Variability in Product Lines

Optional Feature: Burglar Alarm II
transformation

• Thumbnail: configuration model

• Here is (part of) the code:

create System transformPs2Cbd(Building building):create System transformPs2Cbd(Building building):
…
hasFeature("burglarAlarm") ? (handleBurglarAlarm() -> this) : this;

handleBurglarAlarm(System this):
l t f t B l C fi () (let conf = createBurglarConfig(): (

configurations.add(conf) ->
…
conf.connectors.add(connectSimToPanel(createSimulatorInstance(),

createControlPanelInstance())) ->
hasFeature("siren") ? conf.addAlarmDevice("AlarmSiren") : null ->
hasFeature("bell") ? conf.addAlarmDevice("AlarmBell") : null ->
hasFeature("light") ? conf.addAlarmDevice("AlarmLight") : null

);

• Note how we query the feature model from within the
transformation instead of using aspects to contribute the additional

© 2005-7 Markus Völter- 61 -

behaviour to the transformation.

Managing Variability in Product Lines

C O N T E N T S

• Introduction and Concepts
• PLE and Variabilities
• MDSD and AOSD• MDSD and AOSD
• MDSD-AO-PLE

• Implementation Techniques
• Intro to Case Study
• Models, Code, Transformations, ,
• Orthogonal Variability
• Transformation and Template AO
• AO Modeling• AO Modeling
• Aspects on Code Level
• Negative Variability

• Summary

© 2005-7 Markus Völter- 62 -

Managing Variability in Product Lines

Code Level Aspects

• Sometimes the simplest way to implement variability is to aspects
on code level (AOP)

• Si ’ i J th i l t ti l ’ll • Since we’re using Java as the implementation language, we’ll use
AspectJ as the implementation language for code level aspects

• The following challenges must be addressed:• The following challenges must be addressed:
• A certain aspect shall only be woven iff a certain feature is

selected in the global configuration model
• It might be necessary to define (in the models!) to which

joinpoints an aspect should be woven

• W th t t f ti lit i h d itt th • We assume that aspect functionality is hand-written, they are
available in libraries. We distinguish
• Complete aspects: advice and pointcut handwritten, inclusion is

optional based on feature configuration
• Incomplete aspects: advice is handwritten, pointcut is generated

based on information in the models

© 2005-7 Markus Völter- 63 -

Managing Variability in Product Lines

Code Level Aspects [Thumbnail]

configuration model
system model

AA

… abstract ...

AspectJ aspect
generate

<<manual>>

p p

<<generated>>

AspectJ aspect

<<generated>>

© 2005-7 Markus Völter- 64 -

Managing Variability in Product Lines

Code Level Aspects: Implementation I

• Here is a sample aspect (trivialized authentication):
public abstract aspect AuthenticationAspect {

pointcut pc(): call (public * smarthome ecolib components *());pointcut pc(): call (public smarthome.ecolib.components.. (..));

before() : pc() {
// do some fancy authentication here

}
}

• The aspect contains all the relevant code (hence the pointcut is
extremely generic) and is completely handwritten

}

y g) p y

• The aspect is abstract to make sure it is not woven by default!

• If it should be woven (see later for how this is determined) a
concrete sub-aspect is automatically generated
• Which is then grabbed by the weaver and automatically woveng y y

public aspect AuthenticationAspectImpl extends AuthenticationAspect {

}

© 2005-7 Markus Völter- 65 -

Managing Variability in Product Lines

Code Level Aspects: Implementation II

• As with interceptors, components and
other code-related architectural
elements, aspects are represented in
the library model
• provides awareness of the generated

build file, etc.
• Allows the use of model-level negative

variability (see below)

• Using a naming convention (enforced and checked by the recipe
framework) the manually written code is associated with the model

© 2005-7 Markus Völter- 66 -

Managing Variability in Product Lines

C O N T E N T S

• Introduction and Concepts
• PLE and Variabilities
• MDSD and AOSD• MDSD and AOSD
• MDSD-AO-PLE

• Implementation Techniques
• Intro to Case Study
• Models, Code, Transformations, ,
• Orthogonal Variability
• Transformation and Template AO
• AO Modeling• AO Modeling
• Aspects on Code Level
• Negative Variability

• Summary

© 2005-7 Markus Völter- 67 -

Managing Variability in Product Lines

Negative Variability

• In negative variability, elements of a structural model are
associated with features in a configuration model. If that
feature is not selected, the respective elements of the structural
models are removed.
• The oAW XVar tool does that

• The dependencies between the structural model and the
configuration model are externalized into a dependency
model.
• This makes sure the meta model of the structural model need not

be changed in order to make it “configurable”

© 2005-7 Markus Völter- 68 -

Managing Variability in Product Lines

Negative Variability for Aspects

• We use negative variability to remove the aspect definitions
(see previous topic) from the library model if a specific feature is
not selected.

• Since the aspect model elements are removed from the model, no
aspect-subclasses are generated, and hence, no aspect is
woven.

• Here is the dependency
model:model:
• Structural Elements are

referenced directly,
• Features are referenced

by name

© 2005-7 Markus Völter- 69 -

Managing Variability in Product Lines

Negative Variability for Aspects II

• A cartridge call to the XVar tool in the API-level code generator
workflow configures the structural model.

© 2005-7 Markus Völter- 70 -

Managing Variability in Product Lines

Customizing Code

• Remember that our libraries contain a mixture of models
and code – the implementation (“business logic”) is
implemented manually in Java.implemented manually in Java.

• Hence, if you want to define variants of library components,
it is not enough to vary the models (and with it the g y (
generated code). You also need to vary manually written
code.

• Consider making the lights dimmable:
• The interface ILightDriver needs an operation setLightLevel()
• Th t t f th li ht d i t d dditi l • The state of the light driver component needs an additional

attribute to keep track of the light level
• And the implementation code needs to change – it needs to

implement the optional setLightLevel() operation.

• The variability in the models is handled as explained before.

© 2005-7 Markus Völter- 71 -

Managing Variability in Product Lines

Customizing Code II

• Variable code sections can be marked up using special
syntax:
public class LightDriverImplementation extends LightDriverImplBase {public class LightDriverImplementation extends LightDriverImplBase {

@Override
protected String getIdInternal() {

return getConfigParamValueForId();
}}

…

//# dimmableLightsg
@Override
protected int setLightLevelInternal(int level) {

state().setEffectiveLightLevel(level);
return level;

}}
//~# dimmableLights

}

• This piece of code is in a .javav file
• Hence it is not compiled

i d f l b d h f

© 2005-7 Markus Völter- 72 -

• It is customized into a .java file based on the configuration

Managing Variability in Product Lines

Customizing Code III

• Here is the workflow component that handles the
customization.

• The component
• looks for sourceExt-files in the sourcePath directory
• customizes them,
• And writes the result to genExt-files in the genPath

directory

© 2005-7 Markus Völter- 73 -

directory.

Managing Variability in Product Lines

C O N T E N T S

• Introduction and Concepts
• PLE and Variabilities
• MDSD and AOSD• MDSD and AOSD
• MDSD-AO-PLE

• Implementation Techniques
• Intro to Case Study
• Models, Code, Transformations, ,
• Orthogonal Variability
• Transformation and Template AO
• AO Modeling• AO Modeling
• Aspects on Code Level
• Negative Variability

• Summary

© 2005-7 Markus Völter- 74 -

Managing Variability in Product Lines

Summary

• It is essential to explicitly describe the variabilities wrt. to the
various product in a product line.

• Whil di tl i biliti t i l t ti d it i • While you can directly map variabilities to implementation code, it is
much better to use a model-driven approach and map the
variability to models
• because they are more coarse grained and there’s less to vary

• Variant management tools integrate well with the model-driven
t l h itool chain

• Generators, transformation languages and all the other MDD
tooling is mature and can be sed in p acticetooling is mature and can be used in practice.
• Advanced tools have sufficient features to build variants of

generators, transformations or models based on configuration data
i f t d lin feature models

THANKS!
© 2005-7 Markus Völter- 75 -

THANKS!

Managing Variability in Product Lines

Resources

• Videos of a the full presentation of these slides are at
http://ample.holos.pt/pageview.aspx?pageid=50&langid=1

• Papers on the topic:• Papers on the topic:
• Product Line Implementation using Aspect-Oriented and Model-Driven

Software Development (SPLC 2007)
http://www voelter de/publications/index/detail 1395240160 htmlhttp://www.voelter.de/publications/index/detail-1395240160.html

• Feature-Based Variability in Structural Models (MVSPL 2007)
http://www.voelter.de/conferences/index/detail-1817579497.html

• Handling Variability in Model Transf. and Generators (DSM 2007)
http://www.voelter.de/conferences/index/detail-966723965.html

• Tooling: openArchitectureWare 4 2 • Tooling: openArchitectureWare 4.2,
eclipse.org/gmt/oaw, includes 3 hours of tutorial videos

• AMPLE Project: http://ample project net• AMPLE Project: http://ample-project.net

• Podcasts on PLE and MDSD at
Software Engineering Radio: http://se-radio net

© 2005-7 Markus Völter- 76 -

Software Engineering Radio: http://se radio.net

