
OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 1 -

OO Remoting OO Remoting
Foundations of OO remote Foundations of OO remote
procedure call middlewareprocedure call middleware

With CORBA and .NET Remoting ExamplesWith CORBA and .NET Remoting Examples

Markus Völter
voelter@acm.org
www.voelter.de

Patterns by Völter, Zdun, Kircher

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 2 -

Contents
• Introduction

• Patterns and Technology Projections

• Basic Remoting Patterns
• CORBA Projection
• .NET Remoting Projection

• Lifecycle Management
• CORBA Projection
• .NET Remoting Projection

• Providing Additional Services
• CORBA Projection
• .NET Remoting Projection

• Building High-Performance Servers
• CORBA Projection
• .NET Remoting Projection

• Asynchronous Operations
• CORBA Projection
• .NET Remoting Projection

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 3 -

Contents
• Introduction

• Patterns and Technology Projections

• Basic Remoting Patterns
• CORBA Projection
• .NET Remoting Projection

• Lifecycle Management
• CORBA Projection
• .NET Remoting Projection

• Providing Additional Services
• CORBA Projection
• .NET Remoting Projection

• Building High-Performance Servers
• CORBA Projection
• .NET Remoting Projection

• Asynchronous Operations
• CORBA Projection
• .NET Remoting Projection

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 4 -

Introduction: Sync vs. Async

• There are two main remote communication styles:
• (OO-)RPC: Remote Procedure Call
• MoM: Message oriented middleware

• Differences: Interface and identity
• In RCP-style remoting, a caller knows the identity of the

target object, it also knows its interface.
• When calling an operation on a remote object, a caller knows

that the target oject can handle the operation.
• In MoM-based systems, a client posts a message (of a

specific type or format) to the middleware (queues, topics, …)
and does not know, which entity handles the message.

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 5 -

Introduction: Sync vs. Async (II)

• Differences: Temporal coupling
• In RPC-style remoting, the invoker of an operation expects the

target object to be available and handle the invocation rather
instantly.

• In MoM-based systems, a sender sends a message and does not
necessarily know if and when it will be handled (i.e. if a receiver is
online or not).

• Basic concepts are independent of the API presented to the
programmer.
• It is possible, to “emulate” MoM-based systems based on RPC-style

remoting,
• It is also possible to implement RPC-style remoting on top of a

message-oriented middleware.

• This presentation covers RPC-style remoting, including some
patterns for asynchronous APIs based on the RPC-style.

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 6 -

Introduction: Remoting Challenges

• Building OO RPC-style remoting frameworks involves a set
of challenges that need to be taken into account:

• The API towards the programmer shall be as simple
as possible. Ideally, no there should be no difference
between local and remote method invocations.

• Remote invocations can lead to new failure modes
compared to local invocations. The framework, and the API,
has to take these into account.

• As in any development task, performance should be as
good as possible. This might have different implications
for different environments.

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 7 -

Introduction: Remoting Challenges (II)

• The concepts, and perhaps even a specific framework, must
be able to adapt to different quality of service
requirements; embedded applications have different
requirements than enterprise stuff.

• Clients and server developers should not need to know
about the operating system or hardware architecture
on which the communication partner runs.

• And, again as usual, the framework should be flexible with
regards to some of its behavior or policies.

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 8 -

Introduction: The Pattern Language

• This work is based on a pattern language by Markus
Völter, Uwe Zdun and Michael Kircher.

• You can find further information on this topic at
www.voelter.de/remoting

• Feedback is welcome!

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 9 -

Contents
• Introduction

• Patterns and Technology Projections

• Basic Remoting Patterns
• CORBA Projection
• .NET Remoting Projection

• Lifecycle Management
• CORBA Projection
• .NET Remoting Projection

• Providing Additional Services
• CORBA Projection
• .NET Remoting Projection

• Building High-Performance Servers
• CORBA Projection
• .NET Remoting Projection

• Asynchronous Operations
• CORBA Projection
• .NET Remoting Projection

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 10 -

Basic Remoting Patterns

SERVER APPLICATION

INVOKER

ins

ta
nt

iat
es

instantiates REMOTE OBJECT

GLOBAL OBJECT REFERENCE

adressable by
dispatches to

OBJECT ID
identified by

Client

CLIENT PROXY

invokes operations on communicates with

MARSHAL-BY-VALUE

uses uses

REMOTING ERROR

ha
nd

les

raises

NAMING

registers R
em

ote

O
bject in

looks up Rem
ote Objects in

stores indexed by name

co
nta

insFRAMEWORK SINGLETON

instantiates

INTERFACE DESCRIPTION

im
pl

em
en

ts

im
pl

em
en

ts

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 11 -

Remote Object

Process

Remote Object

ID: 4711

Server
Application

1) <<create>>

Process A

Client

M
ac

hi
ne

 B
ou

nd
ar

y

Provide REMOTE OBJECTS as the building blocks for distributed
applications. They have a unique OBJECT ID in their local address
space, as well as means to construct a GLOBAL OBJECT REFERENCE
from this OBJECT ID. The GLOBAL OBJECT REFERENCE is unique in the
“global” address space of the network. Usually, each REMOTE OBJECT
has also a well-defined INTERFACE DEFINITION that is separated from
the object’s implementation. REMOTE OBJECTS provide facilities to
allow them to be managed by the SERVER APPLICATION.

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 12 -

Client Proxy

Provide a PROXY object in the client process for the REMOTE OBJECT.
The PROXY object has the same interface as the REMOTE OBJECT. For
remote invocations, clients only interact with that local PROXY object.
The PROXY primarily forwards calls to the REMOTE OBJECT, and it is
responsible for the details of accessing the REMOTE OBJECT via the
distributed object system. Only those remoting details that cannot be
handled automatically are visible to the client developer.

Process A Process B

Client
Proxy Remote

Object

Client

M
ac

hi
ne

 B
ou

nd
ar

y

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 13 -

Invoker

Provide an INVOKER that is remotely addressable. It receives
invocations for many instances and forwards them to the actual
instance. To make this possible, the data describing the invocation
must contain the ID of the actual target object in an INVOCATION
CONTEXT. Resolving the ID, as well as other application-specific
dispatching and adaptation tasks, handled on the INVOKER, are
transparent to the client.

Process A1

Process B

Client
Proxy

Remote
Object

Client
Invoker

Remote
ObjectRemote

ObjectRemote
ObjectRemote

Object

Process A2
Client
ProxyClient Invoker

M
ac

hi
ne

 B
ou

nd
ar

y

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 14 -

Interface Description

Provide an INTERFACE DESCRIPTION as a meta description in which
you describe the common interfaces implemented on client side and
server side once. Use a code generator to automatically produce the
recurring code fragments.

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 15 -

Remoting Error

Make sure that the CLIENT PROXY throws a specific kind of exception
whenever the remote server object or the network connection runs into
problems. The client should be able to handle these exceptions in a
catch-all style, not caring about the details. But the exception should
also contain enough information to allow the client to consider
alternative actions.

Process A Process B

Proxy
Real

Object

Client

M
ac

hi
ne

 B
ou

nd
ar

y

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 16 -

Marshal-By-Value

For each non-remote and non-primitive types, require that they provide
a way to convert themselves into a lower level “wire format,” a process
known as serialization. This format is usually constructed by
marshalling the complex types by value. The distributed object system
will use this mechanism when automatically marshalling complex type
objects.

Process A

Client
Proxy

Client

1) operation(instanceOfComplexType)

Complex
Type

2) serialize()

ISerializable

serializedVersion

Process B

Server
Stub

M
ac

hi
ne

 B
ou

nd
ar

y

3) transport remotely

serializedVersion

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 17 -

Object ID

Associate each REMOTE OBJECT instance with a globally unique remote
OBJECT ID. Comparisons for equality can be based on this ID. Remote
invocations from the CLIENT PROXY to the INVOKER will contain this ID
to allow the INVOKER to dispatch the invocation to the correct object.
The CLIENT PROXY needs to know this ID in order to supply it to the
INVOKER for each remote invocation.

Remote
Object

Remote
Object

Remote
Object

Remote
Object

Process B

2300

Process A1

Client
Proxy

Client

Invoker

M
ac

hi
ne

 B
ou

nd
ar

y

0815

4711

remote
transport 4711

Remote
Object 4711

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 18 -

Global Object Reference

Provide GLOBAL OBJECT REFERENCES which serve as “pointers” to
REMOTE OBJECTS. Such a reference needs to include all the information
that is necessary for a client to reach the REMOTE OBJECT over the
network, including the target object’s OBJECT ID. To sent the GLOBAL
OBJECT REFERENCE over the network it is MARSHALLED-BY-VALUE, but
not the target object. Upon receipt of such a reference, the client can set
up a network connection to the REMOTE OBJECT using the information in
the GLOBAL OBJECT REFERENCE, typically by instantiating a suitable

CLIENT PROXY.

Process A

Client
Proxy

Client

1) operation(instanceOfRemoteObject)

Remote
Object

2) getRefernce()

Process B

Invoker

M
ac

hi
ne

 B
ou

nd
ar

y

4) transport remotely

serializedVersion

Global
Object Ref

ISerializable

3) serialize()

serializedVersion

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 19 -

Naming

Provide a way to resolve names to GLOBAL OBJECT REFERENCES in a
NAMING system. The NAMING system is typically also implemented as
a REMOTE OBJECT. All clients have access to this NAMING system by
default; that is, its location and reference is well known and
configurable. SERVER APPLICATIONS can register (“bind”) the REMOTE
OBJECTS they wish to publish in NAMING. Thus clients only need to
know the symbolic names of the REMOTE OBJECTS required to find out
the GLOBAL OBJECT REFERENCE.

Process B

Process A

Client Remote
Object

Process C
Naming
Object

Server
Application 1) <<create>>

2) bind(someName, GlobalObjectReference)

3) lookup(someName)

Global
Object Ref

Machine Boundary

M
ac

hi
ne

 B
ou

nd
ar

y

4) invoke an operation

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 20 -

Framework Singleton

Provide a global SINGLETON that serves as a FACADE to the underlying
distributed objects framework. It serves as the application developer’s
single access point and administration API to the framework and can be
used as a REMOTE FACTORY for other objects, supplied by the
distributed object system, the developer might need access to.

Server Process

Server
Application

Framework
Singleton

1) init()

Invoker

3) <<create>>

Naming4) getReference("Naming")

2) read and interpret config params

5) ...

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 21 -

Server Application

Provide a SERVER APPLICATION whose job it is to initialize the
distributed object system infrastructure, if it is not already initialized by
another SERVER APPLICATION. The SERVER APPLICATION can do this
by instantiating and configuring the FRAMEWORK SINGLETON.
Moreover, it resolves initial, pre-configured references such as NAMING
and instantiates REMOTE OBJECTS, or prepares for instantiation,
according to the selected instantiation strategy.

Server Process

Remote
ObjectServer

Application

Framework
Singleton

1) init()

2) <<create>>

3) activate(realObjectInstance)

Naming

4) bind(....)

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 22 -

Basic Remoting Patterns

SERVER APPLICATION

INVOKER

ins

ta
nt

iat
es

instantiates REMOTE OBJECT

GLOBAL OBJECT REFERENCE

adressable by
dispatches to

OBJECT ID
identified by

Client

CLIENT PROXY

invokes operations on communicates with

MARSHAL-BY-VALUE

uses uses

REMOTING ERROR

ha
nd

les

raises

NAMING

registers R
em

ote

O
bject in

looks up Rem
ote Objects in

stores indexed by name

co
nta

insFRAMEWORK SINGLETON

instantiates

INTERFACE DESCRIPTION

im
pl

em
en

ts

im
pl

em
en

ts

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 23 -

Basics - CORBA

• The basic concept in CORBA are, of course, Remote
Objects.

• Their Interface Description is done in CORBA IDL, a
descriptive language that looks like C/C++.
• IDL interfaces have modues (namespaces), interfaces,

operations, exceptions, structs, and more.

• Implementations, so-called servants, can be provided in
many different programming languages (e.g. C/C++, Java,
Python, Ada, Eiffel) and on different operating systems
(different Unixes, Windows *, Java, ..)

• A Client Proxy is automatically generated by the IDL
compiler for a specific language. It is a normal
programming language class/object.

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 24 -

Basics - CORBA

• The Invoker is called Skeleton in CORBA terminoloy. It is
also automatically generated by the IDL compiler delivered
with the ORB.

• CORBA provides exceptions to report error conditions.
Remoting Errors are expressed using specific
standardized CORBA exceptions.
• A developer can also define their own application specific

exceptions for the operations declared in the IDL interface.
• CORBA exceptions contain a flag completed that specifies

whether the operation on the server has been completed or
not (or maybe ?)

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 25 -

Basics - CORBA

• There are different ways to transport (marshal) data by
value:
• Primitive (CORBA-) data types are always transported by

value; the ORB can do that natively
• Developers can define structs as part of their IDL interfaces;

they are marhalled by value
• There are some limitations with regard to structs – details ommitted

• CORBA also provides the so-called Objects-By-Value facility,
which provides marshal-by-value for objects.

• In contrast to structs, OBV valuetypes can implement IDL interfaces

• Note that there is currently a mapping from OBV valuetypes to
XML DOM in progress.

• CORBA objects (instances of implementations of IDL
interfaces) are always marshalled by reference.

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 26 -

Basics - CORBA

• Every CORBA object (instance!) has its own unique Object
ID. The format is not standardized, depends on the ORB
and is opaque to clients.

• There are different kinds of Object References,
depending on the underlying transport protocol (which is
exchangeable).
• For the standard protocol IIOP there are the so-called IOR

(Interoperable Object References) which can be serialized to a
string.

• IORs contain the object server‘s adress, and information on
the port the server uses.

• Other object references may contain other „endpoint
information“.

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 27 -

Basics - CORBA

• CORBA provides a two-stage Naming facility:
• Generally, objects are named using the CORBA Naming

Service, a service defined in IDL that can be accessed just like
any other Remote Object. It maps structured names to object
references.

• Well-known objects (such as the Naming service itself or the
current transaction) can be resolved by the ORB itself.

• Some are Pseudo Objects, such as the current transaction
• Others (like Naming) have to be configured in the ORB manually (bootstrapping

problem).

• There is also a CORBA Object Trading Service defined
allows clients to lookup objects based on properties using
more or less complex queries.

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 28 -

Basics - CORBA

• To access the ORB and ist services, CORBA provides a
Framework Singleton, typically accessible through the
ORB class (depends on the language mapping)

• Server Applications are programs in the server‘s
language that typically initialize the ORB, lookup specific
well-known objects (such as Naming), instantiate remote
objects and publish them in Naming.

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 29 -

Basics - .NET

• The basic concept in .NET Remoting are, of course, also
Remote Objects.

• Normal .NET classes become remote objects by letting
them implement the MarshalByRefObject interface.

• Separate Interface Descriptions are not neccessary.
However, it is possible and advisable (to simplify
deployment) to use separately defined interfaces.
• Normal .NET language interfaces are used here.

• The Client Proxy is dynamically generated at runtime
using .NET‘s reflective features. No manual code generation
step is neccessary.
• This is only possible because all .NET programs run inside the

CLR infrastructure that can take care of these issues.

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 30 -

Basics - .NET

• The Invoker is an intrinsic part of the .NET CLR
infrastructure. Again, no code generation is necessary.

• .NET also provide a proper exception concept:
• Remoting Errors all inherit from SystemException.
• There is a convention to let application errors inherit from

ApplicationException.

• Objects that should be marshalled by value need to have
the [Serializable] attribute.
• You can also implement the ISerializable interface in addition

to that to allow customized serialization support.
• The serialization format depends on the currently configured

formatter (can be binary, XML, or something else).

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 31 -

Basics - .NET
• .NET remote object instances have unique IDs:

• Global Object References contain communication endpoint
info and the target object ID.

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 32 -

Basics - .NET

• Naming is based on the host name and an object name
that is unique with respect to its host.
• The hostname identifier is dependent on the undelying

transport protocol
• The object name is basically a simple string, possible

structured using /
• Client need to know the server and the protocol to look up an

object

• There is no single Framework Singleton, however there
is a set of helper classes (such as RemotingConfiguration,
ChannelServices) which the client can use to configure and
initialize the framework.

• Server Applications are .NET programs that initialize and
configure the remoting infrastructure, instantiate remote
objects and publish them in Naming.

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 33 -

Contents
• Introduction

• Patterns and Technology Projections

• Basic Remoting Patterns
• CORBA Projection
• .NET Remoting Projection

• Lifecycle Management
• CORBA Projection
• .NET Remoting Projection

• Providing Additional Services
• CORBA Projection
• .NET Remoting Projection

• Building High-Performance Servers
• CORBA Projection
• .NET Remoting Projection

• Asynchronous Operations
• CORBA Projection
• .NET Remoting Projection

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 34 -

Remote Object Lifecycle Management

PRECONFIGURED INSTANCE

re
qu

ire
s

requires

op
tim

iz
es

ON-DEMAND ACTIVATION

SINGLE-CALL ACTIVATION

op
tim

iz
es

INSTANCE POOLING

CLIENT ACTIVATION

op
tim

iz
es

PASSIVATION

LEASES

LIFECYCLE OPERATIONS

re
qu

ire
s might use

FACTORY

requires

 might use

migh
t u

se

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 35 -

Pre-Configured Instances

Provide PRE-CONFIGURED INSTANCES that are well-known and stable.
These instances are manually created in the SERVER APPLICATION
during startup, and they live until the SERVER APPLICATION is shut
down. All invocations targeting the service of a specific PRE-
CONFIGURED INSTANCE are actually handled by the same object.

Server Process

Remote Object

ID: 4711

Server
Application

1) <<create>>
M

ac
hi

ne
 B

ou
nd

ar
y

Process A

Client

Process B

Client

2) <<invoke>>

3) <<invoke>>

n-1) <<shutdown>>

n) <<destroy>>

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 36 -

On-Demand Activation

Provide ON-DEMAND ACTIVATION for REMOTE OBJECTS. Logically, the
REMOTE OBJECTS are accessible all the time, but in reality they are
only activated when a request for the object reaches the SERVER
APPLICATION. Make sure that the objects are deactivated after a
certain amount of time or based on some other criteria, for example
using LEASES.

Process A

Client

Server Process

Remote Object

Server
Application

Invoker

Process B

Client M
ac

hi
ne

 B
ou

nd
ar

y2) <<invoke>>

3) <<invoke>>

2a) <<create>>
2b) <<invoke>>

3a) <<invoke>>1) <<create>>

after a timeout::
n) <<destroy>>

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 37 -

Single Call Activation

For each incoming invocation, create a new, clean instance of the
REMOTE OBJECT. Let it handle the request, perhaps accessing shared
resources, and then destroy the instance right away.

Process A

Client

Server Process

Remote Object

Server
Application

1) <<create>>

Invoker

Process B

Client M
ac

hi
ne

 B
ou

nd
ar

y2) <<invoke>>

3) <<invoke>> Remote Object

2a) <<create>>
2b) <<invoke>>
2c) <<destroy>>

3a) <<create>>
3b) <<invoke>>
3c) <<destroy>>

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 38 -

Instance Pooling

Do not instantiate new REMOTE OBJECTS for each invocation. Instead
take an “idle” pre-allocated instance from a pool. After servicing the
request, the instance is put back into the pool. The pool is filled with a
pre-configured number of identical instances during startup of the
SERVER APPLICATION, perhaps growing and shrinking at runtime.

Server Process
Instance Pool

Remote ObjectRemote ObjectRemote ObjectRemote ObjectRemote Object

Process A

Client

Server
Application

Invoker

Process B

Client M
ac

hi
ne

 B
ou

nd
ar

y

2) <<invoke>>

3) <<invoke>>

Remote Object

3b) <<invoke>>
3c) putBack()

1) <<createInstances>>

2a) getInstance()

3a) getInstance()
2b) <<invoke>>
2c) putBack()

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 39 -

Client Activation

Activate a REMOTE OBJECT on an explicit client request. The
instantiated object has state that can be changed by the client. Make
sure that the instance is removed when it is no longer needed, for
example by using LEASES. To allow the client to create instances
explicitly, the client needs remote access to a REMOTE FACTORY object.

Server ProcessProcess A

Client

Server
Application

Remote
Object

Remote
Factory

1) <<create>>

M
ac

hi
ne

 B
ou

nd
ar

y2) newInstance(params...)

Process B

Client

3) <<invoke>>

4) <<invoke>>

5) newInstance()
Remote
Object

2b) <<create>>(params...)

5b) <<create>>

6) <<invoke>>

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 40 -

Leases

Associate a LEASE with each REMOTE OBJECT. Whenever the LEASE
expires, the SERVER APPLICATION is free to discard the corresponding
REMOTE OBJECT. The clients needs to actively make sure that the
LEASE does not expire as long as it really needs the object; thus, it has
to renew the LEASE from time to time.

Server ProcessProcess A

Client

Server
Application

Remote Object
Invoker

M
ac

hi
ne

 B
ou

nd
ar

y

2) <<invoke>>

1) <<create>> 2b) <<invoke>>
2c) <<renew lease>>

3) <<renew lease>>

after lease expired:
4) <<destroy>>

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 41 -

Passivation

Whenever the SERVER APPLICATION needs to free resources, but
cannot destroy enough active instances, passivate those CLIENT-
ACTIVATED objects that have not been accessed for a while. Store their
state persistently, and when a new request arrives for such an instance,
resurrect the instance based on the previously stored persistent state.
Use LIFECYCLE OPERATIONS to notify the instances of the respective
events.

Server ProcessProcess A

Client

Server
Application

Remote
Object

M
ac

hi
ne

 B
ou

nd
ar

y

Server
Stub

1) <<invoke>> 4711

3) storeState(4711,)

4) <<invoke>>

after a timeout:
2a) passivate()
2b) <<destroy>>

4a) <<create>>
4b) init(4711, ...)

5) <<invoke>>
Remote
Object

4711

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 42 -

Remote Factory

Provide clients with a REMOTE FACTORY object that provides operations
to allow clients to “request” the respective type of CLIENT-ACTIVATED
objects. Factories are usually well-known REMOTE OBJECTS, thus they
are usually PRE-CONFIGURED INSTANCES and registered in NAMING.

Process B

Server ProcessProcess A

Client

Server
Application

Remote ObjectRemote
Factory

1) <<create>>
M

ac
hi

ne
 B

ou
nd

ar
y

2) newInstance(params...)

Client
3) newInstance()

Remote Object

2b) <<create>>(params...)

3b) <<create>>

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 43 -

Lifecycle Operations

Require that a REMOTE OBJECT provides specific lifecycle operations
that allow the SERVER APPLICATION to inform instances about state
changes in their lifecycle. How these operations are called, what the
object should do in them, and when they are called depends on the
lifecycle actually used, and thus primarily on the activation strategy.

Server ProcessProcess A

Client

Server
Application

Remote
Object

M
ac

hi
ne

 B
ou

nd
ar

y Invoker

4711

1b) storeState(4711,)

1a) passivate()after a timeout:
1) <<passivate>> 4711

after a while:
2) <<invoke>>

1c) <<destroy>>

Remote
Object

4711
2a) <<create>>

2b) loadState(4711)

2c) activate(4711, state)

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 44 -

Remote Object Lifecycle Management

PRECONFIGURED INSTANCE

re
qu

ire
s

requires

op
tim

iz
es

ON-DEMAND ACTIVATION

SINGLE-CALL ACTIVATION

op
tim

iz
es

INSTANCE POOLING

CLIENT ACTIVATION

op
tim

iz
es

PASSIVATION

LEASES

LIFECYCLE OPERATIONS

re
qu

ire
s might use

FACTORY

requires

 might use

migh
t u

se

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 45 -

Lifecycle Management - CORBA

• In CORBA there is a distinction between a logical object
(identified by ist Object ID and reference) and the
programming language-level object that actually handles
requests for a logical object (the so-called servant).

• In CORBA, the lifecycle of instances depends on various
policies that can be set for each Object Group
(represented by a hierarchy of POAs, Portable Object
Adapters).

• Depending on the policies, the associations between
objects and servants changes over time.

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 46 -

Lifecycle Management - CORBA

• POA policies include:
• Lifespan: Determines how long an instance lives

• Transient
• Persistent

• Request Processing: Determines which servants handle
requests for an object (

• USE_ACTIVE_OBJECT_MAP_ONLY
• USE_DEFAULT_SERVANT
• USE_SERVANT_MANAGER (kind of user-defined policies)

• ObjectID to Servant Association: How is the relationship
between servants and objects managed once a request is
handled

• RETAIN
• NON_RETAIN

• Implicit Activation: Determines whether servants should be
activated automatically

• IMPLICIT ACTIVATION
• NO_IMPLICIT ACTIVATION

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 47 -

Lifecycle Management - CORBA

• POA policies continued:
• Thread: Determines how many threads can be „in“ a servant

at the same time
• ORB_CTRL_MODEL: several threads can be in a servant, requires thread-safe servants
• SINGLE_THREAD_MODEL: all requests for objects in that POA are handled sequentially

(to control threading, there can be several „parallel“ POAs!)

• Note that there can be several POAs in an application, each
managing different object (instances).

• The different (server-determined) lifecycles mentioned in
the patterns can be emulated by setting the appropriate
policies and sometimes implementing a custom servant
manager.
• Preconfigured Instances
• On-Demand Activation
• Single Call Activation
• Instance Pooling

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 48 -

Lifecycle Management - CORBA

• Client Activation must be programmed manually by
providing a server-activated Factory object that
instantiates other objects on the server and returns their
references.

• By default, CORBA does not support any form of distributed
reference counting or leasing. However, a custom servant
manager implementation can be used to achieve this
behaviour.

• Passivation is also not supported by CORBA by default,
but again, a custom servant manager helps.

• If a specific implementation of a custom servant manager
requires Lifecycle Operations, they have to be provided.
By default, none are required.

• Note that CCM provides more support here!!

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 49 -

Lifecycle Management - .NET

• .NET distinguishes server- and client-activated objects.

• For server-activated objects, .NET provides
• On-Demand Activation with singleton semantics

(WellKnownObjectMode.Singleton) or
• Single Call Activation (WellKnownObjectMode.SingleCall).
• Preconfigured Instances are also possible using the

RemotingServices.Marshal()-operation.

• .NET also provides Client-Activation. There are three
ways for clients to instantiate a client-activated object on
the server:
• The client‘s CLR can be configured to allow client to

transparently use the new operator.
• Clients can use a special generic factory
• Developers can hand-craft a server-activated Factory that

activates other objects on request.

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 50 -

Lifecycle Management - .NET

• Instance Pooling is not supported on the .NET remoting
level.

• NET supports leases. Each instance has TTL attribute
internally which is checked regularly by the LeaseManager.

• There is an initial TTL and a increment to which the TTL is
set whenever an invocation for the instance arrives.

• When the TTL is zero, the LeaseManager contacts a
(possibly remote) sponsor to ask for a further increase of
the lease.

• There is a generic Remote Factory for client-activated
objects, however, a hand-crafted one has several
advantages.

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 51 -

Lifecycle Management - .NET

• Because of the very simple lifecycles, there are no
Lifecycle Operations necessary.
• In contrast to CORBA it is also not possible to customize this

feature (at least, there is no documented feature to do so).

• For more advanced lifecycle optimizations (incl. Pooling,
e.g.) objects have to be deployed to COM+. But that‘s
another story...

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 52 -

Contents
• Introduction

• Patterns and Technology Projections

• Basic Remoting Patterns
• CORBA Projection
• .NET Remoting Projection

• Lifecycle Management
• CORBA Projection
• .NET Remoting Projection

• Providing Additional Services
• CORBA Projection
• .NET Remoting Projection

• Building High-Performance Servers
• CORBA Projection
• .NET Remoting Projection

• Asynchronous Operations
• CORBA Projection
• .NET Remoting Projection

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 53 -

Additional Services

INVOCATION CONTEXT

INVOKERINVOCATION INTERCEPTOR

ac
ce

ss
es

allows for

invokes and manages

SESSION

requires

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 54 -

Invocation Context

Provide an INVOCATION CONTEXT, an extensible data structure which
is passed along each method call. The CLIENT PROXY and the INVOKER
create or use this data structure. Depending on the services provided
by the SERVER APPLICATION, different contextual data is transported in
the invocation context.

Process BProcess A

Client
Proxy

Client

Invoker

Remote
Object

1) <<invoke>>

2) <<add context data>>

M
ac

hi
ne

 B
ou

nd
ar

y

3) transport remotely

name & arguments

invocation context

4) <<extract data>>
5) <<use data>>

6) <<invoke>>

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 55 -

Session

Provide client SESSIONS in the SERVER APPLICATION. Such a SESSION
can contain arbitrary state information on behalf of a client. A REMOTE
OBJECT should be given access to the session that belongs to the
calling client, transparently. The client, as well as the REMOTE OBJECT,
should not be involved with SESSION management.

Process B

Invoker

Process A

Client

Stateless
Object

M
ac

hi
ne

 B
ou

nd
ar

y

1) <<invoke>>

2a) <<retrieve session>>

3) setSession(s)

4) <<invoke>>

Server
Application

SessionSessionSession

2b) get Session(s)

5) <<access session>>

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 56 -

Invocation Interceptors

Provide a hook in the INVOKER to plug in interceptors. An interceptor
has operations that are called before and after a method invocation on
a REMOTE OBJECT, and it thus has the chance to add whatever
functionality it likes. The interceptor is provided with all the necessary
data on the invocation just made by the client, such as method,
parameters, target instance, and INVOCATION CONTEXT.

Process B

Invoker

Process A

Client

Remote
Object

M
ac

hi
ne

 B
ou

nd
ar

y

2) beforeInvocation(name,params,...)

Interceptor1

Interceptor2

Interceptorn

...3) beforeInvocation(...)

4) beforeInvocation(...)5) <<invoke>>

1) <<invoke>>

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 57 -

Additional Services

INVOCATION CONTEXT

INVOKERINVOCATION INTERCEPTOR

ac
ce

ss
es

allows for

invokes and manages

SESSION

requires

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 58 -

Additional Services - CORBA

• CORBA‘s standard IIOP transport protocol provides for
transporting Invocation Contexts. For example, they are
used by the security and transaction services.

• Inserting data into the context is a rather low-level work
that is accomplished by using Invocation Interceptors.

• The CORBA standard provides standardized interfaces for
interceptors (so-called portable interceptors). They can be
used on the server as well as on the client.

• Sessions are not supported natively. However,
transporting session IDs can be done using the invocation
contexts together with interceptors, and a custom servant
manager to provide servants with the current session
object.

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 59 -

Additional Services - .NET

• .NET Remoting also provides Invocation Contexts, they
are called CallContext here.

• Clients and Object implementations can use static
operations on the CallContext class to insert/retrieve
objects
• These objects have to be serializable and implement the

ILogicalThreadAffinitive (marker) interface.

• When remote objects are deployed in the webserver
(essentially as a webservice, then) then automatic Session
Management is available – using static operations on the
Session class.

• Note that it is very easy to create your own session
management using CallContexts.
• However, there is no automatic assignment of the session to

the remote object – the implemetation has to do a manual
lookup.

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 60 -

Additional Services - .NET

• The concept of Invocation Interceptors is available in
.NET, although they are not technically interceptors.
• Invocation messages in .NET are passed through a stack of so-

called sinks at the server and at the client (this resembles
TCP/IPs layered architecture).

• Each sink has a specific task to fulfil.
• Using specific factories, it is possible to insert custom sinks at

different points in the server‘s or client‘s invocation and
message processing chain.

• Using custom sinks and the CallContext class together,
provides a simple way to transparently transport and
provide additional data with method calls, such as
principals, keys or transaction IDs.

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 61 -

Contents
• Introduction

• Patterns and Technology Projections

• Basic Remoting Patterns
• CORBA Projection
• .NET Remoting Projection

• Lifecycle Management
• CORBA Projection
• .NET Remoting Projection

• Providing Additional Services
• CORBA Projection
• .NET Remoting Projection

• Building High-Performance Servers
• CORBA Projection
• .NET Remoting Projection

• Asynchronous Operations
• CORBA Projection
• .NET Remoting Projection

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 62 -

High-Performance Servers

LIFECYCLE MANAGER

inv
ok

es
groups

m
ar

sh
al

s
at

tr
ib

ut
es

determines

manages lifecycle of
REMOTE OBJECT

CUSTOM MARSHALLERPROTOCOL PLUG-IN
cooperates with

SERVER STUB

LIFECYCLE OPERATIONS

 provides

OBJECT GROUP

determines

determines

PSEUDO OBJECT

for
ward

s to provides

access to

QOS OBSERVER

notifies, updates

no
tifi

es
, u

pd
ate

s

THREAD SPECIFIC

DATA

stores INVOCATION

CONTEXT in

BROKER

handles

com
m

unication

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 63 -

Broker

Provide a central network communication component, called a BROKER.
A BROKER handles connections, threading and event management,
typically using efficient, optimized mechanisms of the underlying
operating system. Once a request is received from the network, it is
forwarded to the respective INVOKER for further processing.

Server Process

Remote
Object

Remote
Object

Remote
Object

Remote
Object

Invoker

Invoker

M
ac

hi
ne

 B
ou

nd
ar

y

Client

Client

Client
Remote
Object

Remote
Object

Remote
Object

Broker

connection
pool

thread
pool

OS APIs

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 64 -

Lifecycle Manager

Provide an API in your FRAMEWORK SINGLETON for developers to plug-
in custom developed LIFECYCLE MANAGERS. The instantiation and
eviction patterns, described earlier, can be provided in the form of
default implementations for the LIFECYCLE MANAGER. Make sure the
LIFECYCLE MANAGER is called at the appropriate times by the BROKER
or the SERVER STUB. That is, let it be based on (extensible) event
raised as LIFECYCLE OPERATIONS.

Server Process
Remote
Object

Server
Application

Lifecycle
Manager

1a) <<create>>

2a) <<invoke>>

2c) activate()
Invoker

2b) invocationArrived(objID, ...)

2d) <<invoke>>

2e) invocationDone(objID, ...)
2f) deactivate()

Framework
Singleton

1b) registerLifecycleManager(...)

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 65 -

Custom Marshaller

Make the marshaller in your SERVER APPLICATION and its respective
conuterpart in the client extensible and/or exchangeable. Provide well-
defined interfaces to allow developers to implement their own CUSTOM
MASHALLERS. Make sure the INVOKER or BROKER calls the respective
marshaller at the appropriate times.

Server Process 3) <<invoke>>
Remote
Object

1) <<invoke>> Invoker

complex
Type

complex
Type

Custom
Marshaller

2) serialize(complexObject)

serializedVersion

serializedVersion

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 66 -

Protocol Plug-In

Provide an API to plug in different protocol adaptors into the BROKER.
They are responsible for handling the low-level network issues in
cooperation with the operating system. Expose the PROTOCOL PLUG-
INS to the application developer in order to allow for tight control and
specific optimizing configurations.

Server ProcessProcess B

Client

Remote
Object

M
ac

hi
ne

 B
ou

nd
ar

y

1) <<invoke>>

Client
Proxy

Invoker

4) <<invoke>>

2) <<transport>>

3c) cacheConnection(con)

Broker
3b) <<invoke>>

3a) getThread()

Server
Application

Protocol
Plug-In

0) create &
configure

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 67 -

Object Group

Provide OBJECT GROUPS which group all REMOTE OBJECTS that have a
set of common properties, say, the same QoS proerties. A SERVER
APPLICATION can have several OBJECT GROUPS at the same time, and,
as a variant, each object may be part of different OBJECT GROUPS. All
non-individual configuration, such as providing LIFECYCLE MANAGER,
PROTOCOL PLUG-IN, etc., is done on OBJECT GROUPS level.

Server Process

Object Group 1 - Embedded

Remote
Object 1

Remote
Object 2

Lifecycle Manager

Custom Marshaller

Protocol Plug-In

C-C InterceptorsC-C InterceptorsInterceptors

Object Group 2 - Gateway

Remote
Object 3

Lifecycle Manager Protocol Plug-In

Interceptors

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 68 -

Pseudo Object

Provide PSEUDO OBJECTS that have a behavior and interface of
REMOTE OBJECTS provided by the SERVER APPLICATION. Make them
available through NAMING, just as any other REMOTE OBJECT. By not
specifying a GLOBAL OBJECT REFERENCE for them, you can make sure
that they are not accessible externally.

Server Process

Server Application

Naming
Object
Group

1) lookup("group1")

Lifecycle
Manager

3) setPassivation(NONE)

2) getLifecycleManager()

4) start()

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 69 -

QoS Observer

Provide hooks for application developers to be selectively notified of
important events that are related to quality of service characteristics. In
addition, use meta objects (instances of PSEUDO OBJECTS) associated
with the REMOTE OBJECTS, INVOKER, and BROKER, etc. that provide
information about timing and bandwidth.

Server Process

Invoker

Server Application

QoS
Observer

0) registerObserver(...)

Remote
Object

1) <<invoke>> Meta
Object

1b) started()

1c) <<invoke>>

1d) done()

1e) getDuration()
1f) getSize()

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 70 -

Thread-Specific Data

Associate context data like INVOCATION CONTEXT with the thread in
which the request is served. This allows REMOTE OBJECTS, their
INVOKERS, and any other entity in the call chain to access the context
data, e.g. in the INVOCATION CONTEXT, without any additional
overhead or any in-between code.

Server Process

Remote
Object

Invoker
1) <<invoke>>

2) <<create>>

Context
Data

3) attach(contextData)

Remote
Object

4) <<invoke>>

5) <<invoke>>

4b) <<query context>> 5b) <<query context>>

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 71 -

High-Performance Servers

LIFECYCLE MANAGER

inv
ok

es
groups

m
ar

sh
al

s
at

tr
ib

ut
es

determines

manages lifecycle of
REMOTE OBJECT

CUSTOM MARSHALLERPROTOCOL PLUG-IN
cooperates with

SERVER STUB

LIFECYCLE OPERATIONS

 provides

OBJECT GROUP

determines

determines

PSEUDO OBJECT

for
ward

s to provides

access to

QOS OBSERVER

notifies, updates

no
tifi

es
, u

pd
ate

s

THREAD SPECIFIC

DATA

stores INVOCATION

CONTEXT in

BROKER

handles

com
m

unication

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 72 -

High-Performance Servers - CORBA

• The Broker is, as the name CORBA implies, the central backbone
of CORBA applications.

• Implementations, and thus, performance, scalability and
efficiency vary widely among CORBA implementations.

• There are several high-performance ORBs for different scenarios
such as embedded, enterprise or desktop.

• Typical implementations for Brokers are based on the Reactor,
Proactor, Half-Sync/Half-Async und Leader-Followers patterns
(see POSA2).

• RT CORBA implementation lets you customize Broker behavior
with regard to priorities, threads, connections and memory usage.

• Thread-Local Data is used in ORB implementations to enhance
local (non-remote) performance and to associate out-of-band data
with servants.

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 73 -

High-Performance Servers - CORBA

• The Lifecycle Manager is basically the POA in CORBA.
• POAs can be hierarchically arranged.
• The POA can be configured with a large set of policies to

customized its behavior
• A POA manages a limited set of objects; naturally those that

have similar policies.
• It is possible to configure a POA with a custom servant

manager. This allows customized management of objects‘
lifecycles.

• Custom Marshallers cannot be easily implemented in
CORBA. However,
• Interceptors can be used to modify messages
• CORBA‘s underlying transport protocol can be exchanged,

including the marshalling parts.

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 74 -

High-Performance Servers - CORBA

• Protocol Plug-Ins are not directly supported (i.e. the
interfaces for plugging in different protocols are not
standardized).
• However, it is possible to exchange the communication

protocol used by CORBA (GIOP, IIOP, native).
• Some protocol plug-ins (especially in RT CORBA) allow low-

level control and customization of connection management

• Providing different Object Groups with different lifecycle
parameters is provided in CORBA by using several
(differently configured) POAs in a single application.

• CORBA also provides (some) Pseudo-Objects. They are
called locality-constraint objects.

• Standard-CORBA does not provide QoS-Observers,
however, there are RTCORBA implementations that provide
this feature (such as QuO).

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 75 -

High-Performance Servers - .NET

• In .NET the Broker is basically integrated into the CLR –
the CLR is the Broker. There are not many ways how its
behavior can be controlled or customized.

• In contrast to CORBA, there is only one implementation
(the CLR) and not many different implementations from
different vendors.

• Because lifecycles are so trivial, there is no concept of a
lifecycle manager (except for the lease concept).

• Marshalling can be customized by replacing the formatter
associated with a specific channel. There are two default
formatters:
• Binary formatter
• XML formatter

• Developers can create their own formatters.

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 76 -

High-Performance Servers - .NET

• Also, the communication protocol can be exchanged, true
Protocol Plug-Ins are available. Again, there are two
defaults:
• TCP/IP, and
• HTTP

• Developers can create their own protocols.

• The concept of Object Groups is not available. The same
is true for Pseudo Objects.

• QoS Observers are not supported, but custom sinks can
be used in some cases.

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 77 -

Contents
• Introduction

• Patterns and Technology Projections

• Basic Remoting Patterns
• CORBA Projection
• .NET Remoting Projection

• Lifecycle Management
• CORBA Projection
• .NET Remoting Projection

• Providing Additional Services
• CORBA Projection
• .NET Remoting Projection

• Building High-Performance Servers
• CORBA Projection
• .NET Remoting Projection

• Asynchronous Operations
• CORBA Projection
• .NET Remoting Projection

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 78 -

Asynchronous APIs

FIRE AND FORGET CATCH AND RETURN
relatively similar

POLL OBJECT RESULT CALLBACK
can use

client

queries

provides

MESSAGE QUEUE

supports
supports

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 79 -

Fire and Forget

Provide FIRE AND FORGET operations. When called, the CLIENT PROXY
forwards the message over the network in a new thread, returning
control to the caller immediately. This behaviour is transparent for the
client because only the (usually generated) CLIENT PROXY needs to
change its implementation.

Process A Server Process

Invoker

M
ac

hi
ne

 B
ou

nd
ar

y

Client

Client
Proxy

1) <<invoke>>

2) <<create>>

3) <<return>>

1) <<invoke>>

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 80 -

Catch and Return

Provide CATCH AND RETURN semantics for remote operations. The
client calls an operation. It is then synchronously dispatched to the
SERVER APPLICATION which creates a new thread to invoke the
operation on the REMOTE OBJECT. After creating the new thread, the
INVOKER returns control to the remote client directly.

Server Process
Remote
Object

2) <<create>>

Process A

InvokerClient

M
ac

hi
ne

 B
ou

nd
ar

y

1) <<invoke>>

4) <<invoke>>

3) <<return>>

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 81 -

Poll Object

Provide a way to call the remote operation that returns a POLL OBJECT
immediately. The client can use this POLL OBJECT to query the result,
or block waiting until the result becomes available. It is called POLL
OBJECT because it offers a “result available” method for the client, so
that the client can poll the object from time to time to see whether the
result is already there. In the meantime, the client can go on with
processing.

Process A Server Process

Invoker

M
ac

hi
ne

 B
ou

nd
ar

y

Client
Client
Proxy

2) <<create>>
4) <<invoke>>

result

1) <<invoke>>

Poll
Object

3) resAvail() > false

5) storeResult(result)
6) resAvail() > true

7) getResult()

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 82 -

Result Callback

Provide a callback-based interface for remote invocations. Upon
invocation, the client passes a callback object to the remoting
framework and the invocation returns directly. Once the result is
available, the framework calls an predefined operation on the callback
object, passing it the result of the invocation, and the callback object
knows how to handle the result. Note that the callback object and the
client may be identical instances; that is, the callback-based interface is
added then to the client itself.

Process A Server Process

Invoker

Client

Callback
Object1) <<create>>

Client
Proxy2) <<invoke>>

3) <<create>>

4) <<invoke>>

result5) finished(result)

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 83 -

Message Queue

Build a MESSAGE QUEUE on client and server side. A messaging system
handles the MESSAGE QUEUES. It allows for adding messages to the
queue and it tries to sent the messages periodically, so that temporal
failures of network or server process can be tolerated. Each remote
invocation, sent via the MESSAGE QUEUE, is packaged as a message;
that is, header information for the messaging system are added (and
removed on reception).

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 84 -

Asynchronous APIs

FIRE AND FORGET CATCH AND RETURN
relatively similar

POLL OBJECT RESULT CALLBACK
can use

client

queries

provides

MESSAGE QUEUE

supports
supports

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 85 -

Asynchronous APIs - CORBA

• In the beginning, CORBA was basically only synchronous;
over time, asynchronous features have been added.

• Fire and Forget semantics can be achieved in CORBA by
declaring an operation in an IDL interface to be oneway.
• The client ORB processes the invocation asynchronously.

• Catch and Return semantics are not supported by CORBA
natively. The functionality has to be implemented by the
object implementation or by modifying the generated
skeleton code.

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 86 -

Asynchronous APIs - CORBA

• With CORBA 3, the AMI (Asynchronous Messaging)
specification allows for more advanced asynchronous
features:
• Poll Objects and Result Callbacks are supported.
• Message transport can be over different messaging

middlewares – routers, persistent queues, etc. included.
• Asynchronucity is purely client-centric: servers and object

implementations do not need to care and technically still
support only synchronous calls.

• Technically, the client developer uses the IDL interfaces and
generates a different set of interfaces and stubs from them
which provide asynchronoucity.

• The generation process is based primarily on naming conventions and a set of interfaces

• As mentioned, AMI messages can be transported over an
arbitrary set of Message Queues and routers with
different quality of service guarantees.

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 87 -

Asynchronous APIs - .NET

• .NET Remoting provides a rather powerful and convenient
API for asynchronous invocations.

• However, it‘s not easily possible to change the underlying
transport – it‘s basically still the normal RPC.
• Only in DCOM/COM+ is it possible to provide real messaging

using COM+ Queued Components and MSMQ.

• As in CORBA, an operation can be declared oneway to sport
Fire and Forget semantics.

• Catch and Return has to be implemented manually, too.

• All other kinds of asynchronous operations in .NET are
based on delegates, a kind of strongly typed, OO function
pointer.

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 88 -

Asynchronous APIs - .NET

• Poll Objects are supported in .NET:
• The invocation on the delegate returns a future object.
• You can poll on this future object, or wait (block) until the

result is available.

• Alternatively, you can use Result Callbacks.
• Upon invocation on the delegate, you can register a callback

which is called by the runtime when the result becomes
available.

• Again, the concept of Message Queues is not there in
.NET Remoting.

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 89 -

Contents
• Introduction

• Patterns and Technology Projections

• Basic Remoting Patterns
• CORBA Projection
• .NET Remoting Projection

• Lifecycle Management
• CORBA Projection
• .NET Remoting Projection

• Providing Additional Services
• CORBA Projection
• .NET Remoting Projection

• Building High-Performance Servers
• CORBA Projection
• .NET Remoting Projection

• Asynchronous Operations
• CORBA Projection
• .NET Remoting Projection

OO Remoting – Net.ObjectDays 2002

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e www.voelter.de © 2002 Markus Völter. - 90 -

The End.

?Thanks
?Questions?
?Comments?
?Criticism?

Markus Völter
voelter@acm.org
www.voelter.de

