
DOMAIN ANALYSIS
F O R P R A C T I T I O N E R S

2024

Markus Voelter
 voelter.de

http://voelter.de/

DOMAIN ANALYSIS
F O R P R A C T I T I O N E R S

2024

Based on the book of
the same name:

http://voelter.de/htuaa

There‘s a discount
code for the PDF
version at Leanpub:

https://leanpub.com/markusvoelter-htuaa/c/oop23
(expires end of Feburary)

INTRODUCTION
I

DOMAIN ANALYSIS
What is Domain Analysis

As the book title says:

An approach, a set of practices,
to understand almost anything.

J

DOMAIN ANALYSIS
What is Domain Analysis

A domain is an area of interest and expertise
 often owned by a particular organisation.

There are usually people who are experts in the domain,
they understand large parts of the subject matter.

Domain Analysis is about capturing this subject matter
outside the brains of the experts to:

- make it accessible to a wider range of people
- make it accessible to software tools.

Accessible to Software Tools“” data structures
constraints & rules
semantics
models, languages

{
APIs
Software Structures
Checkers, Compilers & Interpreters
UIs & Simulators
Transport Protocols

{
XML/Json schemas
UML diagrams
Meta models
DSLs

} Things with properties and
relationships, plus static and
dynamic semantics.

Domain Language
Models/

Programs/
Configurations

Subject Matter Expert

Software System

use create/modify/
test/run

feedback

Domain Expert

understand
deeply

Software Folks

abstract

build

collaborate, iterate

co
ve

rs O
PTIM

IZE

Which is very different from …..

Domain

Subject Matter Expert

Understand

Software System

Requirements
Prose

write

Software Folks

create
understand?

Insurance Products
Telecom Pricing Policies
Tax Calculations
Salary Calculations
Tachograph Rules
Clinical Drug Trials
Digital Therapeutics

(internal to the company)

for every specific detail
of the domain

collaborate, iterate

try out, validate

I N E F F I C I E N T

Example of concrete requirements Example of the language needed to express such
requirements (and similar ones in the domain):

Currencies
Dates
Percentages

Arithmetics
Comparisons
Conditionals
 (+ways to make lots of them scale)
Rounding
Limiting

Summations

Temporal Data (timelines)
Year/Month-index data structures

Data/Lookup Tables

Versioning (each year things change)

TestingSubject Matter Expert

Domain Expert
Software Folks

Express this
and all the other laws With this

Lots of it.
Changes all the time.

Less of it.
Much more stable.

How is this related?

Definition (Wikipedia)
• place the primary focus on the core domain and domain logic;
• base complex designs on a model of the domain (UL);
• initiate a creative collaboration between technical and domain experts

to iteratively refine a conceptual model that addresses particular
domain problems.

PLUS (me)
• reify the conceptual model into a

DSL that allows the domain ex-
perts to directly express subject
matter in an executable and
testable way.

More Wikipedia: Critics of DDD argue that developers must
typically implement a great deal of isolation and encapsulation to
maintain the model as a pure and helpful construct.

Critics?
I think this
isolation is
a massive
benefit.

Working with DSLs is a bit like
DDD++ and I am surprised not
more DDDers care.

https://www.linkedin.com/pulse/relationship-between-domain-driven-design-languages-markus-voelter

Ubiquituous Language

Domain Language
Models/

Programs/
Configurations

Subject Matter Expert

Software System

use create/modify/
test/run

feedback

Domain Expert

understand
deeply

Software Folks

abstract

build

collaborate, iterate

co
ve

rs O
PTIM

IZE

Domain Language
Models/

Programs/
Configurations

Subject Matter Expert

Software System

use create/modify/
test/run

feedback

Domain Expert

understand
deeply

Software Folks

abstract

build

collaborate, iterate

co
ve

rs

DOMAIN ANALYSIS
A whole bunch of ingredients

Understand the domain

Design the Language

Implement language and tools

Architect the software system

Implement runtimes & generators

Introduce to organisation

Understand
the domain

Iterate!

COLLECT
II

Survey the Land

Bounds of the domain.
Say what‘s out, and why.
Connections to the surroundings. Similar to context diagrams

in software architecture.

DOMAIN ANALYSIS
People over stuff

People
Documents

Code
{

Outdated
Imprecise
Loveless
Status Quo

DOMAIN ANALYSIS
People over stuff

People
Documents

Code{Status Quo
Hidden Domain Semantics

DOMAIN ANALYSIS
Hidden Languages

People
Documents

Code Hidden Languages
Word templates
XML Schemas
Excel Sheets

DOMAIN ANALYSIS

Participate
regularly

and deeply
understand
the results

3 .. 7

People over Stuff

People

Validate results,
contribute feedback

and special topics

People over Stuff

People

DOMAIN ANALYSIS

Less regular
feedback

People over Stuff

People

DOMAIN ANALYSIS

Scope,
priorisation,
decisions
that affect
business

People over Stuff

People

Consistent Terminology

Domain Analysis

Consistent
Terminology

Domain analysis is much more than a glossary; but without
agreed terminology, a domain analysis cannot succeed.

DOMAIN ANALYSIS
Workshops

Primary means
of collecting
information

and feedback.

DOMAIN ANALYSIS
The basics: Moderation

Ensure regular breaks

Allow everyone to speak

Have an agenda and stick to the topic(s) at hand

Steer towards conclusions (and not just info exchange)

Capture results and open issues

Stop straw men & unrealistic, simplified statements

Shut down ‘sabotage‘ (ego, politics)

Workshops

DOMAIN ANALYSIS
Workshops

DOMAIN ANALYSIS
Steering the analysis

Distinguish good and bad quarrels

Identify rabbit holes, and make sure you come up again.

Build a mental model and

 detect holes, inconsistencies

 verify the “right” abstraction level?

 give (counter)examples of the mental model

 encourage others to give examples.

Make sure everybody understands agreements.

Workshops

DOMAIN ANALYSIS

Mr. Analyst, tear down this model!

Workshops

DOMAIN ANALYSIS
3 hours per session

4 sessions per week

Keep the atmosphere friendly
and professional. Bring cookies.

Workshops

DOMAIN ANALYSIS
Active Listening

Re-explain in your own words what you have understood

State explicitly what (you think) a speaker’s words don’t mean

Rephrase what was told in terms of the abstractions we have found so far

Point out if a speaker:

… makes implicit assumptions without saying those

… is imprecise (in terms of content or terminology)

… contradicts previous agreements (to reconsider either one)

… mixes different questions or aspects of the problem

Beware of appearing arrogant.
Acknowledge before criticism.

Beware of overwhelming the team.
You are probably the most meta-fluent.

Consistency vs. Change

At any point in time, the analysis team has a joint, consistent
understanding of the domain. This will evolve over time.

Dealing with Uncertainty
Put it into a box so it doesn’t
spread uncontrollably.

• What is the precise problem about
which there is uncertainty?

• What are the alternative solutions
to that problem, plus tradeoffs and
examples?

• What adjacent or related questions
are certain; what can we agree on?

the box

Capture Results

Decisions plus Rationale – what have we decided, and why.

Scope and (counter)examples.

Open Questions – what do we want to try to understand next

Disagreements – where can we currently not agree

I suggest to use an issue tracker, because
issues can be identified, commented, prioritised, searched. BAN EMAIL!

Similar to architecture
decision records.

Keep it pragmatic, or it won‘t happen at all.
This is a team‘s working tool. Not for public consumption.

See also Domain Spec and Domain Impl.

THINK
III

Take time to think!

Completely full calendars prevent
deep thinking and conceptual work.

A trivial statement, but a problem in
In many organisations nonetheless

Often best done in pairs.
Eg. Analyst + Domain Expert

Bounds of the Domain

Which parts of the domain
should we include?

Will this destroy abstractions?

Foundational Question.

Depth of the solution

Should we only rething/-write the
„application layer“ and keep the
backend infrastructure the same?

Potentially lots of Complexity.
Old system pollutes new abstractions
Big mapping effort – Semantics!

Worst Case

Historic accidents | Pragmatic shortcuts | Special
solutions for (former) customers | Hacks to get things
done or make things fast | Features that are no longer

necessary | Changes in business strategy and prioritites

Identify, Question and Remove Cruft
Source of
potentially
unjustifiable
complexity.

Not always easy to identify (if customerSpecialFlag then)

Even harder to decide to kill it because nobody remembers reason
why its there (but there must be one…). Management.

Illustrate the price you pay for keeping.

Identify, Question and Remove Cruft
Source of
potentially
unjustifiable
complexity.

Abstraction

Cover the whole domain
Semantics for purpose of the tool

Expressive Power vs. Learnability
Genericity vs. Specificity

Based on experience
+ a whole chapter of details in the book

Abstractions for Testing

Cover the whole domain
Semantics for purpose of the tool

Expressive Power vs. Learnability
Genericity vs. Specificity

Based on experience
+ a whole chapter of details in the book

Platforms and Crosscuts

The platform contains things that are
foundational, that are the same every-
where, and therefore do not have to be
described by the language your are trying
to build.

e.g. persistence, transport, UI

Hard to find

Crosscuts are things that should be done
consistently throughout the system and
affect many parts of the language.

e.g. dealing with time, versioning

Platforms and Crosscuts

Platform

Hard to find

Crosscuts

often a relatively natural outcome
of the domain analysis.

often hard to discover.
often where the value lies.

Industry Standards

Double-edged sword.

It’s structurally
similar to the well
known hype cylce

Don‘t give up too
early!

Multiple swings are possible;
ok if amplitude becomes less
over time.

Ups and Downs

Spread the Knowledge

Make sure everybody really understands the
state of the thinking and the abstractions!

Push and pull.

VALIDATE
IV

Domain Specification

A document:
Literature. A book. Explain, illustrate. Read on the subway.

• Keep rationales brief. Point to issue tracker.
• Use informal models /diagrams to illustrate.
• Use lots of examples. Most people learn by example.
• Don’t give all the details. Emphasize concepts and the gist.

https://www.linkedin.com/pulse/stop-using-slides-markus-voelter

Trying to write clearly and understandably helps you think!

Not slides. Not issues. Not a tool tutorial.

Papier ist geduldig. Bubbles don’t crash.

Domain Implementation

You can’t validate
”just words”

You need an execu-
table prototype
of the language.

Domain Implementation

You can’t validate
”just words”

You need an execu-
table prototype
of the language.

Formality forces
consistency and
completeness.

Execution helps
with validation.

Must be fast so you
can iterate daily.

Let users play!

Validate with simple examples
using the domain implementation.

Users will understand semantics
when they interact with the DI.
Staring at models doesn’t help.

Let users play!

Build something real!

Use the DI to implement representative realistic real-world cases

Conceptual Review

Eg., based on Cognitive Dimensions of Notations

Abstraction gradient | Consistency | Diffuseness versus terseness |
Error-proneness | Hard mental operations | Hidden dependencies |
Role-expressiveness | Viscosity | Premature commitment

Analyse Usage

Review how concepts are used.

‘Misuse’ is relevant input.

Combined use suggest new abstraction

Quantitative data suggests trade-offs.

Potentially automatable.

CROSS-CUTTING
VI

Dealing with Feedback

Ideal Case
• You receive feedback that uncovers a conceptual problem
• You think it through, then adapt the language accordingly
• In the next workshop you report the feedback,
• explain the change you made
• ask for feedback on that change

Be sure to credit the person who had the idea or provided the initial feedback.

Small? Fix it right
then an there, don’t

create an issue.

A bit bigger? Write
the issue while the
feedback can read

and check it.

Dealing with Feedback

Ideal Case
• You receive feedback that uncovers a conceptual problem
• You think it through, then adapt the language accordingly
• In the next workshop you report the feedback,
• explain the change you made
• ask for feedback on that change

Be sure to credit the person who had the idea or provided the initial feedback.

Dangerous Case BIG CHANGE

Ask for confirmation or evidence before you make a big change.

… and then potentially change the overall set of abstractions.

Dealing with Feedback – Gravity Model of Evolution

You gotta be willing to
rethink “everything” as
new data comes in.

Hopefully doesn’t happen
too often …

Dealing with Feedback – Gravity Model of Evolution

Encourage Feedback

Proof it by acting on it in a timely manner.

Dealing with Feedback

• Too Complicated as a general catch-all
• Actually bad abstractions – change.
• More flexible – demonstrate people why it’s useful
• Learning vs. steady-state – explain and teach

(see the tradeoff in discussed earler)
• Status Quo vs. Future Needs – explain the goals and business direction

• Superficial: often because people didn’t want to engage with the system
but felt obliged to provide feedback (QA Team).

• Unfair, unconstructive: like superficial, but with personal pissedness.
“I should have been consulted, I wasn’t, so this sucks.”

Unhelpful Case

Great Demos

Great Demos

Don’t Improvise!

Great Demos

Create a script. Follow it. Practice.

Don’t just click around. Always narrate & explain what you do.

Stop and recap at regular intervals. Must be done by some-
body who has a clue!

If something goes wrong
timebox the fix

 or jump to next stage.
 or fallback onto prerecorded version

Make two people do the demo: tool operator, big picture guy

Be clear about the point of the demo, discard other questions.

Flow questions during demo, others at the end.

Great Demos

Oh, and …

Don’t Improvise!

Writing – Document Structure

Context. Where are we coming from, where does the problem we want to solve occur?

Problem. What are we trying to solve or fix with what we describe in the text?

Forces. What influences govern the way in which we plan to solve the problem?

Solution. How in general are we approaching the problem and what is the 10,000-foot view

of the solution?

Details. What are the relevant details of the solution, things that have to be kept in mind or

addressed specifically?

Trade-offs. What are the pros and cons of the solution, ideally connecting to the forces and

potential alternative solutions?

Resulting context. Where does this leave us; what do we do next?

The pattern format is a great guide.

+ Examples

Writing – Smaller Structures

One idea per paragraph. Single level of detail per paragraph.

First the big picture. Then the details. Separately.

Make reasoning transparent, make assumptions explicit.

Say explicitly when you change aspect or viewpoint.

Don’t needlessly use synonyms for important concepts.

Justify claims.

Use bullet points judiciously. Don’t emulate powerpoint.

Shorter sentences are usually better sentences.

Give your document time. Reread. Edit.

OUTRO
VI

DOMAIN ANALYSIS
Additional Considerations

DOMAIN ANALYSIS
F O R P R A C T I T I O N E R S

2024

Based on the book of
the same name:

http://voelter.de/htuaa

There‘s a discount
code for the PDF
version at Leanpub:

https://leanpub.com/markusvoelter-htuaa/c/oop23
(expires end of Feburary)

Ping me: http://voelter.de/hello

