
ModelModel--Driven Development (MDD)Driven Development (MDD)
of Distributed Systemsof Distributed Systems

OOPSLA 2006, Thursday, Oct 26OOPSLA 2006, Thursday, Oct 26

Dr Douglas C Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software Integrated Systems
Vanderbilt University Nashville, Tennessee

Markus Völter
voelter@acm.org

www.voelter.de
Independent Consultant for Software

Engineering & Technology
Heidenheim, Germany

Copyright is held by the author/owner(s).

OOPSLA'06, October 22–26, 2006, Portland, Oregon, USA.

2006 ACM 06/0010.n
Model-Driven Development of Distributed Systems 2

What We Want You to Learn Today

• Key MDD concepts & what kinds of domains &
problems they address

• What are some popular MDD tools & how they work

• How MDD relates to other software tools &
(heterogeneous) platform technologies

• What types of projects are using MDD today & what
are their experiences

• What are the open issues in MDD R&D & adoption

• Where you can find more information

3

CONTENTS
Model-Driven Development

of Distributed Systems

Introduction & Motivation

Definition of Terms

Architecture-Centric MDD & Cascading

Role of Frameworks & Patterns in the Context of MDD

Model-to-Model Transformations

An Architectural Process – A Case Study

Examples of Applying MDD Tools: openArchitectureWare

A Metamodel for Component-based Development

System Execution Modeling Tools: GME, CoSMIC, & CUTS

Product-line Architecture Case Study

Summary

4

CONTENTS
Model-Driven Development

of Distributed Systems

Introduction & Motivation
Definition of Terms

Architecture-Centric MDD & Cascading

Role of Frameworks & Patterns in the Context of MDD

Model-to-Model Transformations

An Architectural Process – A Case Study

Examples of Applying MDD Tools: openArchitectureWare

A Metamodel for Component-based Development

System Execution Modeling Tools: GME, CoSMIC, & CUTS

Product-line Architecture Case Study

Summary

Model-Driven Development of Distributed Systems 5

CPU & network performance has increased by 3-8
orders of magnitude in past decades

1,200 bits/sec to
10+ Gigabits/sec

The Road Ahead

Extrapolating these trends another decade or so yields
• ~100 Gigahertz desktops
• ~100 Gigabits/sec LANs
• ~100 Megabits/sec wireless
• ~10 Terabits/sec Internet backbone

10 Megahertz to
3+ Gigahertz

Unfortunately, software quality &
productivity hasn’t improved as

rapidly or predictably as hardware

Model-Driven Development of Distributed Systems 6

Why Hardware Improves So Consistently

Advances in hardware & networks stem largely from
R&D on standardized & reusable APIs & protocols

x86 & Power PC chipsets TCP/IP

Model-Driven Development of Distributed Systems 7

Application
Software

Application
Software

Application
Software

Application
Software

Why Software Fails to Improve as Consistently

In general, software has not been as standardized or reusable as hardware

F-15 A/V-8B F/A-18

Air
Frame

GPS

FLIR

GPS

FLIR

AP

Nav HUD

IFF

Cyclic
Exec

Air
Frame AP

Nav HUD

GPSIFF

FLIR

Cyclic
Exec

Air
Frame

Vx
Works

AP Nav

HUD

IFF
Air

Frame

AP

Nav HUD
GPS

IFF

FLIR

Vx
Works

UCAV

1553

VME

Link16

1553

VME

Link16

1553

VME

Link16

Standard/COTS Hardware & Networks

Proprietary & Stovepiped Application & Infrastructure Software

Model-Driven Development of Distributed Systems 8

The Promise

•Develop standardize
technologies that:

1. Model

2. Analyze

3. Synthesize &

4. Provision

complex software
systems <CONFIGURATION_PASS>

<HOME>

<…>

<COMPONENT>

<ID> <…></ID>

<EVENT_SUPPLIER>

<…events this

component supplies…>

</EVENT_SUPPLIER>

</COMPONENT>

</HOME>

</CONFIGURATION_PASS>

<CONFIGURATION_PASS>

<HOME>

<…>

<COMPONENT>

<ID> <…></ID>

<EVENT_SUPPLIER>

<…events this

component supplies…>

</EVENT_SUPPLIER>

</COMPONENT>

</HOME>

</CONFIGURATION_PASS>
Gigabit

Ethernet

Gigabit

Ethernet

Build

Analyze

Model-Driven Development of Distributed Systems 9

static CORBA::Long receiver_pid_;
static FILE *output_file = 0;
// File handle of the file into which received data is written
quo::ValueSC_var actualFrameRate;
// Poke this in order to send the measured frame rate toQuO
// destination port to send mpeg data to onlocalhost
staticintoutput_port = 8001;
// Instrumentation Helper
staticInstrumentor*instrument = 0;
// Name of process
static ACE_CStringprocess_name_;
intReceiver_StreamEndPoint::get_callback (constchar *flowname, TAO_AV_Callback*&callback) {

ACE_DECLARE_NEW_CORBA_ENV;
// Create & return the sender application callback toAVStreamsfor furtherupcalls
int retval= 0;
callback = &this->callback_;
RECEIVER::instance ()->connection_manager ()connect_negotiator(this,flowname);
returnretval; }

Receiver_Callback::Receiver_Callback (void) : frame_count_ (1) {
ACE_INET_Addr inet_addr(output_port, "localhost");
dvdview_endpoint_open(inet_addr); }

intReceiver_Callback::receive_frame (ACE_Message_Block *frame, TAO_AV_frame_info * /*frame_info*/,
constACE_Addr&) {

//Upcallfrom theAVStreamswhen there is data to be received from the sender
++frame_count_;
while (frame != 0) {

char *buf= frame->rd_ptr();
// Get the RTP fixed header
rtp_hdr_thdr;
ACE_OS::memcpy(&hdr,buf, sizeof(rtp_hdr_t));
// decode the RTP header (endianproblems)
rtp_hdr_t decoded_rtp_hdr;
decode_rtp_hdr(&hdr, &decoded_rtp_hdr);
// Get the MPEG RTP header extension
rtp_mpeg_hdr_t mpeg_hdr;
ACE_OS::memcpy(&mpeg_hdr,buf+sizeof(rtp_hdr_t),sizeof(rtp_mpeg_hdr_t));
// extract the frame type from the RTP header extension
u_char frame_type = mpeg_hdrbf1 & 0x07;
RECEIVER::instance ()->time_frame (frame_type);
// strip off thertpheaders for sending
char *send_buf= &buf[sizeof(rtp_hdr_t) +sizeof(rtp_mpeg_hdr_t)];
size_t send_len= frame->length() -sizeof(rtp_hdr_t) -sizeof(rtp_mpeg_hdr_t);
if (instrument && (frame_type == 1)) {

Instrumentor::MessageBodybody;
ACE_Time_Valuetv= ACE_OS::gettimeofday();
bodyadd_string(Instrument::Name, RECEIVER::instance()->name());
bodyadd_ulong(Instrument::SequenceNumber, decoded_rtp_hdrseq);
bodyadd_double(Instrument::Timestamp, (CORBA::Double)decoded_rtp_hdrts);
bodyadd_double(Instrument::ReceiveTime, (CORBA::Double)((unsigned long)tvmsec()));

bodyadd_double(Instrument::FrameTiming, (CORBA::Double)(tvmsec() - decoded_rtp_hdrts));
bodyadd_string(Instrument::ProcessName, process_name_c_str());
bodyadd_long(Instrument::PID, receiver_pid_);
instrument->send_event(Instrument::ReceiverFrameStats, body); }

if (output_file) {
// Write the received data to the file
intresult = ACE_OS::fwrite(send_buf, send_len, 1, output_file); }

dvdview_endpoint_send (send_buf, send_len);
frame = frame->cont(); }

return 0; }
Receiver::Receiver (void) : debug_level_ (0),mmdevice_ (0),output_file_name_ (), is_output_file_ (0),

sender_name_ ("distributor"), receiver_name_ ("receiver"), use_qos_stream_(0) {}
Receiver::~Receiver (void) {}
intReceiver::init(int, char**,CORBA::Environment &ACE_TRY_ENV) {
// Initialize the endpoint strategy with the orb andpoa
intresult = this->reactive_strategy_init(TAO_AV_CORE::instance ()->orb (),

TAO_AV_CORE::instance ()->poa());
if (result != 0) return result;
// Initialize the connection manager
result = this->connection_manager_init(TAO_AV_CORE::instance ()->orb ());
if (result != 0) return result;
// Register the receivermmdeviceobject with the ORB
ACE_NEW_RETURN (this->mmdevice_, TAO_MMDevice(&this->reactive_strategy_), -1);
// Servant Reference Counting to manage lifetime
AVStreams::MMDevice_var mmdevice= this->mmdevice_->_this (ACE_TRY_ENV);
ACE_CHECK_RETURN (-1);
// Bind to sender
this->connection_manager_bind_to_sender (this->sender_name_, this->receiver_name_,mmdevicein (),

ACE_TRY_ENV);
ACE_CHECK_RETURN (-1);

AVStreams::streamQoSthe_qos;
this->fill_qos(the_qos);
// Connect to the sender
this->connection_manager_connect_to_sender (the_qos, use_qos_stream_, ACE_TRY_ENV);
ACE_CHECK_RETURN (-1);
CORBA::ORB_varorb = TAO_AV_CORE::instance ()->orb();
// Connect toQuOsystem condition to setactualFrameRate
ACE_CStringname_cstr("ActualFrameRate_");
name_cstr+= this->sender_name_ + "_" + this->receiver_name_;
CosNaming::NamingContext_var nc=NamingHelper<CosNaming::NamingContext>::resolve_init

(CORBA::ORB::_duplicate(orbin()), "NameService", 5, ACE_Time_Value(1, 0));
CosNaming::Name name;
namelength(1);
name[0]id = CORBA::string_dup(name_cstrc_str());
name[0]kind = CORBA::string_dup("");
//QuO syscondthat should receive the measured frame rate
frame_rate_meter_set_framerate_sc(NamingHelper<quo::ValueSC>::resolve_name(ncin(),

name, 15, ACE_Time_Value(1, 0)));
return 0; }

intReceiver::parse_args(int argc, char**argv) {
if(argc< 2){

usage();
return -1; }

for(inti=0; i <argc; i++) {
if(strcmp(argv[i], "--qos") == 0) use_qos_stream_ = 1; }

// Parse the command line arguments
ACE_Get_Opt opts (argc, argv, "f:s:r:d:p:");
intc;
while ((c = opts ()) != -1) {

switch (c) {
case 'f': this->output_file_name_ = optsoptarg; this->is_output_file_ = 1; break;
case 's': this->sender_name_ = optsoptarg; break;
case 'r': this->receiver_name_ = optsoptarg; break;

case 'd': this->debug_level_ = ACE_OS::atoi(optsoptarg); break;
case 'p': output_port = ACE_OS::atoi(optsoptarg); break;
default: ACE_ERROR_RETURN ((LM_ERROR, "Usage: receiver -f filename"), -1); } }

instrument = newInstrumentor(TAO_AV_CORE::instance ()->orb(), Instrument::domain_name,
this->receiver_name_c_str());

return 0; }
Connection_Manager &Receiver::connection_manager (void) {
return this->connection_manager_; }

void Receiver::usage() {
ACE_DEBUG((LM_DEBUG, "Usage:\n\n"));
ACE_DEBUG((LM_DEBUG, " receiver -s [sender name] -r [receiver name]\n"));
ACE_DEBUG((LM_DEBUG, " -d [debug level] -f [file name]\n"));
ACE_DEBUG((LM_DEBUG, " -p [output UDP port, default is %d]\n", output_port));
ACE_DEBUG((LM_DEBUG, " [--qos]\n")); }

void Receiver::time_frame (intframe_type) {
frame_rate_meter_time_frame (frame_type); }

void Receiver::fill_qos(AVStreams::streamQoS&qos) {
#if 1 || defined(RESERVATION_CONTROL)
qoslength(0);

#else
CORBA::ULongbandwidth =1000000/8;
CORBA::ULongpeak_bandwidth =1100000/8;
qoslength (1);
qos[0]QoSType= CORBA::string_dup("Data_Receiver");
qos[0]QoSParamslength (10);
qos[0]QoSParams[0]property_name = CORBA::string_dup("Service_Type");
qos[0]QoSParams[0]property_value <<= (CORBA::Short) ACE_SERVICETYPE_CONTROLLEDLOAD;
qos[0]QoSParams[1]property_name = CORBA::string_dup("Token_Rate");
qos[0]QoSParams[1]property_value <<= (CORBA::ULong) bandwidth ;
qos[0]QoSParams[2]property_name = CORBA::string_dup("Token_Bucket_Size");
qos[0]Qo

S

P

a

r

a

m

s

[2]property_value <<= (CORBA::ULong) 5000;
qos[0]QoSParams[3]property_name = CORBA::string_dup("Peak_Bandwidth");
qos[0]QoSParams[3]property_value <<= (CORBA::ULong) peak_bandwidth;
qos[0]QoSParams[4]property_name = CORBA::string_dup("Latency");
qos[0]QoSParams[4]property_value <<= (CORBA::ULong) 0;
qos[0]QoSParams[5]property_name = CORBA::string_dup("Delay_Variation");
qos[0]QoSParams[5]property_value <<= (CORBA::ULong) 0;
qos[0]QoSParams[6]property_name = CORBA::string_dup("Max_SDU_Size");
qos[0]QoSParams[6]property_value <<= (CORBA::ULong) 368;
qos[0]QoSParams[7]property_name = CORBA::string_dup("Minimum_Policed_Size");
qos[0]QoSParams[7]property_value <<= (CORBA::ULong) 368;
qos[0]QoSParams[8]property_name = CORBA::string_dup("TTL");
qos[0]QoSParams[8]property_value <<= (CORBA::ULong) 25;
qos[0]QoSParams[9]property_name = CORBA::string_dup("Priority");
qos[0]QoSParams[9]property_value <<= (CORBA::ULong) 1;

#endif}
ACE_CstringReceiver::output_file_name (void) {
return this->output_file_name_; }

intReceiver::is_output_file (void) {
return this->is_output_file_; }

intReceiver::spawn_viewer() {
if(ACE_OS::access("/dvdview/src/dvdview", X_OK) != 0) {

return -1; }
ACE_Process process;
ACE_Process_Options options;
optionscommand_line ("%s -z %d a", "/dvdview/src/dvdview", output_port);
pid_t viewer_pid= ACE_OS::fork();
pid_t receiver_pid= 0;
switch(viewer_pid) {

case -1: /* error */ ACE_OS::exit(99); break;
case 0: /* child */ processspawn(options); break;
default: /* parent */ receiver_pid= ACE_OS::fork();

switch(receiver_pid){
case -1: /* error */ ACE_OS::exit(98); break;
case 0: /* child */ break;
default: break; }

break; }
intstatus1, status2;
if(receiver_pid!= 0) {

ACE_OS::waitpid(viewer_pid, &status1, 0);
ACE_OS::waitpid(receiver_pid, &status2, 0);
ACE_OS::exit(0); }

return 0; }
constchar * Receiver::name()const{
return receiver_name_c_str(); }

intmain (int argc, char**argv) {
receiver_pid_ = (CORBA::Long)ACE_OS::getpid();
process_name_ = ACE::basename(argv[0]);
ACE_DECLARE_NEW_CORBA_ENV;
ACE_TRY {

// Initialize the ORB first
CORBA::ORB_varorb = CORBA::ORB_init(argc,argv, 0, ACE_TRY_ENV);
ACE_TRY_CHECK;
CORBA::Object_var obj= orb->resolve_initial_references ("RootPOA", ACE_TRY_ENV);
ACE_TRY_CHECK;
// Get the POA_varobject from Object_var
PortableServer::POA_varroot_poa=PortableServer::POA::_narrow (objin (),
ACE_TRY_CHECK;
PortableServer::POAManager_var mgr= root_poa->the_POAManager(ACE_TRY_ENV);
ACE_TRY_CHECK;
mgr->activate (ACE_TRY_ENV);
ACE_TRY_CHECK;
// Initialize theAVStreamscomponents
TAO_AV_CORE::instance ()->init(orbin (), root_poain (), ACE_TRY_ENV);
ACE_TRY_CHECK;
Receiver *receiver = RECEIVER::instance ();
intresult = receiver->parse_args(argc,argv);
if (result == -1) return -1;
receiver->spawn_viewer();
if (receiver->is_output_file ()) {

// Make sure we have a valid <output_file>
output_file = ACE_OS::fopen(receiver->output_file_name ()c_str(), "w");
if (output_file == 0)

ACE_ERROR_RETURN ((LM_DEBUG, "
receiver->output_file_name ()c_str()), -1);

else ACE_DEBUG ((LM_DEBUG, “
result = receiver->init(argc,argv, ACE_TRY_ENV);
ACE_TRY_CHECK;
if (result != 0) return result;
orb->run (ACE_TRY_ENV);
ACE_TRY_CHECK;
// Hack for now
ACE_OS::sleep (1);
orb->destroy (ACE_TRY_ENV);
ACE_TRY_CHECK; }

ACE_CATCHANY {
ACE_PRINT_EXCEPTION (,"receiver::init");
return -1; }

ACE_ENDTRY;
ACE_CHECK_RETURN (-1);
ACE_OS::fclose(output_file);
return 0; }

The Reality

• Architects
(sometimes) use
UML to express
software designs
at a high-level

• Developers write
& evolve code
manually

We ought/need to be able to do much better than this! Model-Driven Development of Distributed Systems 10

Impediments of human nature

• Organizational, economic, administrative, political, &
psychological barriers

Ineffective technology transition strategies

• Disconnects between methodologies & production
software development realities

• Lack of incremental, integrated, & triaged transitions

Non-Technical

Challenges

Technical

Challenges

Sources of the Problems
Inherent & accidental complexities

–More automated specification & synthesis of

• Broader range of target domain capabilities

• Model interpreters & transformations

• Static & dynamic quality of service (QoS) properties

–Round-trip engineering from models source

–Poor support for debugging at the model level

–Version control of models at the model level

www.cs.wustl.edu/~schmidt/reuse-lessons.html

Model-Driven Development of Distributed Systems 11

Key Challenges for Software Developers

LogicalLogical

ViewView

PhysicalPhysical

ViewView
DevelopmentDevelopment

ViewView

ProcessProcess

ViewView

Use CaseUse Case

ViewView

Developers & users of software face

challenges in multiple dimensions

Model-Driven Development of Distributed Systems 12

LogicalLogical

ViewView

Determining units of abstraction
for system (de)composition,

reuse, & validation

• Popular technologies & tools provide
inadequate support for

– Checking pre-/post-conditions & invariants

– Specifying & analyzing dependencies

– Expressing design intent more clearly
using domain concepts

Key Challenges for Software Developers

Model-Driven Development of Distributed Systems 13

PhysicalPhysical

ViewView

Integrating/deploying diverse new &
reusable application components in
a networked environment to ensure

end-to-end QoS requirements

• Popular technologies & tools
provide inadequate support for

– Configuring & customizing
components for application
requirements & run-time
environments

– Automated mapping of
components onto nodes in
target environments

Key Challenges for Software Developers

Model-Driven Development of Distributed Systems 14

ProcessProcess

ViewView

Devising execution architectures,
concurrency models, & communication styles

that ensure multi-dimensional QoS &
correctness of new/reusable components

• Popular technologies & tools
provide inadequate support for

– Identifying & reducing
performance & robustness
risks earlier in system lifecycle

– Satisfying multiple (often
conflicting) QoS demands

• e.g., secure, real-time,
reliable

– Satisfying QoS demands in
face of fluctuating/insufficient
resources

• e.g., mobile ad hoc
networks (MANETs)

Key Challenges for Software Developers

Model-Driven Development of Distributed Systems 15

DevelopmentDevelopment

ViewView

(De)composing systems into
reusable modules (e.g., packages,

subsystems, libraries) that
achieve/preserve QoS properties

• Popular technologies & tools
provide inadequate support for
avoiding “bloatware”, i.e.:

– Cyclic dependencies, which
make unit testing & reuse
hard

– Excessive link-time

dependencies, which bloat
the size of executables

– Excessive compile-time

dependencies, where small
changes trigger massive
recompiles

Key Challenges for Software Developers

Model-Driven Development of Distributed Systems 16

Capturing functional & QoS
requirements of systems &
reconciling them with other

views during evolution

• Popular technologies & tools provide inadequate support for

– Ensuring semantic consistency & traceability between requirements &
software artifacts

– Visualizing software architectures from multiple views

Use CaseUse Case

ViewView

Key Challenges for Software Developers

Model-Driven Development of Distributed Systems 17

Promising Solution Approaches

Model-driven

development

& domain-specific

languages
Verification & validation

technologies, e.g., model

checking & static analysis

Middleware frameworks

that integrate multiple

QoS properties

GPS IFF FLIR

Object Request Broker

Air
Frame

AP Nav WTS

Event
Channel

Replication
Service

Synchronization

Persistence

Fault Tolerance

Memory Management

Cross-cutting Concerns

Multi-faceted

Software

Development

Formalizing best practices

& design expertise

There is no single “silver bullet” technology that resolves all software problems! Model-Driven Development of Distributed Systems 18

LogicalLogical

ViewView

Promising Solution Approaches

Devising composable

abstractions whose

interfaces & QoS properties

can be specified/analyzed

via metadata

•Components encapsulate “business” logic

•Components interact via ports

•Provided ports, e.g.,facets

•Required ports, e.g., receptacles

•Event sink & source ports

•Containers provide execution environment
Components/containers can also

•Communicate via a middleware bus &

•Reuse common middleware services

•Aspect-oriented techniques can help with
integration

SecurityReplication NotificationPersistence

SchedulingA/V Streaming Load Balancing

…

Container

… …

Middleware Bus

Container

…

Model-Driven Development of Distributed Systems 19

Promising Solution Approaches

PhysicalPhysical

ViewView

Model-driven development &

analysis techniques for optimizing,

verifying, & automating the

deployment & configuration process Gigabit Ethernet

Model-Driven Development of Distributed Systems 20

ProcessProcess

ViewView

Promising Solution Approaches

Software execution modeling &
emulation techniques & tools; distributed

continuous quality assurance

Kill

Eval

Sched

EO

Illum

AAW

EG

AAW
AAWTBM

EG

AAWAAW

AAW

MG

TMB

MG

• Synthetic workload & emulated
components

• Replaced incrementally with
actual applications & components

Gigabit Ethernet

Build & Test Scoreboard

• Automate QA processes

Model-Driven Development of Distributed Systems 21

DevelopmentDevelopment

ViewView

Promising Solution Approaches

Development environments that provide
multiple views & minimize dependencies
between large-scale software artifacts to

optimize development & test cycles

• Packages view – shows element
tree defined by project's build
class path

• Type hierarchy view – shows the
sub- & super-type hierarchies

• Outline view – shows the structure
of a compilation unit or class file

• Browsing perspective – allows
navigating models using separate
views for projects, packages,
types & members

• Wizards for creating elements –
e.g., project, package, class,
interface

• Editors – syntax coloring, content
specific code assist, code resolve,
method level edit, import
assistance, quick fix & quick assist

Model-Driven Development of Distributed Systems 22

Use CaseUse Case

ViewView

Promising Solution Approaches

Automated tracing of

(in)consistency between

requirement specifications &

associated software artifacts

Matlab
Code-Genn
Matlab

Code-Gen

Domain-Specific Modeling

Languages

Co
Artifact

Generator

if (inactiveInterval != -1) {
int thisInterval =

(int)(SystemcurrentTimeMillis() -
lastAccessed) / 1000;

if (thisInterval > inactiveInterval) {
invalidate();

ServerSessionManager ssm =
ServerSessionManagergetManager();

ssmremoveSession(this);
}

}
}

private long lastAccessedTime = creationTime;

/**
* Return the last time the client sent a request

associated with this
* session, as the number of milliseconds since

midnight, January 1, 1970
* GMT Actions that your application takes, such as

getting or setting
* a value associated with the session, do not affect

the access time
*/

public long getLastAccessedTime() {

return (thislastAccessedTime);

}

thislastAccessedTime = time;

Configuration

Specification

Analysis Tool

Code

• One way to automate tracing
between higher-level specifications
& lower-level implementations is to
leverage model-driven development
techniques & tools

Model-Driven Development of Distributed Systems 23

Technology Evolution (1/4)

L
e

v
e

l o
f A

b
s
tra

c
tio

n

Programming Languages

& Platforms

Model-Driven Engineering (MDE)

• State chart

• Data & process flow

• Petri NetsTra
nsl

at
io

n

Large
Semantic
Gap

Tra
nsl

at
io

n

Tra
nsl

at
io

n

CodeCodeCodeCodeCodeCodeModelModel

ModelModelModelModelModel

Generated

Code

Model

Platform

Machine code

Assembly

C/Fortran

Hardware

Operating
Systems

Model-Driven Development of Distributed Systems 24

Technology Evolution (2/4)

Programming Languages

& Platforms
L

e
v
e

l o
f A

b
s
tra

c
tio

n

C++/JavaClass Libraries

Frameworks

Components

Machine code

Assembly

C/Fortran

Hardware

Operating
Systems

Model

Application Code

Domain Specific
Framework

Platform
Frameworks

Model

Generated Code
Framework

Pattern Language

Platform

Model

Application Code

Domain Specific
Framework

Platform
Frameworks

Model

Generated Code
Framework

Pattern Language

Platform

Model

Application Code

Domain Specific
Framework

Platform
Frameworks

Model

Generated Code
Framework

Pattern Language

Platform

Model

Domain Specific
Framework

Platform
Frameworks

Framework
Pattern Language

Platform

Application Code

•Newer 3rd-generation languages &
platforms have raised abstraction level
significantly

•“Horizontal” platform reuse
alleviates the need to redevelop
common services

•There are two problems, however:

•Platform complexity evolved faster
than 3rd-generation languages

•Much application/platform code still
(unnecessarily) written manually

Model-Driven Development of Distributed Systems 25

Semi-automated

Domain-independent

modeling languages

• State Charts

• Interaction Diagrams

• Activity Diagrams

Technology Evolution (3/4)

Programming Languages

& Platforms

L
e

v
e

l o
f A

b
s
tra

c
tio

n

Saturation!!!!

Model-Driven Development (MDD)

Domain-specific

modeling languages

• ESML

• PICML

• Mathematica

• Excel

• MetamodelsManual

translation

C++/JavaClass Libraries

Frameworks

Components

Machine code

Assembly

C/Fortran

Hardware

Operating
Systems

Model-Driven Development of Distributed Systems 26

Technology Evolution (3/4)

Programming Languages

& Platforms

L
e

v
e

l o
f A

b
s
tra

c
tio

n

Model-Driven Development (MDD)

Domain-specific

modeling languages

• ESML

• PICML

• Mathematica

• Excel

• MetamodelsManual

translation

Semi-automated

Domain-independent

modeling languages

• State Charts

• Interaction Diagrams

• Activity Diagrams

• OMG is evaluating MDE via MIC PSIG
• mic.omg.org

Model-Driven Development of Distributed Systems 27

Technology Evolution (3/4)

Programming Languages

& Platforms

L
e

v
e

l o
f A

b
s
tra

c
tio

n

Model

Application Code

Domain Specific
Framework

Platform

Frameworks

Model

Generated Code

Framework

Pattern Language

Platform

Model

Application Code

Domain Specific
Framework

Platform

Frameworks

Model

Generated Code

Framework

Pattern Language

Platform

Model

Application Code

Domain Specific
Framework

Platform

Frameworks

Model

Generated Code

Framework

Pattern Language

Platform

Model

Application Code

Domain Specific
Framework

Platform

Frameworks

Model

Generated Code

Framework

Pattern Language

Platform

Model-Driven Development (MDD)

Domain-specific

modeling languages

• ESML

• PICML

• Mathematica

• Excel

• MetamodelsManual

translation

C++/JavaClass Libraries

Frameworks

Components

Machine code

Assembly

C/Fortran

Hardware

Operating
Systems

• OMG is evaluating MDE via MIC PSIG
• mic.omg.org

Semi-automated

Domain-independent

modeling languages

• State Charts

• Interaction Diagrams

• Activity Diagrams

Model-Driven Development of Distributed Systems 28

Technology Evolution (4/4)

Programming Languages

& Platforms

Needs Automation

Needs

Automation

Research is needed to automate
DSMLs & model translators

L
e

v
e

l o
f A

b
s
tra

c
tio

n

Platform
Frameworks

Application Code

Model

Platform

Generated Code

Model

Platform
Frameworks

Application Code

Model

Platform

Generated Code

Model

Platform
Frameworks

Application Code

Model

Platform

Generated Code

Model

Platform
Frameworks

Application Code

Model

Platform

Generated Code

Model

Domain-specific

modeling languages

• ESML

• PICML

• Mathematica

• Excel

• MetamodelsNeeds

Automation

Domain-independent

modeling languages

• State Charts

• Interaction Diagrams

• Activity Diagrams
C++/JavaClass Libraries

Frameworks

Components

Machine code

Assembly

C/Fortran

Hardware

Operating
Systems

Model-Driven Development (MDD)

See February 2006 IEEE Computer special issue on MDE techniques & tools

29

CONTENTS
Model-Driven Development

of Distributed Systems

Introduction & Motivation

Definition of Terms
Architecture-Centric MDD & Cascading

Role of Frameworks & Patterns in the Context of MDD

Model-to-Model Transformations

An Architectural Process – A Case Study

Examples of Applying MDD Tools: openArchitectureWare

A Metamodel for Component-based Development

System Execution Modeling Tools: GME, CoSMIC, & CUTS

Product-line Architecture Case Study

Summary

Model-Driven Development of Distributed Systems 30

Overview of Important Terms

Model

Domain

Specific

semantics

precise/

executable

knowledge

Language

Represent the domain at the

level of designers intent,

rather than implementation

technology

DSL defines what

models “mean”

Model-Driven Development of Distributed Systems 31

Overview of Important Terms

Model

Domain

Specific

Language

Metamodel

textual

graphical

Domain

Ontology

bounded area of

knowlege/interest

semantics

precise/

executable

knowledge

An ontology of a domain is often

the starting point for a metamodel.

An ontology is a specification of a

conceptualization.

Model-Driven Development of Distributed Systems 32

Overview of Important Terms

Model

Domain

Specific

Language

Metamodel

textual

graphical

Domain

Ontology

bounded area of

knowlege/interest

semantics

precise/

executable

target

software

architecture

software

architecture

transform

compile

interpret

knowledge

Transform higher-level domain-

oriented model into lower-level

execution-oriented “model” or a

model that selectively represents

some aspect of the original

Transform models

into code and other

artifacts necessary to

run the system on a

given platform

Model-Driven Development of Distributed Systems 33

Overview of Important Terms

Model

Domain

Specific

Language

Metamodel

textual

graphical

Domain

Ontology

bounded area of

knowlege/interest

semantics

precise/

executable

transform

compile

interpret

multi-step

single-step

no

roundtrip

knowledge

several

design

expertise

One motivation of doing

all this is to be able to run

the software on different

platforms (original focus

of the MDA)target

software

architecture

software

architecture

Model-Driven Development of Distributed Systems 34

Overview of Important Terms

Model

Domain

Specific

Language

Metamodel

textual

graphical

Domain

Ontology

bounded area of

knowlege/interest

semantics

precise/

executable

multiple

partial

viewpoint

aspect

composable

Metametamodel

transform

compile

interpret

multi-step

single-step

no

roundtrip

knowledge

several

design

expertise

target

software

architecture

software

architecture

Realistic systems are always

defined with several models,

each describing a certain

viewpoint or aspect of the

overall system

35

CONTENTS
Model-Driven Development

of Distributed Systems

Introduction & Motivation

Definition of Terms

Architecture-Centric MDD & Cascading
Role of Frameworks & Patterns in the Context of MDD

Model-to-Model Transformations

An Architectural Process – A Case Study

Examples of Applying MDD Tools: openArchitectureWare

A Metamodel for Component-based Development

System Execution Modeling Tools: GME, CoSMIC, & CUTS

Product-line Architecture Case Study

Summary

Model-Driven Development of Distributed Systems 36

Cascading MDD Using Platform Stacking

• The generated code of the lower layer serves as the platform for the
next higher level

• A sequence of generation steps is used, whereas each of the
generates code on which the next step builds

Model-Driven Development of Distributed Systems 37

Cascading MDD Using M2M

• Here the higher level models are transformed into lower-level models
that serve as input for the lower level generators Model-to-Model
Transformations are used

• Typically, higher level

models are more

specific to a certain
(sub-)domain

Model-Driven Development of Distributed Systems 38

DYI vs 3rd Party Cartridges

Conceptional

Architecture

Model

Generator

Cartridge

Specific

for the

Conceptional

architecture

Model suitable

for C2

Model suitable

for C3

Off-the-Shelf

Cartridge C2

Off-the-Shelf

Cartridge C3

Code generated

by C2

Code generated

by C3

Project Specific

Code

Manually

written code

• Do you build your own generator for your specific architecture?

–This is good, because it’s tailored to your architecture

• Or do you want to (re)use off-the-shelf cartridges for certain standard
technologies (such as J2EE, Hibernate, Spring)?

• You can do the best of both worlds:

–Define applications using your own metamodels

(architecture-centric, maybe funtional ones on top)

–Transform your models to input models for the off-the-
shelf cartridges on the lower levels

39

CONTENTS
Model-Driven Development

of Distributed Systems

Introduction & Motivation

Definition of Terms

Architecture-Centric MDD & Cascading

Role of Frameworks & Patterns in the

Context of MDD
Model-to-Model Transformations

An Architectural Process – A Case Study

Examples of Applying MDD Tools: openArchitectureWare

A Metamodel for Component-based Development

System Execution Modeling Tools: GME, CoSMIC, & CUTS

Product-line Architecture Case Study

Summary

Model-Driven Development of Distributed Systems 40

•Present solutions

to common
software problems

arising within a
certain context

Overview of Patterns

•Capture recurring structures &
dynamics among software
participants to facilitate reuse of
successful designs

The Proxy Pattern

1 1
Proxy

service

Service

service

AbstractService

service

Client

•Help resolve
key software
design
forces

•Flexibility

•Extensibility

•Dependability

•Predictability

•Scalability

•Efficiency

MDD tools codify & automate many (but by no means all) aspects of patterns

•Generally codify expert
knowledge of design strategies,
constraints & “best practices”

Model-Driven Development of Distributed Systems 41

Overview of Pattern Languages
Motivation

•Individual patterns & pattern
catalogs are insufficient

•Software modeling methods
& tools largely just illustrate
what/how – not why –

systems are designed

Benefits of Pattern Languages

• Define a vocabulary for talking about software development problems

• Provide a process for the orderly resolution of these problems, eg:

• What are key problems to be resolved & in what order

• What alternatives exist for resolving a given problem

• How should mutual dependencies between the problems be handled

• How to resolve each individual problem most effectively in its context

• Help to generate & reuse software architectures

Pattern languages are crucial for DSLs & frameworks Model-Driven Development of Distributed Systems 42

Overview of Frameworks

Framework Characteristics

Application-specific

functionality

•Frameworks exhibit
“inversion of control” at
runtime via callbacks

Networking Database

GUI

•Frameworks provide
integrated domain-specific
structures & functionality

Mission
Computing E-commerce

Scientific
Visualization

•Frameworks are
“semi-complete”
applications

Model-Driven Development of Distributed Systems 43

Benefits of Frameworks

Communication

Services

OS-Access

Layer

Broker

Component

Repository

Component

Configurator

Proxy Proxy

Broker

Admin

Controllers

Admin

Views

AdminClient
Picking

Controllers

Picking

Views

PickingClient

Broker

Logging

Handler
ThreadPool

*

Reactor

Broker

Scheduler/

ActivationList

Service

Request

Service

Request

Service

Request

WarehouseRepHalfX

Distribution

Infrastructure

Concurrency

Infrastructure

Thin UI Clients

• Design reuse

• e.g., by guiding application
developers through the steps
necessary to ensure successful
creation & deployment of
software

Model-Driven Development of Distributed Systems 44

package orgapachetomcatsession;

import orgapachetomcatcore*;
import orgapachetomcatutilStringManager;
import javaio*;
import javanet*;
import javautil*;
import javaxservlet*;
import javaxservlethttp*;

/**
* Core implementation of a server session
*
* @author James Duncan Davidson [duncan@engsuncom]
* @author James Todd [gonzo@engsuncom]
*/

public class ServerSession {

private StringManager sm =
StringManagergetManager("orgapachetomcatsession");

private Hashtable values = new Hashtable();
private Hashtable appSessions = new Hashtable();
private String id;
private long creationTime = SystemcurrentTimeMillis();;
private long thisAccessTime = creationTime;

private int inactiveInterval = -1;

ServerSession(String id) {
thisid = id;

}

public String getId() {
return id;

}

public long getCreationTime() {
return creationTime;

}

public ApplicationSession getApplicationSession(Context context,
boolean create) {
ApplicationSession appSession =

(ApplicationSession)appSessionsget(context);

if (appSession == null && create) {

// XXX
// sync to ensure valid?

appSession = new ApplicationSession(id, this, context);
appSessionsput(context, appSession);

}

// XXX
// make sure that we haven't gone over the end of our
// inactive interval -- if so, invalidate & create
// a new appSession

return appSession;
}

void removeApplicationSession(Context context) {
appSessionsremove(context);

}

Benefits of Frameworks

• Design reuse

• e.g., by guiding application
developers through the steps
necessary to ensure successful
creation & deployment of
software

• Implementation reuse

• e.g., by amortizing software
lifecycle costs & leveraging
previous development &
optimization efforts

Model-Driven Development of Distributed Systems 45

• Design reuse

• e.g., by guiding application
developers through the steps
necessary to ensure successful
creation & deployment of
software

• Implementation reuse

• e.g., by amortizing software
lifecycle costs & leveraging
previous development &
optimization efforts

• Validation reuse

• e.g., by amortizing the efforts of
validating application- &
platform-independent portions
of software, thereby enhancing
software reliability & scalability

Benefits of Frameworks

Model-Driven Development of Distributed Systems 46

Summary of Pattern, Framework, & MDD Synergies

These technologies codify expertise of domain experts & developers

• Patterns codify expertise in
the form of reusable
architecture design themes &
styles, which can be reused
event when algorithms,
components implementations,
or frameworks cannot

• Frameworks codify
expertise in the form of
reusable algorithms,
component & service
implementations, &
extensible architectures

Application-specific

functionality

Acceptor

Connecto

r

Component

Configurator

Stream

Reactor

Proactor

Task

There are now powerful feedback loops advancing these technologies

• MDD tools codify
expertise by automating
key aspects of pattern
languages & providing
developers with domain-
specific modeling
languages to access the
powerful (& complex)
capabilities of frameworks

Model

Application Code

Domain Specific

Framework

Platform

Frameworks

Model

Generated Code

Framework

Pattern Language

Platform

Model

Application Code

Domain Specific

Framework

Platform

Frameworks

Model

Generated Code

Framework

Pattern Language

Platform

Model

Application Code

Domain Specific

Framework

Platform

Frameworks

Model

Generated Code

Framework

Pattern Language

Platform

Model

Application Code

Domain Specific

Framework

Platform

Frameworks

Model

Generated Code

Framework

Pattern Language

Platform

47

CONTENTS
Model-Driven Development

of Distributed Systems

Introduction & Motivation

Definition of Terms

Architecture-Centric MDD & Cascading

Role of Frameworks & Patterns in the Context of MDD

Model-to-Model Transformations
An Architectural Process – A Case Study

Examples of Applying MDD Tools: openArchitectureWare

A Metamodel for Component-based Development

System Execution Modeling Tools: GME, CoSMIC, & CUTS

Product-line Architecture Case Study

Summary

Model-Driven Development of Distributed Systems 48

Why You Need M2M

MDSD-

Infrastructure

Input Models

Output Model

Code Generator for

Architectural MDSD Infrastructure

Code for Target Platform

Programming Model (based on Arch-MM)

M2M/Code

Generator for SD 1

Model for Subdomain 1

M2M/Code

Generator for SD 2

Model for Subdomain 2

...

...

...

...

...

...

• As explained earlier, cascading MDD requires model-to-model
transformations

Model-Driven Development of Distributed Systems 49

Modular, Automated Transformations

• To more easily reuse parts of a transformation, it is a good idea to
modularize a transformation

• Note that in contrast to the OMG, we do not recommend looking at,

changing, or marking the intermediate models

• They are merely a
standardized format

for exchanging data

among transformations

• Example: Multi-Step
transformation from
a banking-specific
DSL to Java via J2EE

Banking-

Metamodell

Bank /

OO
OO Metamodel

J2EE Metamodel

Process

Metamodel
Bank /

Prozess

OO/

J2EE

Process/

J2EE

WLS

Metamodel

WebSphere

Metamodel

J
2

E
E

/
B

E
A

J
2

E
E

/
IB

M

Java

Metamodel

BEA/

Java

IBM/

Java

Model-Driven Development of Distributed Systems 50

Modular, Automated Transformations II

• Example cont’d:

Now consider a Call-Center application; only the first step needs to be
adapted

• If both should be transformed to NET, only the backend needs to be
exchanged

CallCenter

Metamodel

CC /

OO
OO Metamodel

Process

Metamodel
CC /

Prozess

...

...

...

OO Metamodel

Process

Metamodel

OO/

.NET

Prozess/

.NET

.NET Metamodel
.NET/

C# C# Metamodel

Model-Driven Development of Distributed Systems 51

Transforming “in the Tool”

openArchitectureWareModel

(UML)

Model

(XMI)

Parser

Model

(Object Graph)

Model

Trans-

former

Modified Model

(Object Graph)

export

Generated

Code
Code

Generator

(may be repeated)

Developer builds

model using for
example a UML

tool

Model-Driven Development of Distributed Systems 52

openArchitectureWareModel

(UML)

Model

(XMI)

Parser

Model

(Object Graph)

Model

Trans-

former

Modified Model

(Object Graph)

export

Generated

Code
Code

Generator

(may be repeated)

The XMI produced by
the UML tool is parsed

by the generator tool –
& an AST is created

in memory

Transforming “in the Tool”

Model-Driven Development of Distributed Systems 53

openArchitectureWareModel

(UML)

Model

(XMI)

Parser

Model

(Object Graph)

Model

Trans-

former

Modified Model

(Object Graph)

export

Generated

Code
Code

Generator

(may be repeated)
Inside the generator,

model-to-model
transformations are used to
build new or modified ASTs

The intermediate ASTs
cannot be modified

interactively by the
developer

Transforming “in the Tool”

Model-Driven Development of Distributed Systems 54

openArchitectureWareModel

(UML)

Model

(XMI)

Parser

Model

(Object Graph)

Model

Trans-

former

Modified Model

(Object Graph)

export

Generated

Code
Code

Generator

(may be repeated)

In a final step, code

is generated from
the AST

Transforming “in the Tool”

Model-Driven Development of Distributed Systems 55

External Model Markings (AO–Modeling)

• To allow the transformation of a source model into a target model (or to
generate code) it is sometimes necessary to provide “support”

information that is specific to the target meta model

–Example: Entity Bean vs Type Manager

• Adding these to the source model “pollutes” the source model with
concepts specific to the target model

• MDA proposes to add “model markings,” but this currently supported
only by a few tools

• Instead, we recommend keeping this information outside of the model

(e.g., in an XML file)

–The transformation engine would use this auxiliary information when
executing the transformations

This is an example of “aspect-oriented programming/modeling”

Model-Driven Development of Distributed Systems 56

Model–to–Model Transformations: QVT

• Most of the transformations built thus far have been constructed with Java

code

– If the metaclasses have a well-designed API (repository API) then this
“procedural transformations” does indeed work well

• However, more dedicated model transformation languages are
becoming available:

–e.g., ATL, MOLA, Wombat (oAW), etc

• The QVT standard is
becoming a reality

– It will be finalized by
the end of 2006

• QVT actually comprises
three languages:

Relations

Language

Core

Language

defined
In terms of

Black Box

Mappings

Operation

Mappings

Language

Java

.NET

Model-Driven Development of Distributed Systems 57

Model–to–Model Transformations: QVT Relational

top relation EntityKeyToTableKey {

checkonly domain alma entity:Entity {
key = entityKeyField:Field {}

};

enforce domain db table:Table {
key = tableKey:Key {}

};

when {
EntityToTable(entity, table);

}

where {
KeyRecordToKeyColumns(entityKeyField, table);

}

}

relation PhysicalQuantityTypeToColumn {

pqName, pqUnit, fieldName : String;

checkonly domain alma field:Field {
name = fieldName,
type = pq:PhysicalQuantityType {
name = pqName,
units = pqUnit

}
};

enforce domain db table:Table {
columns = column:Column {
name = prefix + fieldName + '_as_' +

pqName + '_in_' + pqUnit,
type = AlmaPhysicalQuantityTypeToDbType(pq)

}
};

primitive domain prefix:String;
}

Model-Driven Development of Distributed Systems 58

M2M–Transformations: QVT Operational

mapping DependentPart::part2table(in prefix : String) : Table

inherits fieldColumns {

var dpTableName := prefix + recordName;
name := dpTableName;
columns := mainColumns +

object Column {
name := ‘key_’ + dpTableName;
type := ‘INTEGER’;
inKey := true;

}

end { self.parts->map part2columns(result, dpTableName + ‘_’); }

}

query PrimitiveType::convertPrimitiveType() : String =

if self.name = "int" then 'INTEGER‘
else if self.name = "float" then 'FLOAT‘
else if self.name = "long" then 'BIGINT‘
else 'DOUBLE'

endif endif endif;

Model-Driven Development of Distributed Systems 59

Many Means of Transformations

• Today, many means of transformations are used:

• Plain old Java

• Eclipse GMT ATL

• IBM MTF

• A paper by Czarnecki/Helsen gives a very good overview:
www.swen.uwaterloo.ca/~kczarnec/ECE750T7/czarnecki_helsen.pdf

• ISIS GReAT

• Several partial QVT implementations

• UMLX

60

CONTENTS
Model-Driven Development

of Distributed Systems

Introduction & Motivation

Definition of Terms

Architecture-Centric MDD & Cascading

Role of Frameworks & Patterns in the Context of MDD

Model-to-Model Transformations

An Architectural Process – A Case Study
Examples of Applying MDD Tools: openArchitectureWare

A Metamodel for Component-based Development

System Execution Modeling Tools: GME, CoSMIC, & CUTS

Product-line Architecture Case Study

Summary

Model-Driven Development of Distributed Systems 61

Architectural Case Study

• PHASE 1: Elaborate!

– Technology-Independent Architecture

– Programming Model

– Technology Mapping

– Mock Platform

– Vertical Prototype

• PHASE 2: Iterate!

• PHASE 3: Automate!

– Architecture Metamodel

– Glue Code Generation

– DSL-based Programming Model

– Model-based Architecture Validation

Model-Driven Development of Distributed Systems 62

Architectural Case Study

• PHASE 1: Elaborate!

– Technology-Independent Architecture

– Programming Model

– Technology Mapping

– Mock Platform

– Vertical Prototype

• PHASE 2: Iterate!

• PHASE 3: Automate!

– Architecture Metamodel

– Glue Code Generation

– DSL-based Programming Model

– Model-based Architecture Validation

Model-Driven Development of Distributed Systems 63

Phase 1: Elaborate!

• This first elaboration phase
should be handled by a small

team, before the architecture is
rolled out to the whole team

• We want to build an enterprise

system that contains various
subsystems such as customer
management, billing & catalogs

• In addition to managing the data
using a database, forms & the
like, we also have to manage the
associated long-running

business processes

• We will look at how we can
attack this problem below Database

CRM
Billing
Catalogs

Model-Driven Development of Distributed Systems 64

Architectural Case Study

• PHASE 1: Elaborate!

– Technology-Independent Architecture

– Programming Model

– Technology Mapping

– Mock Platform

– Vertical Prototype

• PHASE 2: Iterate!

• PHASE 3: Automate!

– Architecture Metamodel

– Glue Code Generation

– DSL-based Programming Model

– Model-based Architecture Validation

Model-Driven Development of Distributed Systems 65

Technology–Independent Architecture

• We decide that our system will be built from components

– Each component can provide a number of interfaces

– It can also use a number of interfaces (provided by other
components)

– Communication is synchronous, Communication is also restricted to
be local

– We design components to be stateless

• In addition to components, we also explicitly support business

processes

– These are modeled as a state machine

– Components can trigger the state machine by supplying events to
them

– Other components can be triggered by the state machine, resulting in
the invocation of certain operations

– Communication to/from processes is asynchronous, remote

communication is supported

Model-Driven Development of Distributed Systems 66

• We decide that our system will be built from components

– Each component can provide a number of interfaces

– It can also use a number of interfaces (provided by other
components)

– Communication is synchronous, Communication is also restricted to
be local

– We design components to be stateless

• In addition to components, we also explicitly support business

processes

– These are modeled as a state machine

– Components can trigger the state machine by supplying events to
them

– Other components can be triggered by the state machine, resulting in
the invocation of certain operations

– Communication to/from processes is asynchronous, remote

communication is supported

Technology–Independent Architecture

• Use well-known architectural styles & patterns here

• Typically these are best practices for architecting certain
kinds of systems independent of a particular technology

• They provide a reasonable starting point for defining
(aspects of) your systems's architecture

Model-Driven Development of Distributed Systems 67

Architectural Case Study

• PHASE 1: Elaborate!

– Technology-Independent Architecture

– Programming Model

– Technology Mapping

– Mock Platform

– Vertical Prototype

• PHASE 2: Iterate!

• PHASE 3: Automate!

– Architecture Metamodel

– Glue Code Generation

– DSL-based Programming Model

– Model-based Architecture Validation

Model-Driven Development of Distributed Systems 68

<beans>
<bean id="proc" class="somePackage.SomeProcess">

<property name="resource"><ref bean="hello"/></property>
</bean>
<bean id="hello" class="somePackage.ExampleComponent">

<property name="console"><ref bean="cons"/></property>
</bean>
<bean id="cons" class="someFramework.StdOutConsole">

</beans>

Programming Model

• The programming model uses a simple Dependency Injection

approach à la Spring to define component dependencies on an
interface level

– Spring is a modular framework for Java enterprise applications
(see www.springframework.org)

• An external XML file is responsible for configuring the instances

Model-Driven Development of Distributed Systems 69

Programming Model

• The following piece of code shows the implementation of a simple

example component (note the use of Java 5 annotations)

• Processes engines are components like any other

• For triggers, they provide an interface w/ void operations

• They also define interfaces with the actions that those components can
implement that want to be notified of state changes

public @component class ExampleComponent
implements HelloWorld { // provides HelloWorld

private IConsole console;

public @resource void setConsole(IConsole c) {
this.console = c; // setter for console

} // component

public void sayHello(String s) {
console.write(s);

}

}

Model-Driven Development of Distributed Systems 70

Programming Model

public @process class SomeProcess
implements ISomeProcessTrigger {

private IHelloWorld resource;

public @resource void setResource(IHelloWorld w) {
this.resource = w;

}

public @trigger void T1(int procID) {
SomeProcessInstance i = loadProcess(procID);
if (guardG1()) {

// advance to another state…
}

}

public @trigger void T2(int procID) {
SomeProcessInstance i = loadProcess(procID);
// …
resource.sayHello("hello");

}

}

• Process Component Implementation Example

Model-Driven Development of Distributed Systems 71

Architectural Case Study

• PHASE 1: Elaborate!

– Technology-Independent Architecture

– Programming Model

– Technology Mapping

– Mock Platform

– Vertical Prototype

• PHASE 2: Iterate!

• PHASE 3: Automate!

– Architecture Metamodel

– Glue Code Generation

– DSL-based Programming Model

– Model-based Architecture Validation

Model-Driven Development of Distributed Systems 72

Technology Mapping

• For the remote communication between business processes we will use
web services

– From the interfaces such as IHelloWorld, we generate a WSDL
file, & the necessary endpoint implementation We use on of the
many available web service frameworks

• Spring will be used as long as no advanced load balancing &
transaction policies are required

• Once this becomes necessary, we will use Stateless Session EJBs
The necessary code to wrap our components inside beans is easy to
write

<beans>
<bean id="proc" class="somePackage.SomeProcess">

<property name="resource"><ref bean="hello"/></property>
</bean>
<bean id="hello" class="somePackage.ExampleComponent">

<property name="console"><ref bean="cons"/></property>
</bean>
<bean id="cons" class="someFramework.StdOutConsole">

</beans>

Model-Driven Development of Distributed Systems 73

Technology Mapping

• Persistence for the process
instances – like any other
persistent data – is managed using
Hibernate

–To make this possible, we
create a data class for each

process

–Since this is a normal value
object, using Hibernate to make
it persistent is straight forward

Decide about standards
usage here, not earlier

But keep in mind: First solve
the problem, then look for a
standard – Not vice versa

Use technology-specific
design patterns here

Use them as the basis for the
TECHNOLOGY MAPPING

Web Services,
a WSDL file is

generated

Hibernate
used for database

access

Model-Driven Development of Distributed Systems 74

Architectural Case Study

• PHASE 1: Elaborate!

– Technology-Independent Architecture

– Programming Model

– Technology Mapping

– Mock Platform

– Vertical Prototype

• PHASE 2: Iterate!

• PHASE 3: Automate!

– Architecture Metamodel

– Glue Code Generation

– DSL-based Programming Model

– Model-based Architecture Validation

Model-Driven Development of Distributed Systems 75

Mock Platform

• Since we are already using a PROGRAMMING MODEL that resembles
Spring, we use the Spring container to run the application components
locally

• Stubbing out parts is easy based on Springs XML configuration file

• Since persistence is something that Hibernate takes care of for us, the
MOCK PLATFORM simply ignores the persistence aspect

Application
“business logic”

code

Model-Driven Development of Distributed Systems 76

Architectural Case Study

• PHASE 1: Elaborate!

– Technology-Independent Architecture

– Programming Model

– Technology Mapping

– Mock Platform

– Vertical Prototype

• PHASE 2: Iterate!

• PHASE 3: Automate!

– Architecture Metamodel

– Glue Code Generation

– DSL-based Programming Model

– Model-based Architecture Validation

Model-Driven Development of Distributed Systems 77

Vertical Prototype

• The vertical prototype includes parts of the customer & billing systems

–For creating an invoice, the billing system uses normal interfaces to
query the customer subsystem for customer details

–The invoicing process is based on a long-running process

• A scalability test was executed & resulted in two problems:

–For short running processes, the repeated loading & saving of
persistent process state had become a problem

• A caching layer was added

–Second, web-service based communication with process
components was a problem

• Communication was changed to CORBA for remote cases that
were inside the company

Model-Driven Development of Distributed Systems 78

• The vertical prototype includes parts of the customer & billing systems

–For creating an invoice, the billing system uses normal interfaces to
query the customer subsystem for customer details

–The invoicing process is based on a long-running process

• A scalability test was executed & resulted in two problems:

–For short running processes, the repeated loading & saving of
persistent process state had become a problem

• A caching layer was added

–Second, web-service based communication with process
components was a problem

• Communication was changed to CORBA for remote cases that
were inside the company

Vertical Prototype

•Work on performance improvements here, not earlier

• It is bad practice to optimize design for performance
from the beginning, since this often destroys good
architectural practice

• In certain domains, there are patterns to realize certain
QoS properties (such as stateless design for large-scale
business systems)

•Don’t ignore these intentionally at the beginning!

Model-Driven Development of Distributed Systems 79

Architectural Case Study

• PHASE 1: Elaborate!

– Technology-Independent Architecture

– Programming Model

– Technology Mapping

– Mock Platform

– Vertical Prototype

• PHASE 2: Iterate!

• PHASE 3: Automate!

– Architecture Metamodel

– Glue Code Generation

– DSL-based Programming Model

– Model-based Architecture Validation

Model-Driven Development of Distributed Systems 80

Phase 2: Iterate!

• Spring was intended for the production environment

• New requirements (versioning!) have made this infeasible

–Spring does not support two important features

1. Dynamic installation/de-installation of components &

2. isolations of components from each other(classloaders)

• Eclipse has been chosen as the new execution framework

–The PROGRAMMING MODEL did not change

–The TECHNOLOGY MAPPING, however, had to be adapted

Model-Driven Development of Distributed Systems 81

Architectural Case Study

• PHASE 1: Elaborate!

– Technology-Independent Architecture

– Programming Model

– Technology Mapping

– Mock Platform

– Vertical Prototype

• PHASE 2: Iterate!

• PHASE 3: Automate!

– Architecture Metamodel

– Glue Code Generation

– DSL-based Programming Model

– Model-based Architecture Validation

Model-Driven Development of Distributed Systems 82

Architecture Metamodel

Interface

providedInterface

0..n

requiredInterface

0..n

Container

0..n

Component

Characteristic

0..n

Container

Service
0..n

Operation

1..n

Parameter

0..n

Type

re
tu

rn
T

y
p

e

type

PrimitiveType

ComplexType

1 0..n

newVersionOf

1 0..n

newVersionOf

if a component B is a new version
of a component A, then B has to
have the same interfaces,
additional provided interfaces,
fewer required interfaces or new
version of interfaces of A

a new version of an interface has to
have the same return type and the
same parameters - or parameters
with subtypes.

Process

Component

State

Machine
State

1..n

Transition

fromto

0..n 0..n

Trigger

Operation
0..1

Components can
provide & require

interfaces

Model-Driven Development of Distributed Systems 83

Architecture Metamodel

Interface

providedInterface

0..n

requiredInterface

0..n

Container

0..n

Component

Characteristic

0..n

Container

Service
0..n

Operation

1..n

Parameter

0..n

Type

re
tu

rn
T

y
p

e

type

PrimitiveType

ComplexType

1 0..n

newVersionOf

1 0..n

newVersionOf

if a component B is a new version
of a component A, then B has to
have the same interfaces,
additional provided interfaces,
fewer required interfaces or new
version of interfaces of A

a new version of an interface has to
have the same return type and the
same parameters - or parameters
with subtypes.

Process

Component

State

Machine
State

1..n

Transition

fromto

0..n 0..n

Trigger

Operation
0..1

Interfaces have
operations – they’re

defined as usual

Model-Driven Development of Distributed Systems 84

Architecture Metamodel

Interface

providedInterface

0..n

requiredInterface

0..n

Container

0..n

Component

Characteristic

0..n

Container

Service
0..n

Operation

1..n

Parameter

0..n

Type

re
tu

rn
T

y
p

e

type

PrimitiveType

ComplexType

1 0..n

newVersionOf

1 0..n

newVersionOf

if a component B is a new version
of a component A, then B has to
have the same interfaces,
additional provided interfaces,
fewer required interfaces or new
version of interfaces of A

a new version of an interface has to
have the same return type and the
same parameters - or parameters
with subtypes.

Process

Component

State

Machine
State

1..n

Transition

fromto

0..n 0..n

Trigger

Operation
0..1

Process Components
are special kinds of

components

Model-Driven Development of Distributed Systems 85

Architecture Metamodel

Interface

providedInterface

0..n

requiredInterface

0..n

Container

0..n

Component

Characteristic

0..n

Container

Service
0..n

Operation

1..n

Parameter

0..n

Type

re
tu

rn
T

y
p

e

type

PrimitiveType

ComplexType

1 0..n

newVersionOf

1 0..n

newVersionOf

if a component B is a new version
of a component A, then B has to
have the same interfaces,
additional provided interfaces,
fewer required interfaces or new
version of interfaces of A

a new version of an interface has to
have the same return type and the
same parameters - or parameters
with subtypes.

Process

Component

State

Machine
State

1..n

Transition

fromto

0..n 0..n

Trigger

Operation
0..1

A process
component’s process
is described using a

state machine

Model-Driven Development of Distributed Systems 86

Architecture Metamodel

Interface

providedInterface

0..n

requiredInterface

0..n

Container

0..n

Component

Characteristic

0..n

Container

Service
0..n

Operation

1..n

Parameter

0..n

Type

re
tu

rn
T

y
p

e

type

PrimitiveType

ComplexType

1 0..n

newVersionOf

1 0..n

newVersionOf

if a component B is a new version
of a component A, then B has to
have the same interfaces,
additional provided interfaces,
fewer required interfaces or new
version of interfaces of A

a new version of an interface has to
have the same return type and the
same parameters - or parameters
with subtypes.

Process

Component

State

Machine
State

1..n

Transition

fromto

0..n 0..n

Trigger

Operation
0..1

& the triggers
are special kinds

of operations

Model-Driven Development of Distributed Systems 87

Architecture Metamodel

Interface

providedInterface

0..n

requiredInterface

0..n

Container

0..n

Component

Characteristic

0..n

Container

Service
0..n

Operation

1..n

Parameter

0..n

Type

re
tu

rn
T

y
p

e

type

PrimitiveType

ComplexType

1 0..n

newVersionOf

1 0..n

newVersionOf

if a component B is a new version
of a component A, then B has to
have the same interfaces,
additional provided interfaces,
fewer required interfaces or new
version of interfaces of A

a new version of an interface has to
have the same return type and the
same parameters - or parameters
with subtypes.

Process

Component

State

Machine
State

1..n

Transition

fromto

0..n 0..n

Trigger

Operation
0..1

A container runs
a number of
components

Model-Driven Development of Distributed Systems 88

Architecture Metamodel

Interface

providedInterface

0..n

requiredInterface

0..n

Container

0..n

Component

Characteristic

0..n

Container

Service
0..n

Operation

1..n

Parameter

0..n

Type

re
tu

rn
T

y
p

e

type

PrimitiveType

ComplexType

1 0..n

newVersionOf

1 0..n

newVersionOf

if a component B is a new version
of a component A, then B has to
have the same interfaces,
additional provided interfaces,
fewer required interfaces or new
version of interfaces of A

a new version of an interface has to
have the same return type and the
same parameters - or parameters
with subtypes.

Process

Component

State

Machine
State

1..n

Transition

fromto

0..n 0..n

Trigger

Operation
0..1

Constraints are
used to define

the semantics of
versioning

Model-Driven Development of Distributed Systems 89

Architectural Case Study

• PHASE 1: Elaborate!

– Technology-Independent Architecture

– Programming Model

– Technology Mapping

– Mock Platform

– Vertical Prototype

• PHASE 2: Iterate!

• PHASE 3: Automate!

– Architecture Metamodel

– Glue Code Generation

– DSL-based Programming Model

– Model-based Architecture Validation

Model-Driven Development of Distributed Systems 90

Glue Code Generation

• Our scenario has several useful locations for glue code generation

–We generate the Hibernate mapping files

–We generate the web service & CORBA adapters based on the
interfaces & data types that are used for communication The generator
uses reflection to obtain the necessary type information

–Finally, we generate the process interfaces from the state machine
implementations

• In the programming model, we use Java 5 annotations to mark up
those aspects that cannot be derived by using reflection alone

• Annotations can help a code generator to “know what to generate”
without making the programming model overly ugly

Model-Driven Development of Distributed Systems 91

Architectural Case Study

• PHASE 1: Elaborate!

– Technology-Independent Architecture

– Programming Model

– Technology Mapping

– Mock Platform

– Vertical Prototype

• PHASE 2: Iterate!

• PHASE 3: Automate!

– Architecture Metamodel

– Glue Code Generation

– DSL-based Programming Model

– Model-based Architecture Validation

Model-Driven Development of Distributed Systems 92

DSL–based Programming Model

• We use DSLs for components, interfaces & dependencies

Describing this aspect in a model has two benefits:

– First, the GLUE CODE GENERATION can use a more

semantically rich model as its input &

– The model allows for very powerful MODEL-BASED
ARCHITECTURE VALIDATION (see below)

Model-Driven Development of Distributed Systems 93

DSL–based Programming Model

• From these diagrams:

–We can generate a skeleton component class

–All the necessary interfaces

• Developers simply inherit from the generated skeleton & implement
the operations defined by the provided interfaces

<<component>>
StdOutConsole

<<component>>
HelloWorld

IHelloWorld
IConole

{persistent}

<<component>>

SomeComponent

<<generate>>
<<man-code>>

SomeCompo-

nent.java

<<interface>>

SomeInterface

<<gen-code>>

Some-

Interface.java

<<generate>>

<<gen-code>>

Some

Component

Base.java

Model-Driven Development of Distributed Systems 94

DSL–based Programming Model

<configurations>
 <configuration name="addressStuff">
 <deployment name="am" type="AddressManager">
 <wire name="personDAO" target="personDAO"/>
 </deployment>
 <deployment name="personDAO" type="PersonDAO"/>
 </configuration>
 <configuration name="customerStuff">
 <deployment name="cm" type="CustomerManager">
 <wire name="addressStore" target=":addressStuff:am"/>
 </deployment>
 </configuration>
 <configuration name="test" includes="addressStuff, customerStuff"/>
</configurations>

<<component>>

AddressManager

<<interface>>

AddressStore

addOrUpdateContact(p: Person) : void
addAddress(p: Person, a: Address) : void
getAddresses(p: Person) : Address[]

<<entity>>

Person

name: String
firstName: String

<<valuetype>>

Address

street: String
zip: String
City: String

0..n

<<component>>

CustomerManager

address-
Store

<systems>
 <system name="production">
 <node name="server" type="spring" configuration="addressStuff"/>
 <node name="client" type="eclipse" configuration="customerStuff"/>
 <system>
 <system name="test">
 <node name="test" type="spring" configuration="test"/>
 <system>
</systems>

Type Model

Composition Model System Model

person

Type model defines
components (which are

instantiatable types), interfaces

& data types, as well as the
depdendencies among them

Model-Driven Development of Distributed Systems 95

DSL–based Programming Model

<configurations>
 <configuration name="addressStuff">
 <deployment name="am" type="AddressManager">
 <wire name="personDAO" target="personDAO"/>
 </deployment>
 <deployment name="personDAO" type="PersonDAO"/>
 </configuration>
 <configuration name="customerStuff">
 <deployment name="cm" type="CustomerManager">
 <wire name="addressStore" target=":addressStuff:am"/>
 </deployment>
 </configuration>
 <configuration name="test" includes="addressStuff, customerStuff"/>
</configurations>

<<component>>

AddressManager

<<interface>>

AddressStore

addOrUpdateContact(p: Person) : void
addAddress(p: Person, a: Address) : void
getAddresses(p: Person) : Address[]

<<entity>>

Person

name: String
firstName: String

<<valuetype>>

Address

street: String
zip: String
City: String

0..n

<<component>>

CustomerManager

address-
Store

<systems>
 <system name="production">
 <node name="server" type="spring" configuration="addressStuff"/>
 <node name="client" type="eclipse" configuration="customerStuff"/>
 <system>
 <system name="test">
 <node name="test" type="spring" configuration="test"/>
 <system>
</systems>

Type Model

Composition Model System Model

person

Composition Model defines
named configurations of

component instances & the
wiring among them

Model-Driven Development of Distributed Systems 96

DSL–based Programming Model

<configurations>
 <configuration name="addressStuff">
 <deployment name="am" type="AddressManager">
 <wire name="personDAO" target="personDAO"/>
 </deployment>
 <deployment name="personDAO" type="PersonDAO"/>
 </configuration>
 <configuration name="customerStuff">
 <deployment name="cm" type="CustomerManager">
 <wire name="addressStore" target=":addressStuff:am"/>
 </deployment>
 </configuration>
 <configuration name="test" includes="addressStuff, customerStuff"/>
</configurations>

<<component>>

AddressManager

<<interface>>

AddressStore

addOrUpdateContact(p: Person) : void
addAddress(p: Person, a: Address) : void
getAddresses(p: Person) : Address[]

<<entity>>

Person

name: String
firstName: String

<<valuetype>>

Address

street: String
zip: String
City: String

0..n

<<component>>

CustomerManager

address-
Store

<systems>
 <system name="production">
 <node name="server" type="spring" configuration="addressStuff"/>
 <node name="client" type="eclipse" configuration="customerStuff"/>
 <system>
 <system name="test">
 <node name="test" type="spring" configuration="test"/>
 <system>
</systems>

Type Model

Composition Model System Model

person

System model deploys

configurations onto systems

& nodes Nodes define the
kind of system they

represent

Model-Driven Development of Distributed Systems 97

DSL–based Programming Model

<<gen-code>>

SomeEntity.java

<<entity>>

SomeEntity

<<generate>>

<<interface>>

SomeEntityDAO
<<transform>>

<<generate>> <<gen-code>>

SomeEntity-

DAO.java

<<component>>

SomeEntityDAO

<<transform>>

<<generate>> <<gen-code>>

SomeEntity-

DAOBase

.java

<<gen-code>>

SomeEntity-

DAO.java

<<generate>>

• Using Cascaded MDD, we generate

–DAO Components for Entities from the Entities in the model

–An interface for the DAO component,

–As well as the implementation code for the DAO & the Entity itself

Model-Driven Development of Distributed Systems 98

DSL–based Programming Model

<<generate>>

<<gen-code>>

AProcess-

Data.java

<<proc-component>>

AProcess

<<gen-code>>

AProcessBase

.java

<<gen-code>>

AProcessProcBase.java

<<trigger-interface>>

AProcessInterface

*

1

sm AProcess

<<entity>>

AProcessData

<
<

tr
a
n
s
fo

rm
>

>

s1

s2

s3

<<generate>> <<generate>>operations...

attributes...

data

1

<
<

tr
a
n
s
fo

rm
>

>

guard operations... (abstract)

action methods... (abstract)

<<man-code>>

AProcess.java

• We also use cascading for the Process Components

First, developers
model the process

component itself

Model-Driven Development of Distributed Systems 99

DSL–based Programming Model

<<generate>>

<<gen-code>>

AProcess-

Data.java

<<proc-component>>

AProcess

<<gen-code>>

AProcessBase

.java

<<gen-code>>

AProcessProcBase.java

<<trigger-interface>>

AProcessInterface

*

1

sm AProcess

<<entity>>

AProcessData

<
<

tr
a
n
s
fo

rm
>

>

s1

s2

s3

<<generate>> <<generate>>operations...

attributes...

data

1

<
<

tr
a
n
s
fo

rm
>

>

guard operations... (abstract)

action methods... (abstract)

<<man-code>>

AProcess.java

They also model a
trigger interface for

that component with

no operations

• We also use cascading for the Process Components

Model-Driven Development of Distributed Systems 100

DSL–based Programming Model

<<generate>>

<<gen-code>>

AProcess-

Data.java

<<proc-component>>

AProcess

<<gen-code>>

AProcessBase

.java

<<gen-code>>

AProcessProcBase.java

<<trigger-interface>>

AProcessInterface

*

1

sm AProcess

<<entity>>

AProcessData

<
<

tr
a
n
s
fo

rm
>

>

s1

s2

s3

<<generate>> <<generate>>operations...

attributes...

data

1

<
<

tr
a
n
s
fo

rm
>

>

guard operations... (abstract)

action methods... (abstract)

<<man-code>>

AProcess.java

Developers then model the state

machine for that process
component & associate it with

the process component

• We also use cascading for the Process Components

Model-Driven Development of Distributed Systems 101

DSL–based Programming Model

<<generate>>

<<gen-code>>

AProcess-

Data.java

<<proc-component>>

AProcess

<<gen-code>>

AProcessBase

.java

<<gen-code>>

AProcessProcBase.java

<<trigger-interface>>

AProcessInterface

*

1

sm AProcess

<<entity>>

AProcessData

<
<

tr
a
n
s
fo

rm
>

>

s1

s2

s3

<<generate>> <<generate>>operations...

attributes...

data

1

<
<

tr
a
n
s
fo

rm
>

>

guard operations... (abstract)

action methods... (abstract)

<<man-code>>

AProcess.java

Using M2M, the
operations are derived

from the triggers used
in the state machine

• We also use cascading for the Process Components

Model-Driven Development of Distributed Systems 102

DSL–based Programming Model

<<generate>>

<<gen-code>>

AProcess-

Data.java

<<proc-component>>

AProcess

<<gen-code>>

AProcessBase

.java

<<gen-code>>

AProcessProcBase.java

<<trigger-interface>>

AProcessInterface

*

1

sm AProcess

<<entity>>

AProcessData

<
<

tr
a
n
s
fo

rm
>

>

s1

s2

s3

<<generate>> <<generate>>operations...

attributes...

data

1

<
<

tr
a
n
s
fo

rm
>

>

guard operations... (abstract)

action methods... (abstract)

<<man-code>>

AProcess.java

Using M2M, the Entity

that stores process
instances persistently is
derived from the state

machine; then the Entity
transformations kick in –

see before

• We also use cascading for the Process Components

Model-Driven Development of Distributed Systems 103

DSL–based Programming Model

<<generate>>

<<gen-code>>

AProcess-

Data.java

<<proc-component>>

AProcess

<<gen-code>>

AProcessBase

.java

<<gen-code>>

AProcessProcBase.java

<<trigger-interface>>

AProcessInterface

*

1

sm AProcess

<<entity>>

AProcessData

<
<

tr
a
n
s
fo

rm
>

>

s1

s2

s3

<<generate>> <<generate>>operations...

attributes...

data

1

<
<

tr
a
n
s
fo

rm
>

>

guard operations... (abstract)

action methods... (abstract)

<<man-code>>

AProcess.java

As usual, from
components we generate
skeleton base classes

• We also use cascading for the Process Components

Model-Driven Development of Distributed Systems 104

DSL–based Programming Model

<<generate>>

<<gen-code>>

AProcess-

Data.java

<<proc-component>>

AProcess

<<gen-code>>

AProcessBase

.java

<<gen-code>>

AProcessProcBase.java

<<trigger-interface>>

AProcessInterface

*

1

sm AProcess

<<entity>>

AProcessData

<
<

tr
a
n
s
fo

rm
>

>

s1

s2

s3

<<generate>> <<generate>>operations...

attributes...

data

1

<
<

tr
a
n
s
fo

rm
>

>

guard operations... (abstract)

action methods... (abstract)

<<man-code>>

AProcess.java

Instead of letting developers
implement the business logic
manually, we generate an

“Intermediate” class that
contains the executable, &

persistence-aware state machine

• We also use cascading for the Process Components

Model-Driven Development of Distributed Systems 105

DSL–based Programming Model

<<generate>>

<<gen-code>>

AProcess-

Data.java

<<proc-component>>

AProcess

<<gen-code>>

AProcessBase

.java

<<gen-code>>

AProcessProcBase.java

<<trigger-interface>>

AProcessInterface

*

1

sm AProcess

<<entity>>

AProcessData

<
<

tr
a
n
s
fo

rm
>

>

s1

s2

s3

<<generate>> <<generate>>operations...

attributes...

data

1

<
<

tr
a
n
s
fo

rm
>

>

guard operations... (abstract)

action methods... (abstract)

<<man-code>>

AProcess.java

Finally, developers extend
that intermediate class &

implement guard & action

operations manually by
overriding abstract methods

• We also use cascading for the Process Components

Model-Driven Development of Distributed Systems 106

Architectural Case Study

• PHASE 1: Elaborate!

– Technology-Independent Architecture

– Programming Model

– Technology Mapping

– Mock Platform

– Vertical Prototype

• PHASE 2: Iterate!

• PHASE 3: Automate!

– Architecture Metamodel

– Glue Code Generation

– DSL-based Programming Model

– Model-based Architecture Validation

Model-Driven Development of Distributed Systems 107

Model–Based Architecture Validation

• We can use automated model checking to verify that

– For triggers in processes there is a component that calls the trigger

– Dependency management: It is easy to detect circular
dependencies among components

– Components are assigned to layers (app, service, base) &
dependencies are only allowed in certain directions

• The component signature generated from the model prevents
developers from creating dependencies to components that are not
described in the model

Model-Driven Development of Distributed Systems 108

Model–Based Architecture Validation

• Another really important aspect in our example system is evolution of

interfaces:

<<component>>
SomeCompV1

<<interface>>
SomeInterface

soSomething(int, ValueObject)

<<component>>
SomeCompV2

<<newVersionOf>>
<<interface>>

AnotherInterface

<<vo>>
ValueObject

<<component>>
SomeCompV3

<<newVersionOf>>

<<interface>>
SomeInterfaceV3

soSomething(int, ValueObjectV2)
anAdditionalOperation()

<<newVersionOf>>

<<vo>>
ValueObjectV3

<<newVersionOf>>

109

CONTENTS
Model-Driven Development

of Distributed Systems

Introduction & Motivation

Definition of Terms

Architecture-Centric MDD & Cascading

Role of Frameworks & Patterns in the Context of MDD

Model-to-Model Transformations

An Architectural Process – A Case Study

Examples of Applying MDD Tools:

openArchitectureWare
A Metamodel for Component-based Development

System Execution Modeling Tools: GME, CoSMIC, & CUTS

Product-line Architecture Case Study

Summary

Model-Driven Development of Distributed Systems 110

Status / Track Record

• Open Source

• Version 4.1 is current

• Proven track record in various domains & project

contexts

– e.g., telcos, internet, enterprise, embedded realtime,
finance, …

• www.openarchitectureware.org

• IDE-portions based on Eclipse

• (Optional) Integration with Eclipse Modelling facilities
(such as EMF)

Model-Driven Development of Distributed Systems 111

Overview

Model-Driven Development of Distributed Systems 112

Defining the Metamodel

• The metamodel is
defined using

EMF.

• EMF provides
tree-based

editors to define
the metamodel.

Model-Driven Development of Distributed Systems 113

Building the Graphical Editor

• The editor is based on the metamodel defined before.

• A number of additional models has to be defined:

– A model defining the graphical notation

– A model for the editor’s pallette & other tooling

– A mapping model that binds these two models to the
domain metamodel

• A generator generates the concrete editor based on
these models.

• The editor is build with the Eclipse GMF, the Graphical

Modelling Framework.

Model-Driven Development of Distributed Systems 114

Building the Graphical Editor II

Model-Driven Development of Distributed Systems 115

Building the Graphical Editor III

• Here is the editor, started in the runtime workbench, with
our CD Player example.

These rectangles
are to demo

decorations

Tool
Palette

Overview
Pane

Model
Element

Properties

Model-Driven Development of Distributed Systems 116

Constraints

• Constraints are rules that models must conform to in order
to be valid. These are in addition to the structures that the
metamodel defines.

• A constraint is a boolean expression (a.k.a predicate) that
must be true for a model to conform to a metamodel.

• Constraint Evaluation should be available

– in batch mode (when processing the model)

– as well as interactively, during the modelling phase in the
editor

... & we don’t want to implement constraints twice to have
them available in both places!

• Functional languages are often used here.

– UML’s OCL (Object Constraint Language) is a good
example,

– We use oAW’s check language, which is alike OCL

Model-Driven Development of Distributed Systems 117

Constraints II

• Here are some examples written in oAW’s Checks

language.

• Note the code completion & error highlighting

xamples writ
For which elements
is the constraint is

applicable

Constraint
Expression

Error message
in case

Expression is
false

ERROR or
WARNING

Model-Driven Development of Distributed Systems 118

Constraints III

• In this model there
are two errors

– There are two
states with the
same name (Off)

– The start state has
more than one out-
Transition

• The validation is
executed automatically

• Clicking the error
message selects

the respective
“broken” model

element in the dia-
gram.

Model-Driven Development of Distributed Systems 119

Code Generation

• Code Generation is used to generate executable

code from models.

• Code Generation is based on the metamodel & uses
templates to attach to-be-generated source code.

• In openArchitectureWare,
we use a template

language called xPand.

• It provides a number of
advanced features such as
polymorphism, AO support
and a powerful integrated
expression language.

• Templates can access
metamodel properties

seamlessly

Model-Driven Development of Distributed Systems 120

Code Generation II

• The blue text is
generated into the
target file.

• The capitalized

words are xPand
keywords

• Black text are
metamodel
properties

• DEFINE...END-
DEFINE blocks
are called
templates.

• The whole thing is
called a template

file.

Opens a
File

Name is a property
of the State-

Machine class

Like methods in OO,
templates are

associated with a
(meta)class

Iterates
over all

the states
of the
State-

Machine

Calls another
template

Extension Call

Template
name

Namespace &
Extension Import

Model-Driven Development of Distributed Systems 121

Code Generation III

• One can add behaviour to existing metaclasses

using oAW’s Xtend language.

• Extensions can be called using member-style syntax:
myAction.methodName()

• Extensions can be used in Xpand templates, Check

files as well as in other Extension files.

• They are imported into template files using the
EXTENSION keyword

Imports a
namespace

Extensions are
typically defined
for a metaclass

Extensions can also
have more than one

parameter

Model-Driven Development of Distributed Systems 122

Code Generation IV

• Workflow loads the model, checks it (same
constraints as in Editor!) & then generates code.

A component is a
„step“ in the

workflow

A number of
parameters are

passed in

We invoke the
same check file as

in the editor

This starts the
first, „top level“

template

Code is
automatically

beautified

Model-Driven Development of Distributed Systems 123

Recipes I

• There are various ways of integrating generated code
with non-generated code:

a)

b)

c) d) e)

generated code non-generated code

Model-Driven Development of Distributed Systems 124

Recipes II

• Here’s an error that suggests that I extend my
manually written class from the generated base

class:

Recipes can be
arranged

hierarchically

This is a
failed check

„Green“ ones
can also be

hidden Here you can see
additional

information about
the selected recipe

Model-Driven Development of Distributed Systems 125

Recipes III

• I now add the respective extends clause, & the
message goes away – automatically.

Adding the extends
clause makes all of

them green

Model-Driven Development of Distributed Systems 126

Recipes IV

• Now I get a number of compile errors because I have to
implement the abstract methods defined in the super
class:

• I finally implement them sensibly, & everything is ok.

• The Recipe Framework & the Compiler have guided me

through the manual implementation steps.

– If I didn’t like the compiler errors, we could also add
recipe tasks for the individual operations.

– oAW comes with a number of predefined recipe

checks for Java. But you can also define your own
checks, e.g. to verify C++ code.

Model-Driven Development of Distributed Systems 127

Recipes V

• Here’s the implementation of the Recipes. This workflow
component must be added to the workflow.

You extend one of a
number of suitable

base classes…

…and override a
suitable template

method

You can then create
any number of

checks.

This one checks
that a class extends

another one

And return the
checks to the
framework

Model-Driven Development of Distributed Systems 128

Model Transformations I

• Model Transformations create one or more new
models from one or more input models. The input
models are left unchanged.

– Often used for stepwise refinement of models &
modularizing generators

– Input/Output Metamodels are different

• Model Modifications are used to alter or complete an
existing model

• For both kinds, we use the xTend language, an
extension of the openArchitectureWare expression
language.

• Alternative languages are available such as Wombat,
ATL, MTF or Tefkat (soon: various QVT
implementations)

Model-Driven Development of Distributed Systems 129

Model Transformation II

• The model modification shows how to add an
additional state & some transitions to an existing state
machine (emergency shutdown)

Extensions can
import other
extensions

The main function

„create extensions“
guarantee that for

each set of
parameters the

identical result will
be returned.

Therefore
createShutDown()
will always return
the same element.

Model-Driven Development of Distributed Systems 130

Model Transformation III

• The generator is based on an implementation-

specific metamodel without the concept of composite
states.

• This makes the templates simple, because we don‘t
have to bridge the whole abstraction gap (from model
to code) in the templates.

• Additionally, the generator is more reusable, because
the abstractions are more general.

• We will show a transformation which transforms
models described with our GMF editor into models
expected by the generator.

Model-Driven Development of Distributed Systems 131

Model Transformation IV

• We want to transform from the editor’s
metamodel ‘statemachine2’ to the
generator’s metamodel ‘simpleSM’

• We need to ‘normalize’

composite states.

• States inherit outgoing

transitions from their parent

states

• For those transitions the

exit actions are inherited, too

• Unify action & event

elements with the same

name

Model-Driven Development of Distributed Systems 132

Textual Editor I

• A graphical notation is not always the best syntax for
DSLs.

• So, while GMF provides a means to generate editors
for graphical notations, we also need to be able to
come up with editors for textual syntaxes.

• These editors need to include at least

– Syntax hightlighting

– Syntax error checking

– Semantic constraint checking

Model-Driven Development of Distributed Systems 133

Textual Editor II

• We use oAW’s textual DSL generator framework
xText

• Based on a BNF-like language it provides:

– An EMF-based metamodel (representing the AST)

– An Antlr parser instantiating dynamic EMF-
models

– An Eclipse text editor plugin providing

• syntax highlighting

• An outline view,

• syntax checking

• as well as constraints checking based on a Check

file, as always oAW

Model-Driven Development of Distributed Systems 134

Textual Editor III

• The grammar (shown in
the boostrapped editor)

The first rule
describes the
root element

of the AST

• The generated eCore AST
model

A
literal

States contain
a number of

entry actions,
transitions &
exit actions

Assigns an
indentifier to

a variable
(here: state)

These variables
will become
attributes of
the AST class

Rule
name

Rule names
will

become the
AST classes

Model-Driven Development of Distributed Systems 135

Textual Editor IV

• You can define additioal constraints that should be
validated in the generated editor.

• This is based on oAW’s Check language

– i.e. These are constraints like all the others you’ve
already come across

Model-Driven Development of Distributed Systems 136

Textual Editor V
Literals

have
become

keywords

• The generated

editor & it’s
outline view

Constraints
are

evaluated
in real time

137

CONTENTS
Model-Driven Development

of Distributed Systems

Introduction & Motivation

Definition of Terms

Architecture-Centric MDD & Cascading

Role of Frameworks & Patterns in the Context of MDD

Model-to-Model Transformations

An Architectural Process – A Case Study

Examples of Applying MDD Tools: openArchitectureWare

A Metamodel for Component-based

Development
System Execution Modeling Tools: GME, CoSMIC, & CUTS

Product-line Architecture Case Study

Summary

Model-Driven Development of Distributed Systems 138

Why?

• Based on our experience, the
core “asset” in model-driven
component based
development is not a
generator that generated
some J2EE code, rather, the
“right” selection of models

& viewpoints is essential

• So these slides contain
exactly this: a reference

metamodel that has been
used in many, many different
projects

Model-Driven Development of Distributed Systems 139

Three Basic Viewpoints

• Type Model: Components, Interfaces, Data Types

• Composition Model: Instances, “Wirings”

• System Model: Nodes, Channels, Deployments

Model-Driven Development of Distributed Systems 140

Type Metamodel

• Components

• Interfaces

• Operations

Model-Driven Development of Distributed Systems 141

Type Metamodel II (Data)

• Data Types

• Cross-References

Model-Driven Development of Distributed Systems 142

Composition Metamodel

• Component
Instances

• Connectors,
“Wiring”

Model-Driven Development of Distributed Systems 143

System Metamodel

• Hardware

• Deployment

Model-Driven Development of Distributed Systems 144

Viewpoint Dependencies

• Dependencies between Viewpoint Models are only

allowed in the way shown below in order to

– Be able to have several compositions per type model

– And several system models per composition

• This is important to be able to have several “systems”,

– Several deployed locally for testing, using only a subset of
the defined components,

– And “the real system”

Model-Driven Development of Distributed Systems 145

Component Implementation

• We have not yet talked about the implementation code

that needs to go along with components.

– As a default, you will provide the implementation by a
manually written subclass

• However, for special kinds of components (“component
kind” will be defined later) can use different
implementation strategies -> Cascading!

Model-Driven Development of Distributed Systems 146

Component Implementation II

• Remember
the example

of the process

components

from before:

• Various other
implementation

stragies can be used,
such as:

– Rule-Engines

– “Procedural” DSLs or action
semantics

• Note that, here, interpreters can often be used sensibly
instead of generating code!

Model-Driven Development of Distributed Systems 147

Aspect Models

• Often, the described three viewpoints are not enough,
additional aspects need to be described.

• These go into separate aspect models, each describing
a well-defined aspect of the system.

– Each of them uses a suitable DSL/syntax

– The generator acts as a weaver

• Typical Examples are

– Persistence

– Security

– Forms, Layout, Pageflow

– Timing, QoS in General

– Packaging & Deployment

– Diagnostics & Monitoring

Model-Driven Development of Distributed Systems 148

Separate Interfaces

• You might not need separate Interfaces

– Operations could be annotated directly to components

– Dependencies would be to components, not to interfaces

• Relationships between interfaces are often needed,

– “if you require this interface, you also have to provide that
one”

Model-Driven Development of Distributed Systems 149

Component Types

• Often different “kinds” of Components are needed.

– To manage dependencies,

– And to define implementation strategies

Model-Driven Development of Distributed Systems 150

Component Layering

• Alternatively you can simply annotate each component

with a layer

Model-Driven Development of Distributed Systems 151

Component Signatures

• You might need to provide several implementations (i.e.
components) for the same signature (i.e.
provided/required interfaces).

– So you need to separate implementation from signature

Model-Driven Development of Distributed Systems 152

Hierarchical Components I

• This allows an infinite nesting of component structures

• It requires the concept of ports

• Note that the clear boundaries between type &
composition models are blurted (which makes this
approach a bit more advanced!)

• Example:

Model-Driven Development of Distributed Systems 153

Hierarchical Components II

Model-Driven Development of Distributed Systems 154

Configuration Parameters

• Parameters allow for dynamic configuration of
components.

• There is a wide variety of potential value definition

scopes

Model-Driven Development of Distributed Systems 155

Behaviour

• Different (types of) Components typically have different
lifecycles

• The threading model is typically different, too.

• Also, some components might be stateless, while others
are stateful (with persistent state, or not)

Model-Driven Development of Distributed Systems 156

Asynchronous Communication

• Some components might need asynchronous

communication with others

– Note that this has to be specified in the type model – since
it affects the API!

Model-Driven Development of Distributed Systems 157

Events

• Events are a way to signal information from a
component to another, asynchronously.

– Sometimes it is useful to allow for violations of the
(otherwise rigidly enforced) dependency rules

Model-Driven Development of Distributed Systems 158

Subsystems & Business Components

• If the number of components grows, additional means to

organize them are required.

• The internal structure of subsystems or business
components can be defined by enforcing certain policies
wrt. Component types

– For example, each business component must have exactly
one facade

Model-Driven Development of Distributed Systems 159

Data

• More elaborate data structures are often required

– Typical example is based on entities & dependent types

• DAOComponents are used to manage the entities & their
associated dependent types

• Ownership & Scope of data types is essential

– Indirect dependency management

– packaging

Model-Driven Development of Distributed Systems 160

Wiring

• Optional wires might be useful

• Dynamic Wires don’t specify the target instance, but
rather a set of properties based on which at runtime, the
target can be found

– Important for dynamic systems, e.g. P2P

Model-Driven Development of Distributed Systems 161

Container Types & Networks

• This allows for more specific description of hardware,

– Networks & network types describe means to
communicate

– Whereas container types are important to distinguish
various execution environments (server, local, …)

Model-Driven Development of Distributed Systems 162

Versioning

• Capturing versioning & type evolution information explicitly
in the model allows for definitive statements about
component compatibility & system evolution.

163

CONTENTS
Model-Driven Development

of Distributed Systems

Introduction & Motivation

Definition of Terms

Architecture-Centric MDD & Cascading

Role of Frameworks & Patterns in the Context of MDD

Model-to-Model Transformations

An Architectural Process – A Case Study

Examples of Applying MDD Tools: openArchitectureWare

A Metamodel for Component-based Development

System Execution Modeling Tools:

GME, CoSMIC, & CUTS
Product-line Architecture Case Study

Summary

Model-Driven Development of Distributed Systems 164

MDD Tool

Developers

(Metamodelers)

Application

Developers

(Modelers)

Generic Modeling Environment (GME)

GME is open-source: www.isis.vanderbilt.edu/Projects/gme/default.htm

“Write Code That Writes Code That Writes Code!”

Decorator Decorator

GModel GMeta

CORE

MetamodelXML

Paradigm Definition

Storage Options…
DB #nDB #1 XML

…

UML / OCL

COM

COMCOM

XML

XML

ODBC

Constraint
ManagerBrowser

Translator(s)
Add-On(s)

GME Editor

GME Architecture

Supports “correct-by-construction” of software systems

Model-Driven Development of Distributed Systems 165

MDD Application Development with GME

•Application

developers use
modeling environments
created w/MetaGME to
build applications

–Capture elements &
dependencies
visually

Example DSL is the
“Platform-Independent
Component Modeling

Language” (PICML) tool

Model-Driven Development of Distributed Systems 166

MDD Application Development with GME

•Application

developers use
modeling environments
created w/MetaGME to
build applications

–Capture elements &
dependencies
visually

–Model interpreter
produces something
useful from the
models

•e.g., 3rd generation
code, simulations,
deployment
descriptions &
configurations

<connection>
 <name>compressionQosPredictor_qosLevels</name>
 <internalEndpoint>
 <portName>qosLevels</portName>
 <instance xmi:idref="CompressionQosPredictor_F3C2CBE0-B2CE-46CC-B446-
F64D91B44E56"/>
 </internalEndpoint>
 <internalEndpoint>
 <portName>compressionQosPredictor</portName>
 <instance xmi:idref="LocalResourceManagerComponent_7EF8B77A-F5EA-
4D1A-942E-13AE7CFED30A"/>
 </internalEndpoint>
 </connection>
 <connection>
 <name>scalingQosPredictor_qosLevels</name>
 <internalEndpoint>
 <portName>qosLevels</portName>
 <instance xmi:idref="ScaleQosPredictor_F3024A4F-F6E8-4B9A-BD56-
A2E802C33E32"/>
 </internalEndpoint>
 <internalEndpoint>
 <portName>scalingQosPredictor</portName>
 <instance xmi:idref="LocalResourceManagerComponent_7EF8B77A-F5EA-
4D1A-942E-13AE7CFED30A"/>
 </internalEndpoint>
 </connection>

ima

inc

cur

out

CropQosket
[CropQosket]

qos

CroppingQosPredictor
[CroppingQosPredictor]

pol

res

inc

com

sca

cro

ima

out

cro

sca

com

dif

cpu

LocalResourceManagerComponent
[LocalResourceManagerComponent]

ima

inc

cur

out

CompressQosket
[CompressQosket]

ima

sen
out

Sender
[Sender]

qos

CompressionQosPredictor
[CompressionQosPredictor]

qos

ScaleQosPredictor
[ScaleQosPredictor]

ima

inc

cur

out

ScaleQosket
[ScaleQosket]

cpu

CPUBrokerComponent
[CPUBrokerComponent]

inc out

LocalReceiver
[LocalReceiver]

PolicyChangeEvt

ResourceAllocationEvt

ImageGenerationEvt

ima

inc

cur

out

DiffServQosket
[Dif fServQosket]

delegatesTo

delegatesTo

emit

invoke

invoke

invoke
invoke

invoke

emit emit emit

invoke

invoke
invoke

emit

delegatesTo

PICML generates XML descriptors
corresponding to OMG Deployment
& Configuration (D&C) specification

Model-Driven Development of Distributed Systems 167

MDD Tool Development in GME

•Tool developers use
MetaGME to develop a
domain-specific

graphical modeling

environment

–Define syntax &
visualization of the
environment via
metamodeling

Model-Driven Development of Distributed Systems 168

MDD Tool Development in GME

•Tool developers use
MetaGME to develop a
domain-specific

graphical modeling

environment

–Define syntax &
visualization of the
environment via
metamodeling

–Define static
semantics via Object

Constraint Language

(OCL)

Model-Driven Development of Distributed Systems 169

•Tool developers use
MetaGME to develop a
domain-specific

graphical modeling

environment

–Define syntax &
visualization of the
environment via
metamodeling

–Define static
semantics via Object

Constraint Language

(OCL)

–Dynamic semantics
implemented via
model interpreters

MDD Tool Development in GME

Model-Driven Development of Distributed Systems 170

Applying GME to System Execution Modeling
System Execution Modeling Workflow

1 2

34

1. Compose scenarios to
exercise critical system
paths/layers

2. Associate performance
properties with scenarios &
assign properties to
components specific to
paths/layers

3. Configure workload generators
to run experiments, generate
path-/layer-specific
deployment plans, & measure
performance along critical
paths/layers

4. Feedback results into models
to verify if deployment plan &
configurations meet
performance requirements

Model-Driven Development of Distributed Systems 171

Context: Service–Oriented Architectures

• Historically, distributed real-time &
embedded (DRE) systems were built
directly atop OS & protocols

Operating System &
Communication Protocols

Hardware Devices

Applications

Model-Driven Development of Distributed Systems 172

Applications

• Traditional methods of development have
been replaced by middleware layers to
reuse architectures & code for enterprise

DRE systems

• Viewed externally as Service-Oriented

Architecture (SOA) Middleware

Operating System &
Communication Protocols

Hardware Devices

Domain-Specific Services

Common Services

Distribution Middleware

Infrastructure Middleware

• Historically, distributed real-time &
embedded (DRE) systems were built
directly atop OS & protocols

Service-Oriented
Architecture Middleware

Context: Service–Oriented Architectures

Note: our techniques also apply to conventional enterprise distributed systems

Model-Driven Development of Distributed Systems 173

Applications

• Traditional methods of development have
been replaced by middleware layers to
reuse architectures & code for enterprise

DRE systems

• Viewed externally as Service-Oriented

Architecture (SOA) Middleware

Operating System &
Communication Protocols

Hardware Devices

Domain-Specific Services

Common Services

Distribution Middleware

Infrastructure Middleware

• Historically, distributed real-time &
embedded (DRE) systems were built
directly atop OS & protocols

Multi-layer Resource
Manager (MLRM)

• e.g., DARPA Adaptive & Reflective
Management System (ARMS) program’s
Multi-layer Resource Manager (MLRM)

• MLRM leverages standards-based
SOA middleware to manage resources
for shipboard computing environments

Context: Service–Oriented Architectures

dtsn.darpa.mil/ixodarpatech/ixo_FeatureDetail.asp?id=6 Model-Driven Development of Distributed Systems 174

Applications

Domain-Specific Services

ARMS Multi–Layer Resource Manager (MLRM)

• ARMS MLRM architecture
includes

–Top domain layer

containing components
that interact with the ship
mission manager

–Middle resource pool

layer is an abstraction for
a set of computer nodes
managed by a pool

manager

–Bottom resource layer

managers the actual
resource computing
components, i.e., CPUs,
memory, networks, etc.

www.cs.wustl.edu/~schmidt/PDF/JSS-2006.pdf

Model-Driven Development of Distributed Systems 175

Serialized Phasing is Common in Enterprise DRE Systems

Application components

developed after infrastructure

is sufficiently mature

Development Timeline

L
e

v
e

l
o

f
A

b
s
tr

a
c
ti
o

n

System

infrastructure

components

developed first

Model-Driven Development of Distributed Systems 176

Serialized Phasing is Common in Enterprise DRE Systems

Development Timeline

L
e

v
e

l
o

f
A

b
s
tr

a
c
ti
o

n

Integration

Surprises!!!

System integration &
testing occurs only after

finishing application
development

Model-Driven Development of Distributed Systems 177

Complexities of Serialized Phasing

Development Timeline

L
e

v
e

l
o

f
A

b
s
tr

a
c
ti
o

n

Still in development

Ready for testing
Complexities

• System infrastructure cannot be
tested adequately until applications
are done

Model-Driven Development of Distributed Systems 178

Complexities of Serialized Phasing

Development Timeline

L
e

v
e

l
o

f
A

b
s
tr

a
c
ti
o

n

End-to-end
performance of
critical path?

Complexities

• System infrastructure cannot be
tested adequately until applications
are done

• Entire system must be deployed &
configured (D&C) properly to meet
QoS requirements

• Existing evaluation tools do not
support “what if” evaluation

System bottleneck?

Often, QoS requirements of components aren’t known until late in the lifecycle

Model-Driven Development of Distributed Systems 179

Unresolved QoS Concerns with Serialized Phasing

Meet QoS
requirements?

Key QoS concerns

• Which D&C’s meet the QoS
requirements?

Development Timeline

L
e

v
e

l
o

f
A

b
s
tr

a
c
ti
o

n

Model-Driven Development of Distributed Systems 180

Unresolved QoS Concerns with Serialized Phasing

Performance
metrics?

Key QoS concerns

• Which D&C’s meet the QoS
requirements?

• What is the worse/average/best
time for various workloads?

Development Timeline

L
e

v
e

l
o

f
A

b
s
tr

a
c
ti
o

n

Model-Driven Development of Distributed Systems 181

Unresolved QoS Concerns with Serialized Phasing

It can take a long time to address these concerns using serialized phasing!!

Key QoS concerns

• Which D&C’s meet the QoS
requirements?

• What is the worse/average/best
time for various workloads?

• How much workload can the system
handle until its end-to-end QoS
requirements are compromised?

System
overload?

Development Timeline

L
e

v
e

l
o

f
A

b
s
tr

a
c
ti
o

n

Model-Driven Development of Distributed Systems 182

Related Large-Scale System Development Problems

Development Timeline

L
e

v
e

l
o

f
A

b
s
tr

a
c
ti
o

n

Release X+1

New hardware,
networks, operating

systems, middleware,
application

components, etc.

Evolution

Surprises!!!

Release X

Model-Driven Development of Distributed Systems 183

Promising Solution Approach: New Generation of
System Execution Modeling (SEM) Tools

Tools to express & validate design rules

• Help applications adhere to system
specifications at design-time

• “Correct-by-construction”

Tools to ensure design conformance

• Help properly deploy & configure
applications to enforce system
design rules at run-time

Tools to conduct “what if” analysis

• Help analyze QoS concerns prior to
completing the entire system

• e.g., before system integration phase

The cycle is repeated when developing application & infrastructure components

Model-Driven Development of Distributed Systems 184

Our Approach: Emulate Application Behavior via
QoS-enabled SOA Middleware & MDD Tools

While creating target infrastructure

1. Use the PICML domain-specific

language (DSL) to define & validate
infrastructure specifications &
requirements

2. Use PICML & WML DSLs to emulate
& validate application specifications &
requirements

3. Use CIAO & DAnCE middleware &
PICML DSL to generate D&C
metadata to ensure apps conform to
system specifications & requirements

4. Use BMW analysis tools to evaluate
& verify QoS performance

5. Redefine system D&C & repeat

Enable “application” testing to evaluate target infrastructure earlier in lifecycle

Component Workload Emulator (CoWorker)

Utilization Test Suite Workflow (CUTS):

Model-Driven Development of Distributed Systems 185

Motivation for Using Emulation

• Can use actual target infrastructure

• Rather than less precise
simulations that abstract out key
QoS properties

• Many artifacts can be used directly
in the final production system

• e.g., models of application
component relationships & D&C
plans

• Early feedback to developers,
architects & systems engineers

• Instead of waiting to complete
application components before
conducting performance
experiments

Model-Driven Development of Distributed Systems 186

Our SOA Middleware & MDD Tool Infrastructure

• System Design & Specification Tools

• Define & validate system
specification & requirements

• System Assembly & Packaging Tools

• Compose implementation &
configuration information into
deployable assemblies

• System Deployment Tools

• Automates the deployment of system
components & assemblies to
component servers

• Component Implementation

Framework

• Automates the implementation of
many system component features

PICML

www.dre.vanderbilt.edu/CIAO & www.dre.vanderbilt.edu/cosmic

& CIAO & DAnCE

CUTS & BMW

Model-Driven Development of Distributed Systems 187Example design rules

ARMS MLRM Case Study: SLICE Scenario (1/2)

D&C & Performance Requirements &

Constraints

• Critical path deadline is 350 ms

• Main sensor to main effector
through configuration

• To ensure availability, components in
critical paths should not be collocated

• Main sensor & main effector must be
deployed on separate hosts

• Three hosts

• One database is shared between
all hosts (used largely offline)

sensor 2

sensor 1
(main)

planner 1 planner 2

configuration

error recovery

effector 2 (backup)

effector 1
(main)

Component Interaction for SLICE Scenario

Model-Driven Development of Distributed Systems 188

sensor 2

planner 1 planner 2

configuration

error recovery effector 1
(main)

effector 2

sensor 1
(main)

350ms deadline

ARMS MLRM Case Study: SLICE Scenario (2/2)

Some questions we’d like to answer

1. Can a particular D&C meet end-to-
end performance requirements?

Model-Driven Development of Distributed Systems 189

sensor 2

planner 1 planner 2

configuration

error recovery effector 1
(main)

effector 2

sensor 1
(main)

ARMS MLRM Case Study: SLICE Scenario (2/2)

Some questions we’d like to answer

1. Can a particular D&C meet end-to-
end performance requirements?

2. Are there multiple deployments that
meet the 350ms critical path
deadline?

• e.g., which yields most headroom?

Model-Driven Development of Distributed Systems 190

sensor 2

planner 1 planner 2

configuration

error recovery effector 1
(main)

effector 2

sensor 1
(main)

Some questions we’d like to answer

1. Can a particular D&C meet end-to-
end performance requirements?

2. Are there multiple deployments that
meet the 350ms critical path
deadline?

• e.g., which yields most headroom?

3. Can we meet the 350ms critical path
deadline with all component deployed
on a single host?

ARMS MLRM Case Study: SLICE Scenario (2/2)

Model-Driven Development of Distributed Systems 191

Representing SLICE Scenario in PICML

sensor 2

planner 1 planner 2

configuration

error recovery
effector 1

(main)

effector 2

sensor 1
(main)

Conceptual model

PICML Model of SLICE Scenario

• Conceptual models
can be helpful at
certain design phases

• But they are also
imprecise & non-
automated

• PICML model
provides detailed
representation of
component properties
& interconnections

• They are also precise
& automated

Model-Driven Development of Distributed Systems 192

PICML Model of SLICE Scenario

Summary of CUTS Challenges

Emulate component behavior 1. Evaluate QoS
characteristics of DRE
systems

2. Emulate QoS
characteristics of DRE
systems

Average- & worst-
cast latency & jitter

Model-Driven Development of Distributed Systems 193

PICML Model of SLICE Scenario

1. Evaluate QoS
characteristics of DRE
systems

2. Emulate QoS
characteristics of DRE
systems

3. Non-intrusive
benchmarking &
evaluation

4. Simplifying component
behavior specification

Single-point of
data collection

Define behavior
declaratively

Summary of CUTS Challenges

Model-Driven Development of Distributed Systems 194

PICML Model of SLICE Scenario

Customizing generic
components?

1. Evaluate QoS
characteristics of DRE
systems

2. Emulate QoS
characteristics of DRE
systems

3. Non-intrusive
benchmarking &
evaluation

4. Simplifying component
behavior specification

5. Simplify component
customization

Summary of CUTS Challenges

Model-Driven Development of Distributed Systems 195

PICML Model of SLICE Scenario

1. Evaluate QoS
characteristics of DRE
systems

2. Emulate QoS
characteristics of DRE
systems

3. Non-intrusive
benchmarking &
evaluation

4. Simplifying component
behavior specification

5. Simplify component
customization

6. Informative analysis of
performance

Summary of CUTS Challenges

Time-critical end-to-end path
through operational string

Model-Driven Development of Distributed Systems 196

Challenge 1: Evaluating QoS Characteristics of
Enterprise DRE Systems Early in Life-cycle

L
e

v
e

l
o

f
A

b
s
tr

a
c
ti
o

n

Development Timeline

Context

• In phase 1 of ARMS, QoS
evaluation was not done until
application integration

–Prolonged project
development & QA

• In phase 2 of ARMS, MLRM is
implemented using Real-time
CCM (via CIAO & DAnCE)

• Software components &
challenges are similar in both
phases

Model-Driven Development of Distributed Systems 197

Challenge 1: Evaluating QoS Characteristics of
Enterprise DRE Systems Early in Life-cycle

Context

• In phase 1 of ARMS, QoS
evaluation was not done until
application integration

–Prolonged project
development & QA

• In phase 2 of ARMS, MLRM is
implemented using Real-time
CCM (via CIAO & DAnCE)

• Software components &
challenges are similar in both
phases

Problem

• How to evaluate MLRM QoS
earlier in lifecycle?

–i.e., prior to integration
Development Timeline

L
e

v
e

l
o

f
A

b
s
tr

a
c
ti
o

n

Model-Driven Development of Distributed Systems 198

CoWorkEr

Solution: Evaluate Component QoS & Behavior
using Component–based Emulators

• System components are
represented as
Component Workload

Emulators (CoWorkErs)

• Each CoWorkEr is a CCM
assembly component
constructed from CCM
monolithic components

• Each CoWorkEr has an
optional database

–Can be local or remote

• CoWorkErs can be
interconnected to form
operational strings

–Basically a “work flow”
abstraction

Model-Driven Development of Distributed Systems 199

Challenge 2: Emulating Behavior & QoS of
Enterprise DRE Systems

Context

• In phase 1 of ARMS, QoS evaluation
was not done until integration

• QoS testing was done using ad hoc

techniques

–e.g., creating non-reusable artifacts
& tests that do not fully exercise the
infrastructure

Problem

• How to emulate behavior & QoS in a
reusable manner to evaluate the
complete infrastructure & apply tests in
different contexts

Test A Test A

Phase 2 Phase N

Desired

Test A
(ad hoc)

Test A
(ad hoc)

Phase 1 Phase 2

Current

Model-Driven Development of Distributed Systems 200

Emulate workloads, e.g.,
CPU, database & memory

Solution: Emulate Component Behavior & QoS
Using Configurable CoWorkErs

Model-Driven Development of Distributed Systems 201

Perform background
workloads

Solution: Emulate Component Behavior & QoS
Using Configurable CoWorkErs

Model-Driven Development of Distributed Systems 202

Receive events from CoWorkErs

Solution: Emulate Component Behavior & QoS
Using Configurable CoWorkErs

Model-Driven Development of Distributed Systems 203

Send events to CoWorkErs

Solution: Emulate Component Behavior & QoS
Using Configurable CoWorkErs

Model-Driven Development of Distributed Systems 204

Challenge 3: Non-Intrusive Benchmarking & Evaluation

Context

• The SLICE scenario of MLRM is
composed of multiple
components deployed over
multiple nodes

• Each component, including
components in assemblies, must
be monitored & evaluated

Model-Driven Development of Distributed Systems 205

Challenge 3: Non-Intrusive Benchmarking & Evaluation

Context

• The SLICE scenario of MLRM is
composed of multiple
components deployed over
multiple nodes

• Each component, including
components in assemblies, must
be monitored & evaluated

Problem

• Collecting data from each
component without interfering
with emulation

• Collecting data without unduly
perturbing operational
performance measures

Collects all the metrics for experiment

Model-Driven Development of Distributed Systems 206

Solution: Decouple Emulation & Benchmarking

Emulation

Benchmarking

• CUTS environment is decoupled
into two sections

– Emulation & benchmarking

Model-Driven Development of Distributed Systems 207

Each CoWorkEr has
a BenchmarkAgent

Solution: Decouple Emulation & Benchmarking
• CUTS environment is decoupled

into two sections

– Emulation & benchmarking

• Data acquisition done in two
phases at lower priority than
emulation

1.BenchmarkAgent collects
performance metrics

2.BenchmarkAgent submits
data to
BenchmarkDataCollector at
user-defined intervals

Model-Driven Development of Distributed Systems 208

• CUTS environment is decoupled
into two sections

– Emulation & benchmarking

• Data acquisition done in two
phases at lower priority than
emulation

1.BenchmarkAgent collects
performance metrics

2.BenchmarkAgent submits
data to
BenchmarkDataCollector at
user-defined intervals

• BenchmarkDataCollector stores
performance metrics in database
for offline analysis

• Separate networks are used for
CoWorkEr communication &
data acquisition

Solution: Decouple Emulation & Benchmarking

Model-Driven Development of Distributed Systems 209

Challenge 4: Simplify Characterization of Workload

Context

• People developing & using the SLICE
scenario with CUTS come from
different disciplines

–e.g., software architects, software
developers, & systems engineers

• Many CUTS users may not be familiar
with 3rd generation or configuration
languages

–e.g., C++ & Java or XML,
respectively

Problem

• Avoiding tedious & error-prone
manual programming of CoWorkEr

behavior using 3rd generation
languages or configuration files

use?

The harder it is to program CoWorkErs, the less useful CUTS emulation is… Model-Driven Development of Distributed Systems 210

Solution: Use Domain–Specific Modeling Language
to Program CoWorkEr Behavior

• Workload Modeling Language (WML)

is used to define the behavior of
CoWorkEr components

Model-Driven Development of Distributed Systems 211

• Workload Modeling Language (WML)

is used to define the behavior of
CoWorkEr components

• WML events represent different types
of workloads in CoWorkEr

Startup workload

Event-driven workload

Solution: Use Domain–Specific Modeling Language
to Program CoWorkEr Behavior

Model-Driven Development of Distributed Systems 212

• Workload Modeling Language (WML)

is used to define the behavior of
CoWorkEr components

• WML events represent different types
of workloads in CoWorkEr

• Actions can be attached to events &
specified in order of execution to
define “work sequences”

–Each action has attributes, e.g.,
number of repetitions, amount of
memory to allocate & etc

Attributes for CPUAction

Workload string

Solution: Use Domain–Specific Modeling Language
to Program CoWorkEr Behavior

Model-Driven Development of Distributed Systems 213

• Workload Modeling Language (WML)

is used to define the behavior of
CoWorkEr components

• WML events represent different types
of workloads in CoWorkEr

• Actions can be attached to events &
specified in order of execution to
define “work sequences”

–Each action has attributes, e.g.,
number of repetitions, amount of
memory to allocate & etc

• WML programs are translated into
XML characterization files

• Characterization specified in
CoWorkEr & used to configure its
behavior

Solution: Use Domain–Specific Modeling Language
to Program CoWorkEr Behavior

Model-Driven Development of Distributed Systems 214

Challenge 5: Simplify Component Customization

Context

• By default a CoWorkEr can send &
receive every type of event

• The SLICE components are all
different, however, & do not
send/receive the same types of
events

–i.e., each contains a different
composition pertaining to its
specific workload(s)

Problem

• How can we customize CoWorkEr

components to enforce strong type-
checking without requiring time-
consuming modification &
recompilation of components?

compilation

?

Model-Driven Development of Distributed Systems 215

Custom CoWorkEr

• Event sinks of a CoWorkEr

are delegated to the
respective event sources of
the EventHandler

• Events produced by the
EventProducer are delegated
to respective events sources
for a CoWorkEr

• Delegated event sources &
sinks can be removed from
CoWorkEr

–Does not require
recompilation of
components

Event sources removed

Event sinks removed

Solution: Customize CoWorkErs at System Modeling Level

This technique leverages key properties of CCM assemblies, i.e., virtual APIs Model-Driven Development of Distributed Systems 216

Challenge 6: Informative Analysis of QoS Performance

Too much workload?

Too many components
deployed on a node?

Context

• There are many components in
SLICE & combinations in the
deployment of these components

Problem

• How can we assist users in
pinpointing problematic areas in

– Deployment & configuration
(D&C)?

Model-Driven Development of Distributed Systems 217

Context

• There are many components in
SLICE & combinations in the
deployment of these components

Problem

• How can we assist users in
pinpointing problematic areas in

– Deployment & configuration
(D&C)?

– End-to-end QoS of mission-
critical paths?

Challenge 6: Informative Analysis of QoS Performance

Missed deadline

Model-Driven Development of Distributed Systems 218

Solution: Present Metrics Graphically in Layers to
Support General & Detailed Information

• BenchmarkManagerWeb-interface

(BMW) analyzes & graphically
displays performance metrics

BMW

reads metrics

displays

Web service

Model-Driven Development of Distributed Systems 219

• BenchmarkManagerWeb-interface

(BMW) analyzes & graphically
displays performance metrics

• General analysis shows users
overall performance of each
CoWorkEr

–e.g., transmisssion delay &
processing

BMW General Time Data

CoWorkEr

Host

General analysis of actions

Solution: Present Metrics Graphically in Layers to
Support General & Detailed Information

Model-Driven Development of Distributed Systems 220

• BenchmarkManagerWeb-interface

(BMW) analyzes & graphically
displays performance metrics

• General analysis shows users
overall performance of each
CoWorkEr

–e.g., transmisssion delay &
processing

• Detailed analysis shows users the
performance of an action in the
respective CoWorkEr

–e.g., memory & CPU actions,
event handling & etc

Solution: Present Metrics Graphically in Layers to
Support General & Detailed Information

Model-Driven Development of Distributed Systems 221

• BenchmarkManagerWeb-interface

(BMW) analyzes & graphically
displays performance metrics

• General analysis shows users
overall performance of each
CoWorkEr

–e.g., transmisssion delay &
processing

• Detailed analysis shows users the
performance of an action in the
respective CoWorkEr

–e.g., memory & CPU actions,
event handling & etc

• Critical paths show users end-to-
end performance of mission-critical
operational strings

Green means end-to-end
deadline met

Solution: Present Metrics Graphically in Layers to
Support General & Detailed Information

Model-Driven Development of Distributed Systems 222

Applying CUTS to the SLICE Scenario

Using ISISLab as our target infra-
structure in conjunction with CUTS

1.Use PICML to define & validate
infrastructure specifications &
requirements

2.Use WML to define & validate
application specifications &
requirements

3.Use DAnCE to deploy component
emulators on target infrastructure

4.Use BMW to evaluate & verify QoS
performance

5.Redefine system D&C & repeat

Express &

Validate

Design

Rules

www.dre.vanderbilt.edu/ISISlab/

Model-Driven Development of Distributed Systems 223

Defining Components of SLICE Scenario in PICML for CUTS

• Each component in
SLICE is defined as a
CoWorkEr

• The default CoWorkEr is
customized to handle
events specific to its
representative SLICE
component

• Each CoWorkEr is
assigned a unique user-
defined ID number

• The benchmark data
submission rate is set to
15 seconds

CoWorkEr
Customized
CoWorkEr

Model-Driven Development of Distributed Systems 224

Defining Behavior of SLICE Scenario Components using WML

Effector 1 & Effector 2

Workload
performed every
second

CPU: 25 reps
PUBLISH: STATUS – SIZE 32

Workload
performed after
receipt of
command event

CPU: 25 reps
PUBLISH: STATUS - SIZE 256

Model-Driven Development of Distributed Systems 225

Recap of Questions We Wanted to Answer

1. Can we meet the D&C & performance
requirements?

2. Are there multiple deployments that meet
the 350ms critical path deadline?

• e.g., which yields most headroom?

3. Can we meet D&C & performance
requirements using a single host?

To answer these questions we ran 11 tests using different CoWorkEr D&C’s

Model-Driven Development of Distributed Systems 226

SLICE Scenario Results: Meeting D&C & QoS Requirements
Deployment Table

Test

9

Node 1 Node 2 Node 3

sensor 1 & planner 1 planner 2, configuration,
& effector 1

sensor 2, error recovery &
effector 2

Critical Path Timing Information for Test 9

Planner 2 takes the longest
to process workload

“What if” planner-2 is put on Node 3, which has no critical path components?

Model-Driven Development of Distributed Systems 227

SLICE Scenario Results: Meeting D&C & QoS Requirements
Deployment Table

Test

10

Node 1 Node 2 Node 3

sensor 1 & planner 1 configuration & effector 1 planner 2, sensor 2, error
recovery & effector 2

Critical path timing information for Test 10
Node 3 is “saturated” with non-critical path components, “what if” we
evenly distribute critical path workload on collocated components?

Better performancePlanner 2 takes the longest
to process workload

Model-Driven Development of Distributed Systems 228

SLICE Scenario Results: Meeting D&C & QoS Requirements
Deployment Table

Test

11

Node 1 Node 2 Node 3

sensor 1, planner 1
& configuration

planner 2 & effector 1 sensor 2, error recovery &
effector 2

Critical path timing information for Test 11

Worst case passed

We were able to answer the critical path & deployment questions

Model-Driven Development of Distributed Systems 229

SLICE Scenario Results: Meeting D&C & QoS Requirements
Deployment Table

Test

9

10

11

Node 1 Node 2 Node 3

sensor 1 & planner 1 planner 2, configuration,
& effector 1

Sensor 2, error re
recovery & effector 2

sensor 1 & planner 1 configuration & effector
1

planner 2, sensor 2, error
recovery & effector 2

sensor 1, planner 1
& configuration

planner 2 & effector 1 sensor 2, error recovery &
effector 2

Deployment of Critical Path on Multiple Nodes

0

350

700

9 10 11

Test

C
o

m
p

le
ti

o
n

T

im
e

 o
f

C
ri

ti
c

a
l

P
a

th
 (

m
s

)

Avg. Time Worse Time

• Test 9, 10 & 11 meet the
performance requirements for the
average execution time of the
critical path

• Test 11 meet the performance
requirements for worst execution
time

• We did not exhaustively test all
D&C’s, but that could be done also

Model-Driven Development of Distributed Systems 230

SLICE Scenario Results: Single Host Deployment

Deployment of Critical Path on Single Node

0
350
700

1050
1400

4

Test Number

C
ri

ti
c

a
l

P
a

th

C
o

m
p

le
ti

o
n

T
im

e
 (

m
s

)

Avg. Time Worse Time

Deployment Table

Test

4

Node 1 Node 2 Node 3

All components (nothing) (nothing)

Test 4 had a average
time of 490 ms

We were able to answer the question about deploying on a single node

Model-Driven Development of Distributed Systems 231

Overall Results of SLICE Scenario

Test 11 produced the best results

• Average case: 221 ms

• Worse case: 343 ms

Results of SLICE Scenario

0

350

700

1050

1400

1 2 3 4 5 6 7 8 9 10 11

Test Number

C
ri

ti
c

a
l
P

a
th

C
o

m
p

le
ti

o
n

 T
im

e
 (

m
s

)

Avg. Time Worse Time

• Only 4 of 11
deployments met
the 350 ms critical
path deadline for
average-case time

• Test 11 only test to
meet critical path
deadline for worst-
case time

Population size of 11 tests

Model-Driven Development of Distributed Systems 232

Lessons Learned
• SOA middleware technologies

allowed us to leverage the behavior
& functionality of target architecture
for realistic emulations

• SOA technologies allowed us to
focus on the “business” logic of
CoWorkErs

–e.g., D&C handled by underlying
MDD & middleware technology

Model-Driven Development of Distributed Systems 233

Development Timeline

L
e

v
e

l
o

f
A

b
s
tr

a
c
ti
o

n

Lessons Learned
• SOA middleware technologies

allowed us to leverage the behavior
& functionality of target architecture
for realistic emulations

• SOA technologies allowed us to
focus on the “business” logic of
CoWorkErs

–e.g., D&C handled by underlying
MDD & middleware technology

• CUTS allowed us to test
deployments before full system
integration testing

• CUTS allowed us to rapidly test
deployments that would have take
much longer using ad hoc

techniques

–e.g., hand-coding the D&C of
components

increased # of tests

Model-Driven Development of Distributed Systems 234

Summary

• We motivated the need for the
Component Workload Emulator

(CoWorkEr) Utilization Test Suite

(CUTS)

• We presented a large-scale DRE
system example that used CUTS to
evaluate component D&C before

complete integration

• We presented the design &
implementation of CUTS, along with
the design challenges we faced

• CUTS is being integrated into the
open-source CoSMIC MDD
toolchain

– www.dre.vanderbilt.edu/cosmic

www.cs.wustl.edu/~schmidt/PDF/CUTS.pdf

www.cs.wustl.edu/~schmidt/PDF/QoSPML-WML.pdf

235

CONTENTS
Model-Driven Development

of Distributed Systems

Introduction & Motivation

Definition of Terms

Architecture-Centric MDD & Cascading

Role of Frameworks & Patterns in the Context of MDD

Model-to-Model Transformations

An Architectural Process – A Case Study

Examples of Applying MDD Tools: openArchitectureWare

A Metamodel for Component-based Development

System Execution Modeling Tools: GME, CoSMIC, & CUTS

Product-line Architecture Case Study
Summary

Model-Driven Development of Distributed Systems 236

Nav Sensors

Expendable
Management

Data LinksMission
Computer

Vehicle
Mgmt

Expendables

•Avionics mission computing product-line
architecture for Boeing aircraft

•DRE system with 100+ developers, 3,000+
software components, 3-5 million lines of C++

•Based on COTS hardware,
networks, operating
systems, languages, &
middleware

Bold Stroke

Architecture

Radar

Case Study Example: Boeing Bold Stroke

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

Model-Driven Development of Distributed Systems 237

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

COTS & standards-based middleware,

language, OS, network, & hardware

platforms

• Real-time CORBA middleware services

• ADAPTIVE Communication
Environment (ACE)

• C++/C & Real-time Java

• VxWorks operating system

• VME, 1553, & Link16

• PowerPC

www.cs.wustl.edu/
~schmidt/TAO.html

Applying COTS to Boeing Bold Stroke

Model-Driven Development of Distributed Systems 238

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

•Save a considerable amount of
time/effort compared with
handcrafting capabilities

•Leverage industry “best
practices” & patterns in pre-
packaged & ideally standardized
form

Benefits of Using COTS

Model-Driven Development of Distributed Systems 239

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

• QoS of COTS components is not
always suitable for mission-critical
systems

• COTS technologies address some, but

not all, of the domain-specific

challenges associated with developing
mission-critical DRE systems

Limitations of Using COTS

What we need is a reuse
technology for organizing
& automating key roles &

responsibilities in an
application domain

Model-Driven Development of Distributed Systems 240

Air
Frame

GPS

FLIR

Legacy DRE systems have
historically been:

• Stovepiped

• Proprietary

• Brittle & non-adaptive

• Expensive

• Vulnerable

Consequence:

Small HW/SW

changes have big

(negative) impact

on DRE system

QoS & maintenance

GPS

FLIRAP

Nav HUD

IFF

Cyclic
Exec

F-15

Air
Frame

AP
Nav HUD

GPSIFF

FLIR

Cyclic
Exec

A/V-8B

Air
Frame

Cyclic
Exec

AP

Nav
HUD

IFF

F/A-18

Air
Frame

AP

Nav HUD
GPS

IFF

FLIR

Cyclic
Exec UCAV

Motivation for Product-line Architectures (PLAs)

Model-Driven Development of Distributed Systems 241

F-15
product
variant

A/V 8-B
product
variant

F/A 18
product
variant UCAV

product
variant

Product-line
architecture

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

OS & Network ProtocolsOS & Network Protocols

Host Infrastructure MiddlewareHost Infrastructure Middleware

Distribution MiddlewareDistribution Middleware

Common Middleware ServicesCommon Middleware Services

• Frameworks factors out many reusable general-purpose & domain-
specific services from traditional DRE application responsibility

• Essential for product-line architectures (PLAs)

• Product-lines & frameworks offer many configuration opportunities

• e.g., component distribution & deployment, user interfaces & operating
systems, algorithms & data structures, etc

Air
Frame

AP

Nav
HUD GPS

IFF

FLIR

Domain-specific ServicesDomain-specific Services

Motivation for Product-line Architectures (PLAs)

Model-Driven Development of Distributed Systems 242

• PLA characteristics are

captured via Scope,

Commonalities, &

Variabilities (SCV) analysis

• This process can be applied
to identify commonalities &
variabilities in a domain to
guide development of a PLA

•Applying SCV to Bold Stroke

• Scope defines the domain & context of

the PLA

• Bold Stroke component architecture,
object-oriented application frameworks,
& associated components, e.g., GPS,
Airframe, & Display

OS & Network ProtocolsOS & Network Protocols

Host Infrastructure MiddlewareHost Infrastructure Middleware

Distribution MiddlewareDistribution Middleware

Common Middleware ServicesCommon Middleware Services

Domain-specific ServicesDomain-specific Services

Air
Frame

AP

Nav
HUD GPS

IFF

FLIR

Overview of Product-line Architectures (PLAs)

Reusable Architecture
Framework

Reusable Application
Components

Model-Driven Development of Distributed Systems 243

Applying SCV to the Bold Stroke PLA
•Commonalities describe the attributes that are common across all
members of the PLA family

•Common object-oriented frameworks & set of component types

• e.g., GPS, Airframe, Navigation, & Display components

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

OS & Network ProtocolsOS & Network Protocols

Host Infrastructure MiddlewareHost Infrastructure Middleware

Distribution MiddlewareDistribution Middleware

Common Middleware ServicesCommon Middleware Services

Domain-specific ServicesDomain-specific Services

•Common middleware
infrastructure

• e.g., Real-time
CORBA & a variant
of Lightweight
CORBA Component
Model (CCM) called
Prism

Model-Driven Development of Distributed Systems 244

Air
Frame

AP

Nav HUD

GPS IFF

FLIRAP

Nav HUD

GPS IFF

FLIR

•Variabilities describe the
attributes unique to the different
members of the family

•Product-dependent component
implementations (GPS/INS)

•Product-dependent component
connections

•Product-dependent component
assemblies (e.g., different
weapons systems for different
customers/countries)

•Different hardware, OS, &
network/bus configurations

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

OS & Network ProtocolsOS & Network Protocols

Host Infrastructure MiddlewareHost Infrastructure Middleware

Distribution MiddlewareDistribution Middleware

Common Middleware ServicesCommon Middleware Services

Domain-specific ServicesDomain-specific Services

Patterns & frameworks are
essential for developing

reusable PLAs

Applying SCV to the Bold Stroke PLA

Model-Driven Development of Distributed Systems 245

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

Reusable object-oriented application

domain-specific middleware framework

•Configurable to variable infrastructure
configurations

•Supports systematic reuse of mission
computing functionality

•3-5 million lines of C++

•Based on many architecture & design
patterns

Applying Patterns & Frameworks to Bold Stroke

Patterns & frameworks
are also used

throughout COTS
software infrastructure

Model-Driven Development of Distributed Systems 246

Legacy Avionics Architectures

Board 1

VME

1553

1: Sensors

generate

data

Board 2

2: I/O via

interrupts

3: Sensor

proxies

process data

& pass to

missions

functions

4: Mission

functions

perform

avionics

operations

Key System Characteristics
•Hard & soft real-time deadlines

•~20-40 Hz
•Low latency & jitter between
boards
•~100 usecs

•Periodic & aperiodic processing
•Complex dependencies
•Continuous platform upgrades

Avionics Mission

Computing Functions

•Weapons targeting
systems (WTS)

•Airframe & navigation
(Nav)

•Sensor control (GPS,
IFF, FLIR)

•Heads-up display
(HUD)

•Auto-pilot (AP)

Model-Driven Development of Distributed Systems 247

Legacy Avionics Architectures

Key System Characteristics
•Hard & soft real-time deadlines

•~20-40 Hz
•Low latency & jitter between
boards
•~100 usecs

•Periodic & aperiodic processing
•Complex dependencies
•Continuous platform upgrades

Board 1

VME

1553

1: Sensors

generate

data

Board 2

2: I/O via

interrupts

3: Sensor

proxies

process data

& pass to

missions

functions

4: Mission

functions

perform

avionics

operations

Limitations with Legacy Avionics

Architectures

•Stovepiped
•Proprietary
•Expensive
•Vulnerable
•Tightly coupled

•Hard to schedule

•Brittle & non-adaptive

Air
Frame

AP

Nav WTS

GPS IFF

FLIR

Cyclic
Exec

Model-Driven Development of Distributed Systems 248

Decoupling Avionics Components
Context Problems Solution

•I/O driven DRE
application

•Complex
dependencies

•Real-time
constraints

•Tightly coupled
components

•Hard to schedule

•Expensive to
evolve

•Apply the Publisher-

Subscriber architectural
pattern to distribute periodic,
I/O-driven
data from a single point of
source to a collection of
consumers

Event

*

Subscriber

consume

creates receives

Event Channel

attachPublisher
detachPublisher
attachSubscriber
detachSubscriber
pushEvent

Filter

filterEvent

Publisher

produce

Structure

attachSubscriber

produce

pushEvent
event

event

pushEvent

consume

detachSubscriber

: Event

: Subscriber: Event Channel: Publisher

Dynamics

Model-Driven Development of Distributed Systems 249

Applying the Publisher-Subscriber Pattern to Bold Stroke

Board 1

VME

1553

1: Sensors

generate

data

Board 2

2: I/O via interrupts

4: Event Channel

pushes events

to

subscribers(s)

5: Subscribers

perform

avionics

operations

GPS IFF FLIR

HUD

Nav

WTS

Air

Frame

Publishers

Subscribers

push(event)

push(event)

Event

Channel

3: Sensor

publishers

push events

to event

channel

Considerations for implementing the
Publisher-Subscriber pattern for
mission computing applications include:
• Event notification model

•Push control vs pull data interactions

• Scheduling & synchronization strategies

•e.g., priority-based dispatching &
preemption

• Event dependency management

•e.g.,filtering & correlation mechanisms

Bold Stroke uses the Publisher-

Subscriber pattern to decouple sensor
processing from mission computing
operations

• Anonymous publisher & subscriber
relationships

• Group communication

• Asynchrony

Model-Driven Development of Distributed Systems 250

Ensuring Platform-neutral Inter-process Communication
Context Problems Solution

•Mission
computing
requires remote
IPC

•Stringent DRE
requirements

•Applications need capabilities to:
• Support remote communication

• Provide location transparency

• Handle faults

• Manage end-to-end QoS

• Encapsulate low-level system details

•Apply the Broker

architectural pattern
to provide platform-
neutral comms
between mission
computing boards

message
exchange

message
exchange

*

marshal
unmarhal
receive_result
service_p

Client Proxy

calls*

*

call_service_p
start_task

Client

1

marshal
unmarshal
dispatch
receive_request

Server Proxy

calls*

start_up
main_loop
service_i

Server

1

1

main_loop
srv_registration
srv_lookup
xmit_message
manage_QoS

Broker1

Structure

Model-Driven Development of Distributed Systems 251

operation (params)
connect

send_request
marshal

unmarshal

dispatch
operation (params)

result

marshalreceive_reply

unmarshal
result

start_upregister_service

assigned
port

Dynamics

: Broker: Client Proxy : Server Proxy: Client : Server

Ensuring Platform-neutral Inter-process Communication
Context Problems Solution

•Mission
computing
requires remote
IPC

•Stringent DRE
requirements

•Applications need capabilities to:
• Support remote communication

• Provide location transparency

• Handle faults

• Manage end-to-end QoS

• Encapsulate low-level system details

•Apply the Broker

architectural pattern
to provide platform-
neutral comms
between mission
computing boards

Model-Driven Development of Distributed Systems 252

Applying the Broker Pattern to Bold Stroke

Board 1

VME

1553

1: Sensors

generate

data

Board 2

2: I/O via interrupts

5: Event Channel

pushes events

to subscribers(s)

6: Subscribers

perform

avionics

operations

GPS IFF FLIR

HUD Nav WTS
Air

Frame

Publishers

Subscribers

push(event)

push(event)

Event

Channel

4: Sensor

publishers

push events

to event

channel

Bold Stroke uses the Broker pattern
to shield distributed applications
from environment heterogeneity,
e.g.,

•Programming languages

•Operating systems

•Networking protocols

•Hardware
3: Broker

handles I/O

via upcalls

BrokerA key consideration for
implementing the Broker pattern
for mission computing applications
is QoS support

•e.g., latency, jitter, priority
preservation, dependability,
security, etc

Model-Driven Development of Distributed Systems 253

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

• Enables reuse of software
architectures & designs

• Improves development team
communication

• Convey “best practices” intuitively

• Transcends language-centric
biases/myopia

• Abstracts away from many
unimportant details

Benefits of Patterns

GPS IFF FLIR

HUD

Nav WTS
Air Frame

Publishers

Subscribers

push(event)

push(event)
Event

Channel

Broker

www.cs.wustl.edu/
~schmidt/patterns.html

Model-Driven Development of Distributed Systems 254

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

• Require significant tedious &
error-prone human effort to
handcraft pattern
implementations

• Can be deceptively simple

• Leaves many important details
unresolved

Limitations of Patterns

GPS IFF FLIR

HUD

Nav WTS
Air Frame

Publishers

Subscribers

push(event)

push(event)
Event

Channel

Broker

www.cs.wustl.edu/
~schmidt/patterns.html

We therefore need
more than just

patterns to achieve
systematic reuse

Model-Driven Development of Distributed Systems 255

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

Application-specific functionality

•Frameworks exhibit
“inversion of control” at
runtime via callbacks

Networking Real-time

Database
GUI

•Frameworks
provide integrated
domain-specific
structures &
functionality

Sensor

Management

Route

Planning Heads-up

Display

•Frameworks are
“semi- complete”
applications

Framework benefits &

characteristics

www.cs.wustl.edu/
~schmidt/ACE.html

Applying Frameworks to Bold Stroke

Model-Driven Development of Distributed Systems 256

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

• Frameworks are powerful, but can be
hard to develop & use effectively

• Significant time required to evaluate
applicability & quality of a framework for a
particular domain

• Debugging is tricky due to inversion of
control

• V&V is tricky due to “late binding”

• May incur performance degradations due
to extra (unnecessary) levels of
indirection

Limitations of Frameworks

www.cs.wustl.edu/
~schmidt/PDF/Queue-04.pdf

We therefore need
something simpler than
frameworks to achieve

systematic reuse

Model-Driven Development of Distributed Systems 257

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

Product-line component model

• Configurable for product-specific
functionality & execution environment

• Single component development policies

• Standard component packaging
mechanisms

• 3,000+ software components

Applying Component Middleware to Bold Stroke

Model-Driven Development of Distributed Systems 258

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

Benefits of Component Middleware

•Creates a standard
“virtual boundary” around
application component
implementations that
interact only via well-
defined interfaces

•Define standard
container mechanisms
needed to execute
components in generic
component servers

•Specify the infrastructure
needed to configure &
deploy components
throughout a distributed
system

<ComponentAssemblyDescription id="a_HUDDisplay">
<connection>

<name>GPS-RateGen</name>
<internalEndPoint><portName>Refresh</portName><instance>a_GPS</
instance>

</internalEndPoint>
<internalEndPoint>

<portName>Pulse</portName><instance>a_RateGen</instance>
</internalEndPoint>

</connection>
<connection>

<name>NavDisplay-GPS</name>
<internalEndPoint><portName>Refresh</portName><instance>a_NavDi
splay</instance>

</internalEndPoint>
<internalEndPoint><portName>Ready</portName><instance>a_GPS</in
stance>

</internalEndPoint>
</connection>

</ComponentAssemblyDescription>

Container

…
…

…

…

…

Model-Driven Development of Distributed Systems 259

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

•Limit to how much application
functionality can be refactored into
reusable COTS component
middleware

Middleware

Middleware
Services

DRE Applications

Operating System
& Protocols

Hardware &
Networks

Limitations of Component Middleware

Model-Driven Development of Distributed Systems 260

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

•Limit to how much application
functionality can be refactored into
reusable COTS component
middleware

•Middleware itself has become hard to
provision/use

IntServ + Diffserv

RTOS + RT
Java

RT/DP CORBA + DRTSJ

Load Balancer
FT CORBA

Network latency
& bandwidth

Workload &
Replicas

CPU & memory

Connections &
priority bands

Limitations of Component Middleware

Model-Driven Development of Distributed Systems 261

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

•Limit to how much application
functionality can be refactored into
reusable COTS component
middleware

•Middleware itself has become hard to
provision/use

•Large # of components can be
tedious & error-prone to configure &
deploy without proper integration tool
support

Limitations of Component Middleware

Model-Driven Development of Distributed Systems 262

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

•Limit to how much application
functionality can be refactored into
reusable COTS component
middleware

•Middleware itself has become hard to
provision/use

•Large # of components can be
tedious & error-prone to configure &
deploy without proper integration tool
support

• There are many
middleware technologies
to choose from

Middleware

Middleware
Services

DRE Applications

Operating System
& Protocols

Hardware &
Networks

RT-CORBA

RT-CORBA
Services

RT-CORBA
Apps

J2ME

J2ME
Services

J2ME
Apps

DRTSJ

DRTSJ
Services

DRTSJ
Apps

Limitations of Component Middleware

Model-Driven Development of Distributed Systems 263

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

Model-driven development

(MDD)

• Apply MDD tools to

• Model

• Analyze

• Synthesize

• Provision

middleware & application
components

• Configure product-specific
component assembly &
deployment environments

• Model-based component
integration policies

Applying MDD to Boeing Bold Stroke

www.isis.vanderbilt.edu/
projects/mobies

<CONFIGURATION_PASS>

<HOME>

<…>

<COMPONENT>

<ID> <…></ID>

<EVENT_SUPPLIER>

<…events this

component supplies…>

</EVENT_SUPPLIER>

</COMPONENT>

</HOME>

</CONFIGURATION_PASS>

<CONFIGURATION_PASS>

<HOME>

<…>

<COMPONENT>

<ID> <…></ID>

<EVENT_SUPPLIER>

<…events this

component supplies…>

</EVENT_SUPPLIER>

</COMPONENT>

</HOME>

</CONFIGURATION_PASS>

Model-Driven Development of Distributed Systems 264

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

ANALYSIS TOOLS

CODE GENERATORS

Stateflow

Real-time Java

Statecharts

Ptolemy

C/C++

SMV

SPIN

Simulink

XML Ptolemy

APPLICATION MODELING TOOLS

EMBEDDED PLATFORM MODEL

Interaction is based on

mission-specific

ontologies & semantics

Formal mission specs,
subsystem models, &

computational constraints
are combined into integrated
MDD tool chain & mapped to

execution platforms

UML/Rose

ESML/GME

PICML/GME

ARIES

TimeWeaver

TimeWiz

Cadena

PowerPC/

ACE+TAO/

BOLD-

STROKE

Applying MDD to Boeing Bold Stroke

www.rl.af.mil/tech/
programs/MoBIES/

Model-Driven Development of Distributed Systems 265

Benefits of MDD
• Increase expressivity

• e.g., linguistic support to better capture
design intent

• Increase precision

• e.g., mathematical tools for cross-domain
modeling, synchronizing models, change
propagation across models, modeling
security & other QoS aspects

• Achieve reuse of domain semantics

• Generate code that’s more “platform-
independent” (or not)!

• Support product-line
architecture development
& evolution

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

Avionics Mission Computing

Modeling Languages

Artifact

Generator

Model-Driven Development of Distributed Systems 266

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

•Modeling technologies
are still maturing &
evolving

• i.e., non-standard
tools

•Magic (& magicians) are
still necessary for
success

Model & Component

Library

ApplicationsApplications

$ $ $

Limitations of MDD

267

CONTENTS
Model-Driven Development

of Distributed Systems

Introduction & Motivation

Definition of Terms

Architecture-Centric MDD & Cascading

Role of Frameworks & Patterns in the Context of MDD

Model-to-Model Transformations

An Architectural Process – A Case Study

Examples of Applying MDD Tools: openArchitectureWare

A Metamodel for Component-based Development

System Execution Modeling Tools: GME, CoSMIC, & CUTS

Product-line Architecture Case Study

Summary

Model-Driven Development of Distributed Systems 268

Open MDD R&D Issues

• Inherent Complexities

• Capturing specificity of target domain

• Automated specification & synthesis of

• Model interpreters

• Model transformations

• Broader range of application
capabilities

• Static & dynamic QoS properties

• Migration & version control of models

• Scaling & performance

• Verification of the DSLs

Solutions require validation on large-scale, real-world systems

• Accidental Complexities

• Round-trip engineering from
models source

• Mismatched abstraction levels
for development vs debugging

• Tool chain vs monolithic tools

• Backward compatibility of
modeling tools

• Standard metamodeling
languages & tools

Model-Driven Development of Distributed Systems 269

Current Status & Available Tools

• Today’s MDD tools can be used productively – although sometimes
some “magic” is necessary

• Today’s problem is not really that we need better tools, per se, we

rather need more experience with existing tools!

• Standardization efforts are slowly coming to fruition: EMF/GMF, QVT,
MIC, etc.

• CoSMIC & CUTS is available from
www.dre.vanderbilt.edu/cosmic

• GME is available from
www.isis.vanderbilt.edu/Projects/gme/default.htm

• openArchitectureWare is available from
www.openarchitectureware.org

Start today – it will make you more productive

Model-Driven Development of Distributed Systems 270

What We Hope You Learned Today!

• Key MDD concepts & what kinds of domains &
problems they address

• What are some popular MDD tools & how they work

• How MDD relates to other software tools &
(heterogeneous) platform technologies

• What types of projects are using MDD today & what
are their experiences

• What are the open issues in MDD R&D & adoption

• Where you can find more information

Model-Driven Development of Distributed Systems 271

Some Advertisements

• Thomas Stahl, Markus Völter

• Model-Driven

Software Development,
Wiley, 2006

www.mdsd-book.org

Model-Driven Development of Distributed Systems 272

Questions?

