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What We Want You to Learn Today

• Key MDD concepts & what kinds of domains & 
problems they address

• What are some popular MDD tools & how they work

• How MDD relates to other software tools & 
(heterogeneous) platform technologies 

• What types of projects are using MDD today & what 
are their experiences

• What are the open issues in MDD R&D & adoption

• Where you can find more information
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CPU & network performance has increased by 3-8 
orders of magnitude in past decades

1,200 bits/sec to 
10+ Gigabits/sec

The Road Ahead

Extrapolating these trends another decade or so yields
• ~100 Gigahertz desktops
• ~100 Gigabits/sec LANs
• ~100 Megabits/sec wireless
• ~10 Terabits/sec Internet backbone

10 Megahertz to 
3+ Gigahertz

Unfortunately, software quality & 
productivity hasn’t improved as 

rapidly or predictably as hardware
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Why Hardware Improves So Consistently

Advances in hardware & networks stem largely from 
R&D on standardized & reusable APIs & protocols

x86 & Power PC chipsets TCP/IP
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Why Software Fails to Improve as Consistently

In general, software has not been as standardized or reusable as hardware
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Model-Driven Development of Distributed Systems 8

The Promise

•Develop standardize 
technologies that:

1. Model

2. Analyze

3. Synthesize &

4. Provision
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static CORBA::Long receiver_pid_;
static FILE *output_file = 0;
// File handle of the file into which received data is written
quo::ValueSC_var actualFrameRate;
// Poke this in order to send the measured frame rate toQuO
// destination port to send mpeg data to onlocalhost
staticintoutput_port = 8001;
// Instrumentation Helper
staticInstrumentor*instrument = 0;
// Name of process
static ACE_CStringprocess_name_;
intReceiver_StreamEndPoint::get_callback (constchar *flowname, TAO_AV_Callback*&callback) {

ACE_DECLARE_NEW_CORBA_ENV;
// Create & return the sender application callback toAVStreamsfor furtherupcalls
int retval= 0;
callback = &this->callback_;
RECEIVER::instance ()->connection_manager ()connect_negotiator(this,flowname);
returnretval; }

Receiver_Callback::Receiver_Callback (void) : frame_count_ (1) {
ACE_INET_Addr inet_addr(output_port, "localhost");
dvdview_endpoint_open(inet_addr); }

intReceiver_Callback::receive_frame (ACE_Message_Block *frame, TAO_AV_frame_info * /*frame_info*/,
constACE_Addr&) {

//Upcallfrom theAVStreamswhen there is data to be received from the sender
++frame_count_;
while (frame != 0) {

char *buf= frame->rd_ptr();
// Get the RTP fixed header
rtp_hdr_thdr;
ACE_OS::memcpy(&hdr,buf, sizeof(rtp_hdr_t));
// decode the RTP header (endianproblems)
rtp_hdr_t decoded_rtp_hdr;
decode_rtp_hdr(&hdr, &decoded_rtp_hdr);
// Get the MPEG RTP header extension
rtp_mpeg_hdr_t mpeg_hdr;
ACE_OS::memcpy(&mpeg_hdr,buf+sizeof(rtp_hdr_t),sizeof(rtp_mpeg_hdr_t));
// extract the frame type from the RTP header extension
u_char frame_type = mpeg_hdrbf1 & 0x07;
RECEIVER::instance ()->time_frame (frame_type);
// strip off thertpheaders for sending
char *send_buf= &buf[sizeof(rtp_hdr_t) +sizeof(rtp_mpeg_hdr_t) ];
size_t send_len= frame->length() -sizeof(rtp_hdr_t) -sizeof(rtp_mpeg_hdr_t);
if (instrument && (frame_type == 1)) {

Instrumentor::MessageBodybody;
ACE_Time_Valuetv= ACE_OS::gettimeofday();
bodyadd_string(Instrument::Name, RECEIVER::instance()->name());
bodyadd_ulong(Instrument::SequenceNumber, decoded_rtp_hdrseq);
bodyadd_double(Instrument::Timestamp, (CORBA::Double)decoded_rtp_hdrts);
bodyadd_double(Instrument::ReceiveTime, (CORBA::Double)((unsigned long)tvmsec()) );

bodyadd_double(Instrument::FrameTiming, (CORBA::Double)(tvmsec() - decoded_rtp_hdrts) );
bodyadd_string(Instrument::ProcessName, process_name_c_str());
bodyadd_long(Instrument::PID, receiver_pid_);
instrument->send_event(Instrument::ReceiverFrameStats, body); }

if (output_file) {
// Write the received data to the file
intresult = ACE_OS::fwrite(send_buf, send_len, 1, output_file); }

dvdview_endpoint_send (send_buf, send_len);
frame = frame->cont(); }

return 0; }
Receiver::Receiver (void) : debug_level_ (0),mmdevice_ (0),output_file_name_ (), is_output_file_ (0),

sender_name_ ("distributor"), receiver_name_ ("receiver"), use_qos_stream_(0) {}
Receiver::~Receiver (void) {}
intReceiver::init(int, char**,CORBA::Environment &ACE_TRY_ENV) {
// Initialize the endpoint strategy with the orb andpoa
intresult = this->reactive_strategy_init(TAO_AV_CORE::instance ()->orb (), 

TAO_AV_CORE::instance ()->poa());
if (result != 0) return result;
// Initialize the connection manager
result = this->connection_manager_init(TAO_AV_CORE::instance ()->orb ());
if (result != 0) return result;
// Register the receivermmdeviceobject with the ORB
ACE_NEW_RETURN (this->mmdevice_, TAO_MMDevice(&this->reactive_strategy_), -1);
// Servant Reference Counting to manage lifetime
AVStreams::MMDevice_var mmdevice= this->mmdevice_->_this (ACE_TRY_ENV);
ACE_CHECK_RETURN (-1);
// Bind to sender
this->connection_manager_bind_to_sender (this->sender_name_, this->receiver_name_,mmdevicein (),

ACE_TRY_ENV);
ACE_CHECK_RETURN (-1);

AVStreams::streamQoSthe_qos;
this->fill_qos( the_qos);
// Connect to the sender
this->connection_manager_connect_to_sender (the_qos, use_qos_stream_, ACE_TRY_ENV);
ACE_CHECK_RETURN (-1);
CORBA::ORB_varorb = TAO_AV_CORE::instance ()->orb();
// Connect toQuOsystem condition to setactualFrameRate
ACE_CStringname_cstr("ActualFrameRate_");
name_cstr+= this->sender_name_ + "_" + this->receiver_name_;
CosNaming::NamingContext_var nc=NamingHelper<CosNaming::NamingContext>::resolve_init

(CORBA::ORB::_duplicate(orbin()), "NameService", 5, ACE_Time_Value(1, 0));
CosNaming::Name name;
namelength(1);
name[0]id = CORBA::string_dup(name_cstrc_str());
name[0]kind = CORBA::string_dup("");
//QuO syscondthat should receive the measured frame rate
frame_rate_meter_set_framerate_sc(NamingHelper<quo::ValueSC>::resolve_name(ncin(), 

name, 15, ACE_Time_Value(1, 0)));
return 0; }

intReceiver::parse_args(int argc, char**argv) {
if(argc< 2 ){

usage();
return -1; }

for(inti=0; i <argc; i++) {
if(strcmp(argv[i], "--qos") == 0) use_qos_stream_ = 1; }

// Parse the command line arguments
ACE_Get_Opt opts (argc, argv, "f:s:r:d:p:");
intc;
while ((c = opts ()) != -1) {

switch (c) {
case 'f': this->output_file_name_ = optsoptarg; this->is_output_file_ = 1; break;
case 's': this->sender_name_ = optsoptarg; break;
case 'r': this->receiver_name_ = optsoptarg; break;

case 'd': this->debug_level_ = ACE_OS::atoi(optsoptarg); break;
case 'p': output_port = ACE_OS::atoi(optsoptarg); break;
default: ACE_ERROR_RETURN ((LM_ERROR, "Usage: receiver -f filename"), -1); } }

instrument = newInstrumentor(TAO_AV_CORE::instance ()->orb(), Instrument::domain_name,
this->receiver_name_c_str());

return 0; }
Connection_Manager &Receiver::connection_manager (void) { 
return this->connection_manager_; }

void Receiver::usage() {
ACE_DEBUG((LM_DEBUG, "Usage:\n\n"));
ACE_DEBUG((LM_DEBUG, "   receiver -s [sender name] -r [receiver name]\n"));
ACE_DEBUG((LM_DEBUG, "             -d [debug level] -f [file name]\n"));
ACE_DEBUG((LM_DEBUG, "             -p [output UDP port, default is %d]\n", output_port));
ACE_DEBUG((LM_DEBUG, "          [--qos]\n")); }

void Receiver::time_frame (intframe_type) {
frame_rate_meter_time_frame (frame_type); }

void Receiver::fill_qos(AVStreams::streamQoS&qos) {
#if 1 || defined(RESERVATION_CONTROL)
qoslength(0);

#else
CORBA::ULongbandwidth =1000000/8;
CORBA::ULongpeak_bandwidth =1100000/8;
qoslength (1);
qos[0]QoSType=  CORBA::string_dup("Data_Receiver");
qos[0]QoSParamslength (10);
qos[0]QoSParams[0]property_name = CORBA::string_dup("Service_Type");
qos[0]QoSParams[0]property_value <<= (CORBA::Short) ACE_SERVICETYPE_CONTROLLEDLOAD;
qos[0]QoSParams[1]property_name = CORBA::string_dup("Token_Rate");
qos[0]QoSParams[1]property_value <<= (CORBA::ULong) bandwidth ;
qos[0]QoSParams[2]property_name = CORBA::string_dup("Token_Bucket_Size");
qos[0]Qo
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[2]property_value <<= (CORBA::ULong) 5000;
qos[0]QoSParams[3]property_name = CORBA::string_dup("Peak_Bandwidth");
qos[0]QoSParams[3]property_value <<= (CORBA::ULong) peak_bandwidth;
qos[0]QoSParams[4]property_name = CORBA::string_dup("Latency");
qos[0]QoSParams[4]property_value <<= (CORBA::ULong) 0;
qos[0]QoSParams[5]property_name = CORBA::string_dup("Delay_Variation");
qos[0]QoSParams[5]property_value <<= (CORBA::ULong) 0;
qos[0]QoSParams[6]property_name = CORBA::string_dup("Max_SDU_Size");
qos[0]QoSParams[6]property_value <<= (CORBA::ULong) 368;
qos[0]QoSParams[7]property_name = CORBA::string_dup("Minimum_Policed_Size");
qos[0]QoSParams[7]property_value <<= (CORBA::ULong) 368;
qos[0]QoSParams[8]property_name = CORBA::string_dup("TTL");
qos[0]QoSParams[8]property_value <<= (CORBA::ULong) 25;
qos[0]QoSParams[9]property_name = CORBA::string_dup("Priority");
qos[0]QoSParams[9]property_value <<= (CORBA::ULong) 1;

#endif}
ACE_CstringReceiver::output_file_name (void) {
return this->output_file_name_; }

intReceiver::is_output_file (void) {
return this->is_output_file_; }

intReceiver::spawn_viewer() {
if( ACE_OS::access("/dvdview/src/dvdview", X_OK) != 0 ) {

return -1; }
ACE_Process process;
ACE_Process_Options options;
optionscommand_line ("%s -z %d a", "/dvdview/src/dvdview", output_port);
pid_t viewer_pid= ACE_OS::fork();
pid_t receiver_pid= 0;
switch(viewer_pid) {

case -1: /* error */ ACE_OS::exit(99); break;
case 0: /* child */ processspawn(options); break;
default: /* parent */ receiver_pid= ACE_OS::fork(); 

switch(receiver_pid){
case -1: /* error */ ACE_OS::exit(98); break;
case 0: /* child */ break;
default: break; }

break; }
intstatus1, status2;
if( receiver_pid!= 0) {

ACE_OS::waitpid(viewer_pid, &status1, 0);
ACE_OS::waitpid(receiver_pid, &status2, 0);
ACE_OS::exit(0);  }

return 0; }
constchar * Receiver::name()const{
return receiver_name_c_str(); }

intmain (int argc, char**argv) {
receiver_pid_ = (CORBA::Long)ACE_OS::getpid();
process_name_ = ACE::basename(argv[0]);
ACE_DECLARE_NEW_CORBA_ENV;
ACE_TRY {

// Initialize the ORB first
CORBA::ORB_varorb = CORBA::ORB_init(argc,argv, 0, ACE_TRY_ENV);
ACE_TRY_CHECK;
CORBA::Object_var obj= orb->resolve_initial_references ("RootPOA", ACE_TRY_ENV);
ACE_TRY_CHECK;
// Get the POA_varobject from Object_var
PortableServer::POA_varroot_poa=PortableServer::POA::_narrow (objin (), 
ACE_TRY_CHECK;
PortableServer::POAManager_var mgr= root_poa->the_POAManager(ACE_TRY_ENV);
ACE_TRY_CHECK;
mgr->activate (ACE_TRY_ENV);
ACE_TRY_CHECK;
// Initialize theAVStreamscomponents
TAO_AV_CORE::instance ()->init(orbin (), root_poain (), ACE_TRY_ENV);
ACE_TRY_CHECK;
Receiver *receiver = RECEIVER::instance ();
intresult = receiver->parse_args(argc,argv);
if (result == -1) return -1;
receiver->spawn_viewer();
if (receiver->is_output_file ()) {

// Make sure we have a valid <output_file>
output_file = ACE_OS::fopen(receiver->output_file_name ()c_str(), "w");
if (output_file == 0) 

ACE_ERROR_RETURN ((LM_DEBUG, "
receiver->output_file_name ()c_str()), -1);

else ACE_DEBUG ((LM_DEBUG, “
result = receiver->init(argc,argv, ACE_TRY_ENV);
ACE_TRY_CHECK;
if (result != 0) return result;
orb->run (ACE_TRY_ENV);
ACE_TRY_CHECK;
// Hack for now
ACE_OS::sleep (1);
orb->destroy (ACE_TRY_ENV);
ACE_TRY_CHECK; }

ACE_CATCHANY {
ACE_PRINT_EXCEPTION (,"receiver::init");
return -1; }

ACE_ENDTRY;
ACE_CHECK_RETURN (-1);
ACE_OS::fclose(output_file);
return 0; }

The Reality

• Architects 
(sometimes) use 
UML to express 
software designs 
at a high-level 

• Developers write 
& evolve code 
manually

We ought/need to be able to do much better than this! Model-Driven Development of Distributed Systems 10

Impediments of human nature

• Organizational, economic, administrative, political, & 
psychological barriers

Ineffective technology transition strategies

• Disconnects between methodologies & production 
software development realities

• Lack of incremental, integrated, & triaged transitions

Non-Technical 

Challenges

Technical 

Challenges

Sources of the Problems
Inherent & accidental complexities

–More automated specification & synthesis of 

• Broader range of target domain capabilities 

• Model interpreters & transformations

• Static & dynamic quality of service (QoS) properties 

–Round-trip engineering from models source

–Poor support for debugging at the model level

–Version control of models at the model level

www.cs.wustl.edu/~schmidt/reuse-lessons.html
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Key Challenges for Software Developers

LogicalLogical

ViewView

PhysicalPhysical

ViewView
DevelopmentDevelopment

ViewView

ProcessProcess

ViewView

Use CaseUse Case

ViewView

Developers & users of software face 

challenges in multiple dimensions
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LogicalLogical

ViewView

Determining units of abstraction 
for system (de)composition, 

reuse, & validation

• Popular technologies & tools provide 
inadequate support for 

– Checking pre-/post-conditions & invariants

– Specifying & analyzing dependencies

– Expressing design intent more clearly 
using domain concepts

Key Challenges for Software Developers
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PhysicalPhysical

ViewView

Integrating/deploying diverse new & 
reusable application components in 
a networked environment to ensure 

end-to-end QoS requirements

• Popular technologies & tools 
provide inadequate support for

– Configuring & customizing 
components for application 
requirements & run-time 
environments

– Automated mapping of 
components onto nodes in 
target environments

Key Challenges for Software Developers
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ProcessProcess

ViewView

Devising execution architectures, 
concurrency models, & communication styles 

that ensure multi-dimensional QoS & 
correctness of new/reusable components

• Popular technologies & tools 
provide inadequate support for

– Identifying & reducing 
performance & robustness 
risks earlier in system lifecycle

– Satisfying multiple (often
conflicting) QoS demands 

• e.g., secure, real-time, 
reliable

– Satisfying QoS demands in 
face of fluctuating/insufficient 
resources

• e.g., mobile ad hoc 
networks (MANETs)

Key Challenges for Software Developers
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DevelopmentDevelopment

ViewView

(De)composing systems into 
reusable modules (e.g., packages, 

subsystems, libraries) that 
achieve/preserve QoS properties

• Popular technologies & tools 
provide inadequate support for 
avoiding “bloatware”, i.e.:

– Cyclic dependencies, which 
make unit testing & reuse 
hard

– Excessive link-time 

dependencies, which bloat 
the size of executables

– Excessive compile-time 

dependencies, where small 
changes trigger massive 
recompiles

Key Challenges for Software Developers
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Capturing functional & QoS 
requirements of systems & 
reconciling them with other 

views during evolution

• Popular technologies & tools provide inadequate support for

– Ensuring semantic consistency & traceability between requirements & 
software artifacts

– Visualizing software architectures from multiple views

Use CaseUse Case

ViewView

Key Challenges for Software Developers
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Promising Solution Approaches

Model-driven

development  

& domain-specific 

languages
Verification & validation 

technologies, e.g., model 

checking & static analysis

Middleware frameworks 

that integrate multiple 

QoS properties

GPS IFF FLIR

Object Request Broker

Air
Frame

AP Nav WTS

Event 
Channel

Replication
Service

Synchronization

Persistence

Fault Tolerance

Memory Management

Cross-cutting Concerns

Multi-faceted 

Software

Development

Formalizing best practices 

& design expertise

There is no single “silver bullet” technology that resolves all software problems! Model-Driven Development of Distributed Systems 18

LogicalLogical

ViewView

Promising Solution Approaches

Devising composable 

abstractions whose 

interfaces & QoS properties 

can be specified/analyzed 

via metadata

•Components encapsulate “business” logic

•Components interact via ports

•Provided ports, e.g.,facets

•Required ports, e.g., receptacles

•Event sink & source ports

•Containers provide execution environment 
Components/containers can also

•Communicate via a middleware bus &

•Reuse common middleware services

•Aspect-oriented techniques can help with 
integration

SecurityReplication NotificationPersistence

SchedulingA/V Streaming Load Balancing

…

Container

… …

Middleware Bus

Container

…
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Promising Solution Approaches

PhysicalPhysical

ViewView

Model-driven development & 

analysis techniques for optimizing, 

verifying, & automating the 

deployment & configuration process Gigabit Ethernet
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ProcessProcess

ViewView

Promising Solution Approaches

Software execution modeling & 
emulation techniques & tools; distributed 

continuous quality assurance

Kill

Eval

Sched

EO

Illum

AAW

EG

AAW
AAWTBM

EG

AAWAAW

AAW

MG

TMB

MG

• Synthetic workload & emulated 
components

• Replaced incrementally with 
actual applications & components

Gigabit Ethernet

Build & Test Scoreboard

• Automate QA processes 
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DevelopmentDevelopment

ViewView

Promising Solution Approaches

Development environments that provide 
multiple views & minimize dependencies 
between large-scale software artifacts to 

optimize development & test cycles

• Packages view – shows element 
tree defined by project's build 
class path 

• Type hierarchy view – shows the 
sub- & super-type hierarchies 

• Outline view – shows the structure 
of a compilation unit or class file 

• Browsing perspective – allows 
navigating models using separate 
views for projects, packages, 
types & members

• Wizards for creating elements –
e.g., project, package, class, 
interface

• Editors – syntax coloring, content 
specific code assist, code resolve, 
method level edit, import 
assistance, quick fix & quick assist 
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Use CaseUse Case

ViewView

Promising Solution Approaches

Automated tracing  of 

(in)consistency between 

requirement specifications & 

associated software artifacts

Matlab
Code-Genn
Matlab

Code-Gen

Domain-Specific Modeling

Languages

Co
Artifact

Generator

if (inactiveInterval != -1) {
int thisInterval =

(int)(SystemcurrentTimeMillis() -
lastAccessed) / 1000;

if (thisInterval > inactiveInterval) {
invalidate();

ServerSessionManager ssm =
ServerSessionManagergetManager();

ssmremoveSession(this);
}

}
}

private long lastAccessedTime = creationTime;

/**
* Return the last time the client sent a request

associated with this
* session, as the number of milliseconds since 

midnight, January 1, 1970
* GMT  Actions that your application takes, such as 

getting or setting
* a value associated with the session, do not affect

the access time
*/

public long getLastAccessedTime() {

return (thislastAccessedTime);

}

thislastAccessedTime = time;

Configuration

Specification

Analysis Tool

Code

• One way to automate tracing 
between higher-level specifications 
& lower-level implementations is to 
leverage model-driven development 
techniques & tools 
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Technology Evolution (1/4)
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Programming Languages 

& Platforms

Model-Driven Engineering (MDE)

• State chart

• Data & process flow

• Petri NetsTra
nsl

at
io

n

Large
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CodeCodeCodeCodeCodeCodeModelModel

ModelModelModelModelModel

Generated

Code

Model

Platform

Machine code

Assembly

C/Fortran

Hardware

Operating
Systems
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Technology Evolution (2/4)

Programming Languages 

& Platforms
L

e
v
e

l o
f A

b
s
tra

c
tio

n

C++/JavaClass Libraries

Frameworks

Components

Machine code

Assembly

C/Fortran

Hardware

Operating
Systems

Model

Application Code

Domain Specific
Framework

Platform
Frameworks

Model

Generated Code
Framework

Pattern Language

Platform

Model

Application Code

Domain Specific
Framework

Platform
Frameworks

Model

Generated Code
Framework

Pattern Language

Platform

Model

Application Code

Domain Specific
Framework

Platform
Frameworks

Model

Generated Code
Framework

Pattern Language

Platform

Model

Domain Specific
Framework

Platform
Frameworks

Framework
Pattern Language

Platform

Application Code

•Newer 3rd-generation languages & 
platforms have raised abstraction level 
significantly

•“Horizontal” platform reuse 
alleviates the need to redevelop 
common services

•There are two problems, however:

•Platform complexity evolved faster 
than 3rd-generation languages

•Much application/platform code still 
(unnecessarily) written manually
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Semi-automated

Domain-independent 

modeling languages

• State Charts

• Interaction Diagrams

• Activity Diagrams

Technology Evolution (3/4)

Programming Languages 

& Platforms

L
e

v
e

l o
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b
s
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c
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n

Saturation!!!!

Model-Driven Development (MDD)

Domain-specific

modeling languages

• ESML

• PICML

• Mathematica

• Excel

• MetamodelsManual

translation

C++/JavaClass Libraries

Frameworks

Components

Machine code

Assembly

C/Fortran

Hardware

Operating
Systems
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Technology Evolution (3/4)

Programming Languages 

& Platforms
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Model-Driven Development (MDD)

Domain-specific

modeling languages

• ESML

• PICML

• Mathematica

• Excel

• MetamodelsManual

translation

Semi-automated

Domain-independent

modeling languages

• State Charts

• Interaction Diagrams

• Activity Diagrams

• OMG is evaluating MDE via MIC PSIG
• mic.omg.org
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Technology Evolution (3/4)

Programming Languages 

& Platforms
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e
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e
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f A

b
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tra
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Model

Application Code

Domain Specific
Framework

Platform

Frameworks

Model

Generated Code

Framework

Pattern Language

Platform

Model

Application Code

Domain Specific
Framework

Platform

Frameworks

Model

Generated Code

Framework

Pattern Language

Platform

Model

Application Code

Domain Specific
Framework

Platform

Frameworks

Model

Generated Code

Framework

Pattern Language

Platform

Model

Application Code

Domain Specific
Framework

Platform

Frameworks

Model

Generated Code

Framework

Pattern Language

Platform

Model-Driven Development (MDD)

Domain-specific

modeling languages

• ESML

• PICML

• Mathematica

• Excel

• MetamodelsManual

translation

C++/JavaClass Libraries

Frameworks

Components

Machine code

Assembly

C/Fortran

Hardware

Operating
Systems

• OMG is evaluating MDE via MIC PSIG
• mic.omg.org

Semi-automated

Domain-independent

modeling languages

• State Charts

• Interaction Diagrams

• Activity Diagrams
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Technology Evolution (4/4)

Programming Languages 

& Platforms

Needs Automation 

Needs 

Automation

Research is needed to automate 
DSMLs & model translators

L
e

v
e

l o
f A

b
s
tra

c
tio

n

Platform
Frameworks

Application Code

Model

Platform

Generated Code

Model

Platform
Frameworks

Application Code

Model

Platform

Generated Code

Model

Platform
Frameworks

Application Code

Model

Platform

Generated Code

Model

Platform
Frameworks

Application Code

Model

Platform

Generated Code

Model

Domain-specific

modeling languages

• ESML

• PICML

• Mathematica

• Excel

• MetamodelsNeeds

Automation

Domain-independent

modeling languages

• State Charts

• Interaction Diagrams

• Activity Diagrams
C++/JavaClass Libraries

Frameworks

Components

Machine code

Assembly

C/Fortran

Hardware

Operating
Systems

Model-Driven Development (MDD)

See February 2006 IEEE Computer special issue on MDE techniques & tools
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Overview of Important Terms

Model

Domain

Specific

semantics

precise/

executable

knowledge

Language

Represent the domain at the 

level of designers intent, 

rather than implementation 

technology

DSL defines what 

models “mean”
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Overview of Important Terms

Model

Domain

Specific

Language

Metamodel

textual

graphical

Domain

Ontology

bounded area of

knowlege/interest

semantics

precise/

executable

knowledge

An ontology of a domain is often 

the starting point for a metamodel. 

An ontology is a specification of a 

conceptualization.
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Overview of Important Terms

Model

Domain

Specific

Language

Metamodel

textual

graphical

Domain

Ontology

bounded area of

knowlege/interest

semantics

precise/

executable

target

software

architecture

software

architecture

transform

compile

interpret

knowledge

Transform higher-level domain-

oriented model into lower-level 

execution-oriented “model” or a 

model that selectively represents 

some aspect of the original

Transform models 

into code and other 

artifacts necessary to 

run the system on a 

given platform
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Overview of Important Terms

Model

Domain

Specific

Language

Metamodel

textual

graphical

Domain

Ontology

bounded area of

knowlege/interest

semantics

precise/

executable

transform

compile

interpret

multi-step

single-step

no

roundtrip

knowledge

several

design

expertise

One motivation of doing 

all this is to be able to run 

the software on different 

platforms (original focus 

of the MDA)target

software

architecture

software

architecture
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Overview of Important Terms

Model

Domain

Specific

Language

Metamodel

textual

graphical

Domain

Ontology

bounded area of

knowlege/interest

semantics

precise/

executable

multiple

partial

viewpoint

aspect

composable

Metametamodel

transform

compile

interpret

multi-step

single-step

no

roundtrip

knowledge

several

design

expertise

target

software

architecture

software

architecture

Realistic systems are always 

defined with several models, 

each describing a certain 

viewpoint or aspect of the 

overall system
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Cascading MDD Using Platform Stacking

• The generated code of the lower layer serves as the platform for the 
next higher level

• A sequence of generation steps is used, whereas each of the 
generates code on which the next step builds
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Cascading MDD Using M2M

• Here the higher level models are transformed into lower-level models 
that serve as input for the lower level generators Model-to-Model 
Transformations are used

• Typically, higher level 

models are more 

specific to a certain 
(sub-)domain
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DYI vs 3rd Party Cartridges

Conceptional

Architecture

Model

Generator   

Cartridge 

Specific

for the 

Conceptional

architecture

Model suitable 

for C2

Model suitable

for C3

Off-the-Shelf

Cartridge C2

Off-the-Shelf

Cartridge C3

Code generated 

by C2

Code generated 

by C3

Project Specific

Code

Manually

written code

• Do you build your own generator for your specific architecture? 

–This is good, because it’s tailored to your architecture

• Or do you want to (re)use off-the-shelf cartridges for certain standard 
technologies (such as J2EE, Hibernate, Spring)?

• You can do the best of both worlds: 

–Define applications using your own metamodels

(architecture-centric, maybe funtional ones on top)

–Transform your models to input models for the off-the-
shelf cartridges on the lower levels
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•Present solutions

to common 
software problems

arising within a 
certain context

Overview of Patterns

•Capture recurring structures & 
dynamics among software 
participants to facilitate reuse of 
successful designs

The Proxy Pattern

1 1
Proxy

service

Service

service

AbstractService

service

Client

•Help resolve 
key software 
design 
forces

•Flexibility

•Extensibility

•Dependability

•Predictability

•Scalability

•Efficiency

MDD tools codify & automate many (but by no means all) aspects of patterns

•Generally codify expert 
knowledge of design strategies, 
constraints & “best practices”
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Overview of Pattern Languages
Motivation

•Individual patterns & pattern 
catalogs are insufficient

•Software modeling methods 
& tools largely just illustrate 
what/how – not why –

systems are designed

Benefits of Pattern Languages

• Define a vocabulary for talking about software development problems

• Provide a process for the orderly resolution of these problems, eg: 

• What are key problems to be resolved & in what order

• What alternatives exist for resolving a given problem

• How should mutual dependencies between the problems be handled

• How to resolve each individual problem most effectively in its context 

• Help to generate & reuse software architectures

Pattern languages are crucial for DSLs & frameworks Model-Driven Development of Distributed Systems 42

Overview of Frameworks

Framework Characteristics 

Application-specific

functionality

•Frameworks exhibit 
“inversion of control” at 
runtime via callbacks

Networking Database

GUI

•Frameworks provide 
integrated domain-specific 
structures & functionality

Mission
Computing E-commerce

Scientific
Visualization

•Frameworks are 
“semi-complete”
applications
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Benefits of Frameworks

Communication

Services

OS-Access

Layer

Broker

Component

Repository

Component

Configurator

Proxy Proxy

Broker

Admin

Controllers

Admin

Views

AdminClient
Picking

Controllers

Picking

Views

PickingClient

Broker

Logging

Handler
ThreadPool

*

Reactor

Broker

Scheduler/

ActivationList

Service

Request

Service

Request

Service

Request

WarehouseRepHalfX

Distribution

Infrastructure

Concurrency

Infrastructure

Thin UI Clients

• Design reuse

• e.g., by guiding application 
developers through the steps 
necessary to ensure successful 
creation & deployment of 
software
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package orgapachetomcatsession;

import orgapachetomcatcore*;
import orgapachetomcatutilStringManager;
import javaio*;
import javanet*;
import javautil*;
import javaxservlet*;
import javaxservlethttp*;

/**
* Core implementation of a server session
*
* @author James Duncan Davidson [duncan@engsuncom]
* @author James Todd [gonzo@engsuncom]
*/

public class ServerSession {

private StringManager sm =
StringManagergetManager("orgapachetomcatsession");

private Hashtable values = new Hashtable();
private Hashtable appSessions = new Hashtable();
private String id;
private long creationTime = SystemcurrentTimeMillis();;
private long thisAccessTime = creationTime;

private int inactiveInterval = -1;

ServerSession(String id) {
thisid = id;

}

public String getId() {
return id;

}

public long getCreationTime() {
return creationTime;

}

public ApplicationSession getApplicationSession(Context context,
boolean create) {
ApplicationSession appSession =

(ApplicationSession)appSessionsget(context);

if (appSession == null && create) {

// XXX
// sync to ensure valid?

appSession = new ApplicationSession(id, this, context);
appSessionsput(context, appSession);

}

// XXX
// make sure that we haven't gone over the end of our
// inactive interval -- if so, invalidate & create
// a new appSession

return appSession;
}

void removeApplicationSession(Context context) {
appSessionsremove(context);

}

Benefits of Frameworks

• Design reuse

• e.g., by guiding application 
developers through the steps 
necessary to ensure successful 
creation & deployment of 
software

• Implementation reuse

• e.g., by amortizing software 
lifecycle costs & leveraging 
previous development & 
optimization efforts
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• Design reuse

• e.g., by guiding application 
developers through the steps 
necessary to ensure successful 
creation & deployment of 
software

• Implementation reuse

• e.g., by amortizing software 
lifecycle costs & leveraging 
previous development & 
optimization efforts

• Validation reuse

• e.g., by amortizing the efforts of 
validating application- & 
platform-independent portions 
of software, thereby enhancing 
software reliability & scalability

Benefits of Frameworks
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Summary of Pattern, Framework, & MDD Synergies

These technologies codify expertise of domain experts & developers

• Patterns codify expertise in 
the form of reusable 
architecture design themes & 
styles, which can be reused 
event when algorithms, 
components implementations, 
or frameworks cannot

• Frameworks codify 
expertise in the form of 
reusable algorithms, 
component & service 
implementations, & 
extensible architectures

Application-specific 

functionality 

Acceptor 

Connecto

r

Component

Configurator

Stream

Reactor 

Proactor

Task 

There are now powerful feedback loops advancing these technologies

• MDD tools codify 
expertise by automating 
key aspects of pattern 
languages & providing 
developers with domain-
specific modeling 
languages to access the 
powerful (& complex) 
capabilities of frameworks 

Model

Application Code

Domain Specific

Framework

Platform

Frameworks

Model

Generated Code

Framework

Pattern Language

Platform

Model

Application Code

Domain Specific

Framework

Platform

Frameworks

Model

Generated Code

Framework

Pattern Language

Platform

Model

Application Code

Domain Specific

Framework

Platform

Frameworks

Model

Generated Code

Framework

Pattern Language

Platform

Model

Application Code

Domain Specific

Framework

Platform

Frameworks

Model

Generated Code

Framework

Pattern Language

Platform
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Why You Need M2M

MDSD-

Infrastructure

Input Models

Output Model

Code Generator for

Architectural MDSD Infrastructure

Code for Target Platform

Programming Model (based on Arch-MM)

M2M/Code

Generator for SD 1

Model for Subdomain 1

M2M/Code

Generator for SD 2

Model for Subdomain 2

...

...

...

...

...

...

• As explained earlier, cascading MDD requires model-to-model 
transformations
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Modular, Automated Transformations

• To more easily reuse parts of a transformation, it is a good idea to 
modularize a transformation

• Note that in contrast to the OMG, we do not recommend looking at, 

changing, or marking the intermediate models

• They are merely a 
standardized format 

for exchanging data

among transformations

• Example: Multi-Step 
transformation from 
a banking-specific 
DSL to Java via J2EE

Banking-

Metamodell

Bank /

OO
OO Metamodel

J2EE Metamodel

Process

Metamodel
Bank /

Prozess

OO/

J2EE

Process/

J2EE

WLS

Metamodel

WebSphere

Metamodel

J
2

E
E

/
B

E
A

J
2

E
E

/
IB

M

Java

Metamodel

BEA/

Java

IBM/

Java
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Modular, Automated Transformations II

• Example cont’d:

Now consider a Call-Center application; only the first step needs to be 
adapted

• If both should be transformed to NET, only the backend needs to be 
exchanged

CallCenter

Metamodel

CC /

OO
OO Metamodel

Process

Metamodel
CC /

Prozess

...

...

...

OO Metamodel

Process

Metamodel

OO/

.NET

Prozess/

.NET

.NET Metamodel
.NET/

C# C# Metamodel
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Transforming “in the Tool”

openArchitectureWareModel

(UML)

Model

(XMI)

Parser

Model

(Object Graph)

Model

Trans-

former

Modified Model

(Object Graph)

export

Generated

Code
Code

Generator

(may be repeated)

Developer builds

model using for 
example a UML 

tool
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openArchitectureWareModel

(UML)

Model

(XMI)

Parser

Model

(Object Graph)

Model

Trans-

former

Modified Model

(Object Graph)

export

Generated

Code
Code

Generator

(may be repeated)

The XMI produced by 
the UML tool is parsed

by the generator tool –
& an AST is created

in memory

Transforming “in the Tool”
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openArchitectureWareModel

(UML)

Model

(XMI)

Parser

Model

(Object Graph)

Model

Trans-

former

Modified Model

(Object Graph)

export

Generated

Code
Code

Generator

(may be repeated)
Inside the generator,

model-to-model
transformations are used to 
build new or modified ASTs

The intermediate ASTs
cannot be modified

interactively by the 
developer

Transforming “in the Tool”
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openArchitectureWareModel

(UML)

Model

(XMI)

Parser

Model

(Object Graph)

Model

Trans-

former

Modified Model

(Object Graph)

export

Generated

Code
Code

Generator

(may be repeated)

In a final step, code

is generated from
the AST

Transforming “in the Tool”
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External Model Markings (AO–Modeling)

• To allow the transformation of a source model into a target model (or to 
generate code) it is sometimes necessary to provide “support”

information that is specific to the target meta model

–Example: Entity Bean vs Type Manager

• Adding these to the source model “pollutes” the source model with
concepts specific to the target model

• MDA proposes to add “model markings,” but this currently supported 
only by a few tools

• Instead, we recommend keeping this information outside of the model

(e.g., in an XML file)

–The transformation engine would use this auxiliary information when 
executing the transformations

This is an example of “aspect-oriented programming/modeling”
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Model–to–Model Transformations: QVT

• Most of the transformations built thus far have been constructed with Java

code

– If the metaclasses have a well-designed API (repository API) then this
“procedural transformations” does indeed work well 

• However, more dedicated model transformation languages are
becoming available:

–e.g., ATL, MOLA, Wombat (oAW), etc

• The QVT standard is
becoming a reality

– It will be finalized by
the end of 2006

• QVT actually comprises 
three languages:

Relations

Language

Core

Language

defined
In terms of

Black Box

Mappings

Operation

Mappings

Language

Java

.NET
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Model–to–Model Transformations: QVT Relational

top relation EntityKeyToTableKey {

checkonly domain alma entity:Entity {
key = entityKeyField:Field {}

};

enforce domain db table:Table {
key = tableKey:Key {}

};

when {
EntityToTable(entity, table);

}

where {
KeyRecordToKeyColumns(entityKeyField, table);

}

}

relation PhysicalQuantityTypeToColumn {

pqName, pqUnit, fieldName : String;    

checkonly domain alma field:Field {
name = fieldName,
type = pq:PhysicalQuantityType {
name = pqName,
units = pqUnit

}
};

enforce domain db table:Table {
columns = column:Column {
name = prefix + fieldName + '_as_' + 

pqName + '_in_' + pqUnit,
type = AlmaPhysicalQuantityTypeToDbType(pq)

}
};

primitive domain prefix:String;
}
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M2M–Transformations: QVT Operational

mapping DependentPart::part2table(in prefix : String) : Table

inherits fieldColumns {

var dpTableName := prefix + recordName;
name := dpTableName;
columns := mainColumns + 

object Column {
name := ‘key_’ + dpTableName;
type := ‘INTEGER’;
inKey := true;

}

end { self.parts->map part2columns(result, dpTableName + ‘_’); } 

}

query PrimitiveType::convertPrimitiveType() : String =

if self.name = "int" then 'INTEGER‘
else if self.name = "float" then 'FLOAT‘
else if self.name = "long" then 'BIGINT‘
else 'DOUBLE'

endif endif endif;
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Many Means of Transformations

• Today, many means of transformations are used:

• Plain old Java

• Eclipse GMT ATL

• IBM MTF

• A paper by Czarnecki/Helsen gives a very good overview:
www.swen.uwaterloo.ca/~kczarnec/ECE750T7/czarnecki_helsen.pdf

• ISIS GReAT

• Several partial QVT implementations

• UMLX
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Architectural Case Study

• PHASE 1: Elaborate!

– Technology-Independent Architecture

– Programming Model

– Technology Mapping

– Mock Platform

– Vertical Prototype

• PHASE 2: Iterate!

• PHASE 3: Automate!

– Architecture Metamodel

– Glue Code Generation

– DSL-based Programming Model

– Model-based Architecture Validation
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Architectural Case Study

• PHASE 1: Elaborate!

– Technology-Independent Architecture

– Programming Model

– Technology Mapping

– Mock Platform

– Vertical Prototype

• PHASE 2: Iterate!

• PHASE 3: Automate!

– Architecture Metamodel

– Glue Code Generation

– DSL-based Programming Model

– Model-based Architecture Validation
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Phase 1: Elaborate!

• This first elaboration phase
should be handled by a small

team, before the architecture is
rolled out to the whole team

• We want to build an enterprise

system that contains various
subsystems such as customer
management, billing & catalogs

• In addition to managing the data
using a database, forms & the 
like, we also have to manage the 
associated long-running

business processes

• We will look at how we can
attack this problem below Database

CRM
Billing
Catalogs
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Architectural Case Study

• PHASE 1: Elaborate!

– Technology-Independent Architecture

– Programming Model

– Technology Mapping

– Mock Platform

– Vertical Prototype

• PHASE 2: Iterate!

• PHASE 3: Automate!

– Architecture Metamodel

– Glue Code Generation

– DSL-based Programming Model

– Model-based Architecture Validation
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Technology–Independent Architecture

• We decide that our system will be built from components

– Each component can provide a number of interfaces

– It can also use a number of interfaces (provided by other
components)

– Communication is synchronous, Communication is also restricted to 
be local

– We design components to be stateless

• In addition to components, we also explicitly support business

processes

– These are modeled as a state machine

– Components can trigger the state machine by supplying events to
them

– Other components can be triggered by the state machine, resulting in 
the invocation of certain operations

– Communication to/from processes is asynchronous, remote

communication is supported
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• We decide that our system will be built from components

– Each component can provide a number of interfaces

– It can also use a number of interfaces (provided by other
components)

– Communication is synchronous, Communication is also restricted to 
be local

– We design components to be stateless

• In addition to components, we also explicitly support business

processes

– These are modeled as a state machine

– Components can trigger the state machine by supplying events to
them

– Other components can be triggered by the state machine, resulting in 
the invocation of certain operations

– Communication to/from processes is asynchronous, remote

communication is supported

Technology–Independent Architecture

• Use well-known architectural styles & patterns here

• Typically these are best practices for architecting certain
kinds of systems independent of a particular technology

• They provide a reasonable starting point for defining
(aspects of) your systems's architecture
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Architectural Case Study

• PHASE 1: Elaborate!

– Technology-Independent Architecture

– Programming Model

– Technology Mapping

– Mock Platform

– Vertical Prototype

• PHASE 2: Iterate!

• PHASE 3: Automate!

– Architecture Metamodel

– Glue Code Generation

– DSL-based Programming Model

– Model-based Architecture Validation
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<beans>
<bean id="proc" class="somePackage.SomeProcess">

<property name="resource"><ref bean="hello"/></property>
</bean>
<bean id="hello" class="somePackage.ExampleComponent">

<property name="console"><ref bean="cons"/></property>
</bean>
<bean id="cons" class="someFramework.StdOutConsole">

</beans>

Programming Model

• The programming model uses a simple Dependency Injection

approach à la Spring to define component dependencies on an 
interface level

– Spring is a modular framework for Java enterprise applications
(see www.springframework.org)

• An external XML file is responsible for configuring the instances
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Programming Model

• The following piece of code shows the implementation of a simple 

example component (note the use of Java 5 annotations)

• Processes engines are components like any other

• For triggers, they provide an interface w/ void operations

• They also define interfaces with the actions that those components can
implement that want to be notified of state changes

public @component class ExampleComponent
implements HelloWorld {        // provides HelloWorld

private IConsole console;

public @resource void setConsole( IConsole c ) { 
this.console = c;            // setter for console

}             // component

public void sayHello( String s ) {
console.write( s );

}

}
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Programming Model

public @process class SomeProcess
implements ISomeProcessTrigger { 

private IHelloWorld resource;

public @resource void setResource( IHelloWorld w ) {
this.resource = w;      

}

public @trigger void T1( int procID ) { 
SomeProcessInstance i = loadProcess( procID );
if ( guardG1() ) {

// advance to another state…
}

}

public @trigger void T2( int procID ) {
SomeProcessInstance i = loadProcess( procID );
// …
resource.sayHello( "hello" );

}

}

• Process Component Implementation Example
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Architectural Case Study

• PHASE 1: Elaborate!

– Technology-Independent Architecture

– Programming Model

– Technology Mapping

– Mock Platform

– Vertical Prototype

• PHASE 2: Iterate!

• PHASE 3: Automate!

– Architecture Metamodel

– Glue Code Generation

– DSL-based Programming Model

– Model-based Architecture Validation
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Technology Mapping

• For the remote communication between business processes we will use 
web services

– From the interfaces such as IHelloWorld, we generate a WSDL 
file, & the necessary endpoint implementation We use on of the 
many available web service frameworks

• Spring will be used as long as no advanced load balancing & 
transaction policies are required

• Once this becomes necessary, we will use Stateless Session EJBs
The necessary code to wrap our components inside beans is easy to 
write

<beans>
<bean id="proc" class="somePackage.SomeProcess">

<property name="resource"><ref bean="hello"/></property>
</bean>
<bean id="hello" class="somePackage.ExampleComponent">

<property name="console"><ref bean="cons"/></property>
</bean>
<bean id="cons" class="someFramework.StdOutConsole">

</beans>
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Technology Mapping

• Persistence for the process 
instances – like any other 
persistent data – is managed using 
Hibernate

–To make this possible, we 
create a data class for each 

process

–Since this is a normal value 
object, using Hibernate to make 
it persistent is straight forward 

Decide about standards 
usage here, not earlier 

But keep in mind: First solve
the problem, then look for a 
standard – Not vice versa 

Use technology-specific 
design patterns here

Use them as the basis for the 
TECHNOLOGY MAPPING

Web Services,
a WSDL file is 

generated

Hibernate
used for database 

access
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Architectural Case Study

• PHASE 1: Elaborate!

– Technology-Independent Architecture

– Programming Model

– Technology Mapping

– Mock Platform

– Vertical Prototype

• PHASE 2: Iterate!

• PHASE 3: Automate!

– Architecture Metamodel

– Glue Code Generation

– DSL-based Programming Model

– Model-based Architecture Validation
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Mock Platform

• Since we are already using a PROGRAMMING MODEL that resembles 
Spring, we use the Spring container to run the application components 
locally

• Stubbing out parts is easy based on Springs XML configuration file

• Since persistence is something that Hibernate takes care of for us, the 
MOCK PLATFORM simply ignores the persistence aspect

Application
“business logic”

code
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Architectural Case Study

• PHASE 1: Elaborate!

– Technology-Independent Architecture

– Programming Model

– Technology Mapping

– Mock Platform

– Vertical Prototype

• PHASE 2: Iterate!

• PHASE 3: Automate!

– Architecture Metamodel

– Glue Code Generation

– DSL-based Programming Model

– Model-based Architecture Validation
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Vertical Prototype

• The vertical prototype includes parts of the customer & billing systems

–For creating an invoice, the billing system uses normal interfaces to
query the customer subsystem for customer details

–The invoicing process is based on a long-running process

• A scalability test was executed & resulted in two problems: 

–For short running processes, the repeated loading & saving of 
persistent process state had become a problem

• A caching layer was added

–Second, web-service based communication with process 
components was a problem 

• Communication was changed to CORBA for remote cases that 
were inside the company
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• The vertical prototype includes parts of the customer & billing systems

–For creating an invoice, the billing system uses normal interfaces to
query the customer subsystem for customer details

–The invoicing process is based on a long-running process

• A scalability test was executed & resulted in two problems: 

–For short running processes, the repeated loading & saving of 
persistent process state had become a problem

• A caching layer was added

–Second, web-service based communication with process 
components was a problem 

• Communication was changed to CORBA for remote cases that 
were inside the company

Vertical Prototype

•Work on performance improvements here, not earlier 

• It is bad practice to optimize design for performance 
from the beginning, since this often destroys good 
architectural practice 

• In certain domains, there are patterns to realize certain 
QoS properties (such as stateless design for large-scale 
business systems) 

•Don’t ignore these intentionally at the beginning!
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Architectural Case Study

• PHASE 1: Elaborate!

– Technology-Independent Architecture

– Programming Model

– Technology Mapping

– Mock Platform

– Vertical Prototype

• PHASE 2: Iterate!

• PHASE 3: Automate!

– Architecture Metamodel

– Glue Code Generation

– DSL-based Programming Model

– Model-based Architecture Validation
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Phase 2: Iterate!

• Spring was intended for the production environment

• New requirements (versioning!) have made this infeasible

–Spring does not support two important features

1. Dynamic installation/de-installation of components &

2. isolations of components from each other(classloaders) 

• Eclipse has been chosen as the new execution framework 

–The PROGRAMMING MODEL did not change

–The TECHNOLOGY MAPPING, however, had to be adapted
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Architectural Case Study

• PHASE 1: Elaborate!

– Technology-Independent Architecture

– Programming Model

– Technology Mapping

– Mock Platform

– Vertical Prototype

• PHASE 2: Iterate!

• PHASE 3: Automate!

– Architecture Metamodel

– Glue Code Generation

– DSL-based Programming Model

– Model-based Architecture Validation
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Architecture Metamodel

Interface

providedInterface

0..n

requiredInterface

0..n

Container

0..n

Component

Characteristic

0..n

Container

Service
0..n

Operation

1..n

Parameter

0..n

Type

re
tu

rn
T

y
p

e

type

PrimitiveType

ComplexType

1 0..n

newVersionOf

1 0..n

newVersionOf

if a component B is a new version
of a component A, then B has to
have the same interfaces,
additional provided interfaces,
fewer required interfaces or new
version of interfaces of A

a new version of an interface has to
have the same return type and the
same parameters - or parameters
with subtypes.

Process

Component

State

Machine
State

1..n

Transition

fromto

0..n 0..n

Trigger

Operation
0..1

Components can 
provide & require 

interfaces

Model-Driven Development of Distributed Systems 83

Architecture Metamodel

Interface
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0..n
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if a component B is a new version
of a component A, then B has to
have the same interfaces,
additional provided interfaces,
fewer required interfaces or new
version of interfaces of A

a new version of an interface has to
have the same return type and the
same parameters - or parameters
with subtypes.

Process

Component

State

Machine
State

1..n

Transition

fromto

0..n 0..n

Trigger

Operation
0..1

Interfaces have 
operations – they’re 

defined as usual
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Architecture Metamodel
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are special kinds of 

components
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Architecture Metamodel
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have the same return type and the
same parameters - or parameters
with subtypes.
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0..n 0..n

Trigger

Operation
0..1

A process 
component’s process 
is described using a 

state machine
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Architecture Metamodel

Interface
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with subtypes.
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Machine
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0..1

& the triggers 
are special kinds 

of operations
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Architecture Metamodel

Interface
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if a component B is a new version
of a component A, then B has to
have the same interfaces,
additional provided interfaces,
fewer required interfaces or new
version of interfaces of A

a new version of an interface has to
have the same return type and the
same parameters - or parameters
with subtypes.

Process

Component

State

Machine
State

1..n

Transition

fromto

0..n 0..n

Trigger

Operation
0..1

A container runs 
a number of 
components
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Architecture Metamodel
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Constraints are 
used to define 

the semantics of 
versioning
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Architectural Case Study

• PHASE 1: Elaborate!

– Technology-Independent Architecture

– Programming Model

– Technology Mapping

– Mock Platform

– Vertical Prototype

• PHASE 2: Iterate!

• PHASE 3: Automate!

– Architecture Metamodel

– Glue Code Generation

– DSL-based Programming Model

– Model-based Architecture Validation
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Glue Code Generation

• Our scenario has several useful locations for glue code generation

–We generate the Hibernate mapping files 

–We generate the web service & CORBA adapters based on the 
interfaces & data types that are used for communication The generator 
uses reflection to obtain the necessary type information

–Finally, we generate the process interfaces from the state machine 
implementations

• In the programming model, we use Java 5 annotations to mark up
those aspects that cannot be derived by using reflection alone

• Annotations can help a code generator to “know what to generate”
without making the programming model overly ugly
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Architectural Case Study

• PHASE 1: Elaborate!

– Technology-Independent Architecture

– Programming Model

– Technology Mapping

– Mock Platform

– Vertical Prototype

• PHASE 2: Iterate!

• PHASE 3: Automate!

– Architecture Metamodel

– Glue Code Generation

– DSL-based Programming Model

– Model-based Architecture Validation
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DSL–based Programming Model

• We use DSLs for components, interfaces & dependencies

Describing this aspect in a model has two benefits: 

– First, the GLUE CODE GENERATION can use a more

semantically rich model as its input &

– The model allows for very powerful MODEL-BASED 
ARCHITECTURE VALIDATION (see below)
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DSL–based Programming Model

• From these diagrams: 

–We can generate a skeleton component class 

–All the necessary interfaces

• Developers simply inherit from the generated skeleton & implement 
the operations defined by the provided interfaces

<<component>>
StdOutConsole

<<component>>
HelloWorld

IHelloWorld
IConole

{persistent}

<<component>>

SomeComponent

<<generate>>
<<man-code>>

SomeCompo-

nent.java

<<interface>>

SomeInterface

<<gen-code>>

Some-

Interface.java

<<generate>>

<<gen-code>>

Some

Component

Base.java
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DSL–based Programming Model

<configurations>
  <configuration name="addressStuff">
    <deployment name="am" type="AddressManager">
      <wire name="personDAO" target="personDAO"/>
    </deployment>
    <deployment name="personDAO" type="PersonDAO"/>
  </configuration>
  <configuration name="customerStuff">
    <deployment name="cm" type="CustomerManager">
      <wire name="addressStore" target=":addressStuff:am"/>
    </deployment>
  </configuration>
  <configuration name="test" includes="addressStuff, customerStuff"/>
</configurations>

<<component>>

AddressManager

<<interface>>

AddressStore

addOrUpdateContact( p: Person) : void
addAddress( p: Person, a: Address) : void
getAddresses( p: Person ) : Address[]

<<entity>>

Person

name: String
firstName: String

<<valuetype>>

Address

street: String
zip: String
City: String

0..n

<<component>>

CustomerManager

address-
Store

<systems>
  <system name="production">
    <node name="server" type="spring" configuration="addressStuff"/>
    <node name="client" type="eclipse" configuration="customerStuff"/>
  <system>
  <system name="test">
    <node name="test" type="spring" configuration="test"/>
  <system>
</systems>

Type Model

Composition Model System Model

person

Type model defines 
components (which are 

instantiatable types), interfaces

& data types, as well as the 
depdendencies among them
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DSL–based Programming Model

<configurations>
  <configuration name="addressStuff">
    <deployment name="am" type="AddressManager">
      <wire name="personDAO" target="personDAO"/>
    </deployment>
    <deployment name="personDAO" type="PersonDAO"/>
  </configuration>
  <configuration name="customerStuff">
    <deployment name="cm" type="CustomerManager">
      <wire name="addressStore" target=":addressStuff:am"/>
    </deployment>
  </configuration>
  <configuration name="test" includes="addressStuff, customerStuff"/>
</configurations>

<<component>>

AddressManager

<<interface>>

AddressStore

addOrUpdateContact( p: Person) : void
addAddress( p: Person, a: Address) : void
getAddresses( p: Person ) : Address[]

<<entity>>

Person

name: String
firstName: String

<<valuetype>>

Address

street: String
zip: String
City: String

0..n

<<component>>

CustomerManager

address-
Store

<systems>
  <system name="production">
    <node name="server" type="spring" configuration="addressStuff"/>
    <node name="client" type="eclipse" configuration="customerStuff"/>
  <system>
  <system name="test">
    <node name="test" type="spring" configuration="test"/>
  <system>
</systems>

Type Model

Composition Model System Model

person

Composition Model defines 
named configurations of 

component instances & the 
wiring among them
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DSL–based Programming Model

<configurations>
  <configuration name="addressStuff">
    <deployment name="am" type="AddressManager">
      <wire name="personDAO" target="personDAO"/>
    </deployment>
    <deployment name="personDAO" type="PersonDAO"/>
  </configuration>
  <configuration name="customerStuff">
    <deployment name="cm" type="CustomerManager">
      <wire name="addressStore" target=":addressStuff:am"/>
    </deployment>
  </configuration>
  <configuration name="test" includes="addressStuff, customerStuff"/>
</configurations>

<<component>>

AddressManager

<<interface>>

AddressStore

addOrUpdateContact( p: Person) : void
addAddress( p: Person, a: Address) : void
getAddresses( p: Person ) : Address[]

<<entity>>

Person

name: String
firstName: String

<<valuetype>>

Address

street: String
zip: String
City: String

0..n

<<component>>

CustomerManager

address-
Store

<systems>
  <system name="production">
    <node name="server" type="spring" configuration="addressStuff"/>
    <node name="client" type="eclipse" configuration="customerStuff"/>
  <system>
  <system name="test">
    <node name="test" type="spring" configuration="test"/>
  <system>
</systems>

Type Model

Composition Model System Model

person

System model deploys

configurations onto systems

& nodes Nodes define the 
kind of system they

represent
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DSL–based Programming Model

<<gen-code>>

SomeEntity.java

<<entity>>

SomeEntity

<<generate>>

<<interface>>

SomeEntityDAO
<<transform>>

<<generate>> <<gen-code>>

SomeEntity-

DAO.java

<<component>>

SomeEntityDAO

<<transform>>

<<generate>> <<gen-code>>

SomeEntity-

DAOBase

.java

<<gen-code>>

SomeEntity-

DAO.java

<<generate>>

• Using Cascaded MDD, we generate 

–DAO Components for Entities from the Entities in the model

–An interface for the DAO component,

–As well as the implementation code for the DAO & the Entity itself
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DSL–based Programming Model

<<generate>>

<<gen-code>>

AProcess-

Data.java

<<proc-component>>

AProcess

<<gen-code>>

AProcessBase

.java

<<gen-code>>

AProcessProcBase.java

<<trigger-interface>>

AProcessInterface

*

1

sm AProcess

<<entity>>

AProcessData

<
<

tr
a
n
s
fo

rm
>

>

s1

s2

s3

<<generate>> <<generate>>operations...

attributes...

data

1

<
<

tr
a
n
s
fo

rm
>

>

guard operations... (abstract)

action methods... (abstract)

<<man-code>>

AProcess.java

• We also use cascading for the Process Components

First, developers 
model the process

component itself
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DSL–based Programming Model

<<generate>>

<<gen-code>>

AProcess-

Data.java

<<proc-component>>

AProcess

<<gen-code>>

AProcessBase

.java

<<gen-code>>

AProcessProcBase.java

<<trigger-interface>>

AProcessInterface

*

1

sm AProcess

<<entity>>

AProcessData

<
<

tr
a
n
s
fo

rm
>

>

s1

s2

s3

<<generate>> <<generate>>operations...

attributes...

data

1

<
<

tr
a
n
s
fo

rm
>

>

guard operations... (abstract)

action methods... (abstract)

<<man-code>>

AProcess.java

They also model a 
trigger interface for 

that component with

no operations

• We also use cascading for the Process Components
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DSL–based Programming Model

<<generate>>

<<gen-code>>

AProcess-

Data.java

<<proc-component>>

AProcess

<<gen-code>>

AProcessBase

.java

<<gen-code>>

AProcessProcBase.java

<<trigger-interface>>

AProcessInterface

*

1

sm AProcess

<<entity>>

AProcessData

<
<

tr
a
n
s
fo

rm
>

>

s1

s2

s3

<<generate>> <<generate>>operations...

attributes...

data

1

<
<

tr
a
n
s
fo

rm
>

>

guard operations... (abstract)

action methods... (abstract)

<<man-code>>

AProcess.java

Developers then model the state

machine for that process 
component & associate it with

the process component

• We also use cascading for the Process Components
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DSL–based Programming Model

<<generate>>

<<gen-code>>

AProcess-

Data.java

<<proc-component>>

AProcess

<<gen-code>>

AProcessBase

.java

<<gen-code>>

AProcessProcBase.java

<<trigger-interface>>

AProcessInterface

*

1

sm AProcess

<<entity>>

AProcessData

<
<

tr
a
n
s
fo

rm
>

>

s1

s2

s3

<<generate>> <<generate>>operations...

attributes...

data

1

<
<

tr
a
n
s
fo

rm
>

>

guard operations... (abstract)

action methods... (abstract)

<<man-code>>

AProcess.java

Using M2M, the 
operations are derived

from the triggers used
in the state machine

• We also use cascading for the Process Components

Model-Driven Development of Distributed Systems 102

DSL–based Programming Model

<<generate>>

<<gen-code>>

AProcess-

Data.java

<<proc-component>>

AProcess

<<gen-code>>

AProcessBase

.java

<<gen-code>>

AProcessProcBase.java

<<trigger-interface>>

AProcessInterface

*

1

sm AProcess

<<entity>>

AProcessData

<
<

tr
a
n
s
fo

rm
>

>

s1

s2

s3

<<generate>> <<generate>>operations...

attributes...

data

1

<
<

tr
a
n
s
fo

rm
>

>

guard operations... (abstract)

action methods... (abstract)

<<man-code>>

AProcess.java

Using M2M, the Entity

that stores process 
instances persistently is 
derived from the state 

machine; then the Entity 
transformations kick in –

see before

• We also use cascading for the Process Components
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DSL–based Programming Model

<<generate>>

<<gen-code>>

AProcess-

Data.java

<<proc-component>>

AProcess

<<gen-code>>

AProcessBase

.java

<<gen-code>>

AProcessProcBase.java

<<trigger-interface>>

AProcessInterface

*

1

sm AProcess

<<entity>>

AProcessData

<
<

tr
a
n
s
fo

rm
>

>

s1

s2

s3

<<generate>> <<generate>>operations...

attributes...

data

1

<
<

tr
a
n
s
fo

rm
>

>

guard operations... (abstract)

action methods... (abstract)

<<man-code>>

AProcess.java

As usual, from 
components we generate 
skeleton base classes

• We also use cascading for the Process Components
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DSL–based Programming Model

<<generate>>

<<gen-code>>

AProcess-

Data.java

<<proc-component>>

AProcess

<<gen-code>>

AProcessBase

.java

<<gen-code>>

AProcessProcBase.java

<<trigger-interface>>

AProcessInterface

*

1

sm AProcess

<<entity>>

AProcessData

<
<

tr
a
n
s
fo

rm
>

>

s1

s2

s3

<<generate>> <<generate>>operations...

attributes...

data

1

<
<

tr
a
n
s
fo

rm
>

>

guard operations... (abstract)

action methods... (abstract)

<<man-code>>

AProcess.java

Instead of letting developers 
implement the business logic 
manually, we generate an 

“Intermediate” class that
contains the executable, & 

persistence-aware state machine

• We also use cascading for the Process Components
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DSL–based Programming Model

<<generate>>

<<gen-code>>

AProcess-

Data.java

<<proc-component>>

AProcess

<<gen-code>>

AProcessBase

.java

<<gen-code>>

AProcessProcBase.java

<<trigger-interface>>

AProcessInterface

*

1

sm AProcess

<<entity>>

AProcessData

<
<

tr
a
n
s
fo

rm
>

>

s1

s2

s3

<<generate>> <<generate>>operations...

attributes...

data

1

<
<

tr
a
n
s
fo

rm
>

>

guard operations... (abstract)

action methods... (abstract)

<<man-code>>

AProcess.java

Finally, developers extend 
that intermediate class & 

implement guard & action 

operations manually by 
overriding abstract methods

• We also use cascading for the Process Components
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Architectural Case Study

• PHASE 1: Elaborate!

– Technology-Independent Architecture

– Programming Model

– Technology Mapping

– Mock Platform

– Vertical Prototype

• PHASE 2: Iterate!

• PHASE 3: Automate!

– Architecture Metamodel

– Glue Code Generation

– DSL-based Programming Model

– Model-based Architecture Validation
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Model–Based Architecture Validation

• We can use automated model checking to verify that 

– For triggers in processes there is a component that calls the trigger

– Dependency management: It is easy to detect circular 
dependencies among components

– Components are assigned to layers (app, service, base) & 
dependencies are only allowed in certain directions

• The component signature generated from the model prevents 
developers from creating dependencies to components that are not
described in the model
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Model–Based Architecture Validation

• Another really important aspect in our example system is evolution of 

interfaces:

<<component>>
SomeCompV1

<<interface>>
SomeInterface

soSomething(int, ValueObject)

<<component>>
SomeCompV2

<<newVersionOf>>
<<interface>>

AnotherInterface

<<vo>>
ValueObject

<<component>>
SomeCompV3

<<newVersionOf>>

<<interface>>
SomeInterfaceV3

soSomething(int, ValueObjectV2)
anAdditionalOperation()

<<newVersionOf>>

<<vo>>
ValueObjectV3

<<newVersionOf>>
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Status / Track Record

• Open Source

• Version 4.1 is current

• Proven track record in various domains & project

contexts

– e.g., telcos, internet, enterprise, embedded realtime, 
finance, …

• www.openarchitectureware.org

• IDE-portions based on Eclipse

• (Optional) Integration with Eclipse Modelling facilities
(such as EMF)
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Overview
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Defining the Metamodel

• The metamodel is 
defined using

EMF.

• EMF provides 
tree-based

editors to define 
the metamodel.
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Building the Graphical Editor

• The editor is based on the metamodel defined before. 

• A number of additional models has to be defined:

– A model defining the graphical notation

– A model for the editor’s pallette & other tooling

– A mapping model that binds these two models to the 
domain metamodel

• A generator generates the concrete editor based on 
these models.

• The editor is build with the Eclipse GMF, the Graphical

Modelling Framework.
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Building the Graphical Editor II
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Building the Graphical Editor III

• Here is the editor, started in the runtime workbench, with 
our CD Player example.

These rectangles
are to demo

decorations

Tool
Palette

Overview
Pane

Model
Element

Properties
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Constraints

• Constraints are rules that models must conform to in order 
to be valid. These are in addition to the structures that the 
metamodel defines.

• A constraint is a boolean expression (a.k.a predicate) that
must be true for a model to conform to a metamodel.

• Constraint Evaluation should be available 

– in batch mode (when processing the model) 

– as well as interactively, during the modelling phase in the 
editor

... & we don’t want to implement constraints twice to have 
them available in both places!

• Functional languages are often used here.

– UML’s OCL (Object Constraint Language) is a good 
example,

– We use oAW’s check language, which is alike OCL
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Constraints II

• Here are some examples written in oAW’s Checks 

language. 

• Note the code completion & error highlighting

xamples writ
For which elements
is the constraint is

applicable

Constraint
Expression

Error message
in case

Expression is
false

ERROR or
WARNING
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Constraints III

• In this model there
are two errors

– There are two 
states with the 
same name (Off)

– The start state has
more than one out-
Transition

• The validation is 
executed automatically 

• Clicking the error
message selects

the respective 
“broken” model

element in the dia-
gram.
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Code Generation

• Code Generation is used to generate executable 

code from models. 

• Code Generation is based on the metamodel & uses 
templates to attach to-be-generated source code.

• In openArchitectureWare,
we use a template

language called xPand.

• It provides a number of
advanced features such as
polymorphism, AO support
and a powerful integrated
expression language.

• Templates can access
metamodel properties

seamlessly
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Code Generation II

• The blue text is
generated into the 
target file.

• The capitalized

words are xPand
keywords

• Black text are
metamodel
properties

• DEFINE...END-
DEFINE blocks 
are called 
templates.

• The whole thing is 
called a template

file.

Opens a
File

Name is a property
of the State-

Machine class

Like methods in OO, 
templates are

associated with a
(meta)class

Iterates
over all

the states
of the
State-

Machine

Calls another
template

Extension Call

Template
name

Namespace &
Extension Import
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Code Generation III

• One can add behaviour to existing metaclasses

using oAW’s Xtend language.

• Extensions can be called using member-style syntax:
myAction.methodName()

• Extensions can be used in Xpand templates, Check 

files as well as in other Extension files.

• They are imported into template files using the 
EXTENSION keyword

Imports a 
namespace

Extensions are
typically defined
for a metaclass

Extensions can also
have more than one

parameter

Model-Driven Development of Distributed Systems 122

Code Generation IV

• Workflow loads the model, checks it (same 
constraints as in Editor!) & then generates code.

A component is a
„step“ in the

workflow

A number of
parameters are

passed in

We invoke the
same check file as

in the editor

This starts the
first, „top level“

template

Code is
automatically

beautified
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Recipes I

• There are various ways of integrating generated code 
with non-generated code:

a)

b)

c) d) e)

generated code non-generated code
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Recipes II

• Here’s an error that suggests that I extend my
manually written class from the generated base 

class:

Recipes can be
arranged

hierarchically

This is a
failed check

„Green“ ones
can also be

hidden Here you can see
additional

information about
the selected recipe
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Recipes III

• I now add the respective extends clause, & the 
message goes away – automatically.

Adding the extends
clause makes all of

them green
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Recipes IV

• Now I get a number of compile errors because I have to 
implement the abstract methods defined in the super 
class:

• I finally implement them sensibly, & everything is ok.

• The Recipe Framework & the Compiler have guided me 

through the manual implementation steps.

– If I didn’t like the compiler errors, we could also add 
recipe tasks for the individual operations.

– oAW comes with a number of predefined recipe 

checks for Java. But you can also define your own 
checks, e.g. to verify C++ code.
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Recipes V

• Here’s the implementation of the Recipes. This workflow 
component must be added to the workflow.

You extend one of a 
number of suitable

base classes…

…and override a
suitable template

method

You can then create
any number of

checks.

This one checks
that a class extends

another one

And return the
checks to the
framework
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Model Transformations I

• Model Transformations create one or more new 
models from one or more input models. The input 
models are left unchanged.

– Often used for stepwise refinement of models & 
modularizing generators

– Input/Output Metamodels are different

• Model Modifications are used to alter or complete an 
existing model

• For both kinds, we use the xTend language, an 
extension of the openArchitectureWare expression 
language.

• Alternative languages are available such as Wombat, 
ATL, MTF or Tefkat (soon: various QVT 
implementations)
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Model Transformation II

• The model modification shows how to add an 
additional state & some transitions to an existing state 
machine (emergency shutdown)

Extensions can
import other
extensions

The main function

„create extensions“
guarantee that for

each set of
parameters the

identical result will
be returned.

Therefore
createShutDown()
will always return
the same element.
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Model Transformation III

• The generator is based on an implementation-

specific metamodel without the concept of composite
states.

• This makes the templates simple, because we don‘t
have to bridge the whole abstraction gap (from model
to code) in the templates.

• Additionally, the generator is more reusable, because
the abstractions are more general.

• We will show a transformation which transforms
models described with our GMF editor into models
expected by the generator.
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Model Transformation IV

• We want to transform from the editor’s 
metamodel ‘statemachine2’ to the 
generator’s metamodel ‘simpleSM’

• We need to ‘normalize’

composite states.

• States inherit outgoing

transitions from their parent 

states

• For those transitions the

exit actions are inherited, too

• Unify action & event 

elements with the same

name
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Textual Editor I

• A graphical notation is not always the best syntax for 
DSLs.

• So, while GMF provides a means to generate editors 
for graphical notations, we also need to be able to 
come up with editors for textual syntaxes.

• These editors need to include at least

– Syntax hightlighting

– Syntax error checking 

– Semantic constraint checking
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Textual Editor II

• We use oAW’s textual DSL generator framework
xText

• Based on a BNF-like language it provides:

– An EMF-based metamodel (representing the AST)

– An Antlr parser instantiating dynamic EMF-
models

– An Eclipse text editor plugin providing

• syntax highlighting

• An outline view,

• syntax checking

• as well as constraints checking based on a Check

file, as always oAW
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Textual Editor III

• The grammar (shown in 
the boostrapped editor)

The first rule
describes the
root element

of the AST

• The generated eCore AST
model

A
literal

States contain
a number of

entry actions,
transitions &
exit actions

Assigns an
indentifier to

a variable
(here: state)

These variables
will become
attributes of
the AST class

Rule
name

Rule names
will

become the
AST classes
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Textual Editor IV

• You can define additioal constraints that should be 
validated in the generated editor.

• This is based on oAW’s Check language

– i.e. These are constraints like all the others you’ve
already come across
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Textual Editor V
Literals

have
become

keywords

• The generated

editor & it’s 
outline view

Constraints
are

evaluated
in real time
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Why?

• Based on our experience, the  
core “asset” in model-driven 
component based 
development is not a
generator that generated 
some J2EE code, rather, the 
“right” selection of models 

& viewpoints is essential

• So these slides contain 
exactly this: a reference 

metamodel that has been 
used in many, many different 
projects
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Three Basic Viewpoints

• Type Model: Components, Interfaces, Data Types

• Composition Model: Instances, “Wirings”

• System Model: Nodes, Channels, Deployments
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Type Metamodel

• Components

• Interfaces

• Operations
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Type Metamodel II (Data)

• Data Types

• Cross-References
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Composition Metamodel

• Component 
Instances

• Connectors, 
“Wiring”
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System Metamodel

• Hardware

• Deployment

Model-Driven Development of Distributed Systems 144

Viewpoint Dependencies

• Dependencies between Viewpoint Models are only 

allowed in the way shown below in order to

– Be able to have several compositions per type model

– And several system models per composition

• This is important to be able to have several “systems”,

– Several deployed locally for testing, using only a subset of 
the defined components,

– And “the real system”
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Component Implementation

• We have not yet talked about the implementation code 

that needs to go along with components.

– As a default, you will provide the implementation by a 
manually written subclass

• However, for special kinds of components (“component
kind” will be defined later) can use different 
implementation strategies -> Cascading!
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Component Implementation II

• Remember 
the example

of the process 

components

from before:

• Various other 
implementation

stragies can be used, 
such as:

– Rule-Engines

– “Procedural” DSLs or action 
semantics

• Note that, here, interpreters can often be used sensibly 
instead of generating code!
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Aspect Models

• Often, the described three viewpoints are not enough, 
additional aspects need to be described.

• These go into separate aspect models, each describing
a well-defined aspect of the system.

– Each of them uses a suitable DSL/syntax

– The generator acts as a weaver

• Typical Examples are

– Persistence

– Security

– Forms, Layout, Pageflow

– Timing, QoS in General

– Packaging & Deployment

– Diagnostics & Monitoring
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Separate Interfaces

• You might not need separate Interfaces

– Operations could be annotated directly to components

– Dependencies would be to components, not to interfaces

• Relationships between interfaces are often needed,

– “if you require this interface, you also have to provide that 
one”
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Component Types

• Often different “kinds” of Components are needed. 

– To manage dependencies,

– And to define implementation strategies
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Component Layering

• Alternatively you can simply annotate each component 

with a layer
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Component Signatures

• You might need to provide several implementations (i.e.
components) for the same signature (i.e. 
provided/required interfaces).

– So you need to separate implementation from signature
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Hierarchical Components I

• This allows an infinite nesting of component structures

• It requires the concept of ports

• Note that the clear boundaries between type & 
composition models are blurted (which makes this 
approach a bit more advanced!)

• Example:
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Hierarchical Components II
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Configuration Parameters

• Parameters allow for dynamic configuration of
components.

• There is a wide variety of potential value definition

scopes
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Behaviour

• Different (types of) Components typically have different 
lifecycles

• The threading model is typically different, too.

• Also, some components might be stateless, while others 
are stateful (with persistent state, or not)
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Asynchronous Communication

• Some components might need asynchronous

communication with others

– Note that this has to be specified in the type model – since 
it affects the API!
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Events

• Events are a way to signal information from a 
component to another, asynchronously.

– Sometimes it is useful to allow for violations of the 
(otherwise rigidly enforced) dependency rules
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Subsystems & Business Components

• If the number of components grows, additional means to 

organize them are required. 

• The internal structure of subsystems or business 
components can be defined by enforcing certain policies 
wrt. Component types

– For example, each business component must have exactly 
one facade
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Data

• More elaborate data structures are often required

– Typical example is based on entities & dependent types

• DAOComponents are used to manage the entities & their
associated dependent types

• Ownership & Scope of data types is essential

– Indirect dependency management

– packaging
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Wiring

• Optional wires might be useful

• Dynamic Wires don’t specify the target instance, but 
rather a set of properties based on which at runtime, the 
target can be found

– Important for dynamic systems, e.g. P2P
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Container Types & Networks

• This allows for more specific description of hardware,

– Networks & network types describe means to 
communicate

– Whereas container types are important to distinguish 
various execution environments (server, local, …)
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Versioning

• Capturing versioning & type evolution information explicitly 
in the model allows for definitive statements about 
component compatibility & system evolution.
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MDD Tool 

Developers

(Metamodelers)

Application

Developers

(Modelers)

Generic Modeling Environment (GME)

GME is open-source: www.isis.vanderbilt.edu/Projects/gme/default.htm

“Write Code That Writes Code That Writes Code!”

Decorator Decorator

GModel GMeta

CORE

MetamodelXML

Paradigm Definition

Storage Options…
DB #nDB #1 XML

…

UML / OCL

COM

COMCOM

XML

XML

ODBC

Constraint
ManagerBrowser

Translator(s)
Add-On(s)

GME Editor

GME Architecture

Supports “correct-by-construction” of software systems
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MDD Application Development with GME

•Application

developers use
modeling environments 
created w/MetaGME to 
build applications

–Capture elements & 
dependencies 
visually

Example DSL is the 
“Platform-Independent
Component Modeling 

Language” (PICML) tool
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MDD Application Development with GME

•Application

developers use
modeling environments 
created w/MetaGME to 
build applications

–Capture elements & 
dependencies 
visually

–Model interpreter 
produces something 
useful from the 
models

•e.g., 3rd generation
code, simulations, 
deployment
descriptions & 
configurations

<connection>
      <name>compressionQosPredictor_qosLevels</name>
      <internalEndpoint>
        <portName>qosLevels</portName>
        <instance xmi:idref="CompressionQosPredictor_F3C2CBE0-B2CE-46CC-B446-
F64D91B44E56"/>
      </internalEndpoint>
      <internalEndpoint>
        <portName>compressionQosPredictor</portName>
        <instance xmi:idref="LocalResourceManagerComponent_7EF8B77A-F5EA-
4D1A-942E-13AE7CFED30A"/>
      </internalEndpoint>
    </connection>
    <connection>
      <name>scalingQosPredictor_qosLevels</name>
      <internalEndpoint>
        <portName>qosLevels</portName>
        <instance xmi:idref="ScaleQosPredictor_F3024A4F-F6E8-4B9A-BD56-
A2E802C33E32"/>
      </internalEndpoint>
      <internalEndpoint>
        <portName>scalingQosPredictor</portName>
        <instance xmi:idref="LocalResourceManagerComponent_7EF8B77A-F5EA-
4D1A-942E-13AE7CFED30A"/>
      </internalEndpoint>
    </connection>

ima

inc

cur

out

CropQosket
[ CropQosket ]

qos

CroppingQosPredictor
[ CroppingQosPredictor ]

pol

res

inc

com

sca

cro

ima

out

cro

sca

com

dif

cpu

LocalResourceManagerComponent
[ LocalResourceManagerComponent ]

ima

inc

cur

out

CompressQosket
[ CompressQosket ]

ima

sen
out

Sender
[ Sender ]

qos

CompressionQosPredictor
[ CompressionQosPredictor ]

qos

ScaleQosPredictor
[ ScaleQosPredictor ]

ima

inc

cur

out

ScaleQosket
[ ScaleQosket ]

cpu

CPUBrokerComponent
[ CPUBrokerComponent ]

inc out

LocalReceiver
[ LocalReceiver ]

PolicyChangeEvt

ResourceAllocationEvt

ImageGenerationEvt

ima

inc

cur

out

DiffServQosket
[ Dif fServQosket ]

delegatesTo

delegatesTo

emit

invoke

invoke

invoke
invoke

invoke

emit emit emit

invoke

invoke
invoke

emit

delegatesTo

PICML generates XML descriptors 
corresponding to OMG Deployment 
& Configuration (D&C) specification
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MDD Tool Development in GME

•Tool developers use 
MetaGME to develop a 
domain-specific

graphical modeling 

environment

–Define syntax & 
visualization of the 
environment via 
metamodeling
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MDD Tool Development in GME

•Tool developers use 
MetaGME to develop a 
domain-specific

graphical modeling 

environment

–Define syntax & 
visualization of the 
environment via 
metamodeling

–Define static 
semantics via Object

Constraint Language 

(OCL)
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•Tool developers use 
MetaGME to develop a 
domain-specific

graphical modeling 

environment

–Define syntax & 
visualization of the 
environment via 
metamodeling

–Define static 
semantics via Object

Constraint Language 

(OCL)

–Dynamic semantics 
implemented via 
model interpreters

MDD Tool Development in GME
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Applying GME to System Execution Modeling
System Execution Modeling Workflow

1 2

34

1. Compose scenarios to 
exercise critical system 
paths/layers

2. Associate performance 
properties with scenarios & 
assign properties to 
components specific to 
paths/layers

3. Configure workload generators 
to run experiments, generate 
path-/layer-specific 
deployment plans, & measure 
performance along critical 
paths/layers

4. Feedback results into models 
to verify if deployment plan & 
configurations meet 
performance requirements
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Context: Service–Oriented Architectures

• Historically, distributed real-time & 
embedded (DRE) systems were built 
directly atop OS & protocols

Operating System & 
Communication Protocols

Hardware Devices

Applications
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Applications

• Traditional methods of development have 
been replaced by middleware layers to 
reuse architectures & code for enterprise

DRE systems

• Viewed externally as Service-Oriented

Architecture (SOA) Middleware

Operating System & 
Communication Protocols

Hardware Devices

Domain-Specific Services

Common Services

Distribution Middleware

Infrastructure Middleware

• Historically, distributed real-time & 
embedded (DRE) systems were built 
directly atop OS & protocols

Service-Oriented 
Architecture Middleware

Context: Service–Oriented Architectures

Note: our techniques also apply to conventional enterprise distributed systems
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Applications

• Traditional methods of development have 
been replaced by middleware layers to 
reuse architectures & code for enterprise

DRE systems

• Viewed externally as Service-Oriented

Architecture (SOA) Middleware

Operating System & 
Communication Protocols

Hardware Devices

Domain-Specific Services

Common Services

Distribution Middleware

Infrastructure Middleware

• Historically, distributed real-time & 
embedded (DRE) systems were built 
directly atop OS & protocols

Multi-layer Resource 
Manager (MLRM)

• e.g., DARPA Adaptive & Reflective 
Management System (ARMS) program’s
Multi-layer Resource Manager (MLRM)

• MLRM leverages standards-based 
SOA middleware to manage resources 
for shipboard computing environments

Context: Service–Oriented Architectures

dtsn.darpa.mil/ixodarpatech/ixo_FeatureDetail.asp?id=6 Model-Driven Development of Distributed Systems 174

Applications

Domain-Specific Services

ARMS Multi–Layer Resource Manager (MLRM)

• ARMS MLRM architecture 
includes

–Top domain layer

containing components 
that interact with the ship 
mission manager

–Middle resource pool 

layer is an abstraction for 
a set of computer nodes 
managed by a pool

manager

–Bottom resource layer

managers the actual 
resource computing 
components, i.e., CPUs, 
memory, networks, etc.

www.cs.wustl.edu/~schmidt/PDF/JSS-2006.pdf
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Serialized Phasing is Common in Enterprise DRE Systems

Application components 

developed after infrastructure 

is sufficiently mature

Development Timeline

L
e

v
e

l 
o

f 
A

b
s
tr

a
c
ti
o

n

System 

infrastructure

components

developed first
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Serialized Phasing is Common in Enterprise DRE Systems

Development Timeline

L
e

v
e

l 
o

f 
A

b
s
tr

a
c
ti
o

n

Integration

Surprises!!!

System integration & 
testing occurs only after 

finishing application 
development



Model-Driven Development of Distributed Systems 177

Complexities of Serialized Phasing

Development Timeline

L
e

v
e

l 
o

f 
A

b
s
tr

a
c
ti
o

n

Still in development

Ready for testing
Complexities

• System infrastructure cannot be 
tested adequately until applications 
are done
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Complexities of Serialized Phasing

Development Timeline

L
e

v
e

l 
o

f 
A

b
s
tr

a
c
ti
o

n

End-to-end
performance of 
critical path?

Complexities

• System infrastructure cannot be 
tested adequately until applications 
are done

• Entire system must be deployed & 
configured (D&C) properly to meet 
QoS requirements 

• Existing evaluation tools do not 
support “what if” evaluation

System bottleneck?

Often, QoS requirements of components aren’t known until late in the lifecycle
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Unresolved QoS Concerns with Serialized Phasing

Meet QoS 
requirements?

Key QoS concerns

• Which D&C’s meet the QoS 
requirements?

Development Timeline

L
e

v
e

l 
o

f 
A

b
s
tr

a
c
ti
o

n

Model-Driven Development of Distributed Systems 180

Unresolved QoS Concerns with Serialized Phasing

Performance
metrics?

Key QoS concerns

• Which D&C’s meet the QoS 
requirements?

• What is the worse/average/best 
time for various workloads?

Development Timeline

L
e

v
e

l 
o

f 
A

b
s
tr

a
c
ti
o

n
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Unresolved QoS Concerns with Serialized Phasing

It can take a long time to address these concerns using serialized phasing!!

Key QoS concerns

• Which D&C’s meet the QoS 
requirements?

• What is the worse/average/best 
time for various workloads?

• How much workload can the system 
handle until its end-to-end QoS 
requirements are compromised?

System 
overload?

Development Timeline
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Related Large-Scale System Development Problems

Development Timeline
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Release X+1

New hardware, 
networks, operating 

systems, middleware, 
application

components, etc.

Evolution

Surprises!!!

Release X
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Promising Solution Approach: New Generation of 
System Execution Modeling (SEM) Tools

Tools to express & validate design rules

• Help applications adhere to system 
specifications at design-time

• “Correct-by-construction”

Tools to ensure design conformance

• Help properly deploy & configure 
applications to enforce system 
design rules at run-time

Tools to conduct “what if” analysis

• Help analyze QoS concerns prior to
completing the entire system

• e.g., before system integration phase

The cycle is repeated when developing application & infrastructure components
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Our Approach: Emulate Application Behavior via 
QoS-enabled SOA Middleware & MDD Tools

While creating target infrastructure 

1. Use the PICML domain-specific 

language (DSL) to define & validate 
infrastructure specifications & 
requirements

2. Use PICML & WML DSLs to emulate 
& validate application specifications & 
requirements

3. Use CIAO & DAnCE middleware & 
PICML DSL to generate D&C 
metadata to ensure apps conform to 
system specifications & requirements

4. Use BMW analysis tools to evaluate 
& verify QoS performance

5. Redefine system D&C & repeat

Enable “application” testing to evaluate target infrastructure earlier in lifecycle

Component Workload Emulator (CoWorker) 

Utilization Test Suite Workflow (CUTS):
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Motivation for Using Emulation

• Can use actual target infrastructure

• Rather than less precise 
simulations that abstract out key 
QoS properties

• Many artifacts can be used directly 
in the final production system

• e.g., models of application 
component relationships & D&C 
plans

• Early feedback to developers, 
architects & systems engineers

• Instead of waiting to complete 
application components before 
conducting performance 
experiments
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Our SOA Middleware & MDD Tool Infrastructure

• System Design & Specification Tools

• Define & validate system 
specification & requirements

• System Assembly & Packaging Tools

• Compose implementation & 
configuration information into 
deployable assemblies

• System Deployment Tools 

• Automates the deployment of system 
components & assemblies to 
component servers

• Component Implementation 

Framework

• Automates the implementation of 
many system component features

PICML

www.dre.vanderbilt.edu/CIAO & www.dre.vanderbilt.edu/cosmic

& CIAO & DAnCE

CUTS & BMW
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ARMS MLRM Case Study: SLICE Scenario (1/2)

D&C & Performance Requirements & 

Constraints

• Critical path deadline is 350 ms

• Main sensor to main effector 
through configuration 

• To ensure availability, components in 
critical paths should not be collocated

• Main sensor & main effector must be 
deployed on separate hosts

• Three hosts

• One database is shared between 
all hosts (used largely offline)

sensor 2

sensor 1
(main)

planner 1 planner 2

configuration

error recovery

effector 2 (backup)

effector 1
(main)

Component Interaction for SLICE Scenario
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sensor 2

planner 1 planner 2

configuration

error recovery effector 1
(main)

effector 2

sensor 1
(main)

350ms deadline

ARMS MLRM Case Study: SLICE Scenario (2/2)

Some questions we’d like to answer

1. Can a particular D&C meet end-to-
end performance requirements?
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sensor 2

planner 1 planner 2

configuration

error recovery effector 1
(main)

effector 2

sensor 1
(main)

ARMS MLRM Case Study: SLICE Scenario (2/2)

Some questions we’d like to answer

1. Can a particular D&C meet end-to-
end performance requirements?

2. Are there multiple deployments that 
meet the 350ms critical path 
deadline?

• e.g., which yields most headroom?

Model-Driven Development of Distributed Systems 190

sensor 2

planner 1 planner 2

configuration

error recovery effector 1
(main)

effector 2

sensor 1
(main)

Some questions we’d like to answer

1. Can a particular D&C meet end-to-
end performance requirements?

2. Are there multiple deployments that 
meet the 350ms critical path 
deadline?

• e.g., which yields most headroom?

3. Can we meet the 350ms critical path 
deadline with all component deployed 
on a single host?

ARMS MLRM Case Study: SLICE Scenario (2/2)
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Representing SLICE Scenario in PICML

sensor 2

planner 1 planner 2

configuration

error recovery
effector 1

(main)

effector 2

sensor 1
(main)

Conceptual model

PICML Model of SLICE Scenario

• Conceptual models 
can be helpful at 
certain design phases

• But they are also 
imprecise & non-
automated

• PICML model 
provides detailed 
representation of 
component properties 
& interconnections

• They are also precise 
& automated
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PICML Model of SLICE Scenario

Summary of CUTS Challenges

Emulate component behavior 1. Evaluate QoS 
characteristics of DRE 
systems

2. Emulate QoS 
characteristics of DRE 
systems

Average- & worst-
cast latency & jitter
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PICML Model of SLICE Scenario

1. Evaluate QoS 
characteristics of DRE 
systems

2. Emulate QoS 
characteristics of DRE 
systems

3. Non-intrusive 
benchmarking & 
evaluation

4. Simplifying component 
behavior specification

Single-point of 
data collection

Define behavior 
declaratively

Summary of CUTS Challenges
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PICML Model of SLICE Scenario

Customizing generic 
components?

1. Evaluate QoS 
characteristics of DRE 
systems

2. Emulate QoS 
characteristics of DRE 
systems

3. Non-intrusive 
benchmarking & 
evaluation

4. Simplifying component 
behavior specification

5. Simplify component 
customization

Summary of CUTS Challenges
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PICML Model of SLICE Scenario

1. Evaluate QoS 
characteristics of DRE 
systems

2. Emulate QoS 
characteristics of DRE 
systems

3. Non-intrusive 
benchmarking & 
evaluation

4. Simplifying component 
behavior specification

5. Simplify component 
customization

6. Informative analysis of 
performance

Summary of CUTS Challenges

Time-critical end-to-end path 
through operational string
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Challenge 1: Evaluating QoS Characteristics of 
Enterprise DRE Systems Early in Life-cycle
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Development Timeline

Context

• In phase 1 of ARMS, QoS 
evaluation was not done until 
application integration

–Prolonged project 
development & QA

• In phase 2 of ARMS, MLRM is 
implemented using Real-time 
CCM (via CIAO & DAnCE)

• Software components & 
challenges are similar in both 
phases
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Challenge 1: Evaluating QoS Characteristics of 
Enterprise DRE Systems Early in Life-cycle

Context

• In phase 1 of ARMS, QoS 
evaluation was not done until 
application integration

–Prolonged project 
development & QA

• In phase 2 of ARMS, MLRM is 
implemented using Real-time 
CCM (via CIAO & DAnCE)

• Software components & 
challenges are similar in both 
phases

Problem

• How to evaluate MLRM QoS 
earlier in lifecycle? 

–i.e., prior to integration
Development Timeline
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CoWorkEr

Solution: Evaluate Component QoS & Behavior 
using Component–based Emulators

• System components are 
represented as 
Component Workload 

Emulators (CoWorkErs)

• Each CoWorkEr is a CCM 
assembly component
constructed from CCM 
monolithic components

• Each CoWorkEr has an 
optional database

–Can be local or remote

• CoWorkErs can be 
interconnected to form 
operational strings

–Basically a “work flow”
abstraction
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Challenge 2: Emulating Behavior & QoS of 
Enterprise DRE Systems

Context

• In phase 1 of ARMS, QoS evaluation 
was not done until integration

• QoS testing was done using ad hoc

techniques

–e.g., creating non-reusable artifacts 
& tests that do not fully exercise the 
infrastructure

Problem

• How to emulate behavior & QoS in a 
reusable manner to evaluate the 
complete infrastructure & apply tests in 
different contexts

Test A Test A

Phase 2 Phase N

Desired

Test A 
(ad hoc)

Test A 
(ad hoc)

Phase 1 Phase 2

Current
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Emulate workloads, e.g., 
CPU, database & memory

Solution: Emulate Component Behavior & QoS 
Using Configurable CoWorkErs
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Perform background 
workloads

Solution: Emulate Component Behavior & QoS 
Using Configurable CoWorkErs
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Receive events from CoWorkErs

Solution: Emulate Component Behavior & QoS 
Using Configurable CoWorkErs
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Send events to CoWorkErs

Solution: Emulate Component Behavior & QoS 
Using Configurable CoWorkErs
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Challenge 3: Non-Intrusive Benchmarking & Evaluation

Context

• The SLICE scenario of MLRM is 
composed of multiple 
components deployed over 
multiple nodes

• Each component, including 
components in assemblies, must 
be monitored & evaluated
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Challenge 3: Non-Intrusive Benchmarking & Evaluation

Context

• The SLICE scenario of MLRM is 
composed of multiple 
components deployed over 
multiple nodes

• Each component, including 
components in assemblies, must 
be monitored & evaluated

Problem

• Collecting data from each 
component without interfering 
with emulation

• Collecting data without unduly 
perturbing operational 
performance measures

Collects all the metrics for experiment
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Solution: Decouple Emulation & Benchmarking

Emulation

Benchmarking

• CUTS environment is decoupled 
into two sections

– Emulation & benchmarking
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Each CoWorkEr has
a BenchmarkAgent

Solution: Decouple Emulation & Benchmarking
• CUTS environment is decoupled 

into two sections

– Emulation & benchmarking

• Data acquisition done in two 
phases at lower priority than 
emulation

1.BenchmarkAgent collects
performance metrics

2.BenchmarkAgent submits
data to 
BenchmarkDataCollector at
user-defined intervals
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• CUTS environment is decoupled 
into two sections

– Emulation & benchmarking

• Data acquisition done in two 
phases at lower priority than 
emulation

1.BenchmarkAgent collects
performance metrics

2.BenchmarkAgent submits
data to 
BenchmarkDataCollector at
user-defined intervals

• BenchmarkDataCollector stores
performance metrics in database 
for offline analysis

• Separate networks are used for 
CoWorkEr communication & 
data acquisition

Solution: Decouple Emulation & Benchmarking
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Challenge 4: Simplify Characterization of Workload

Context

• People developing & using the SLICE 
scenario with CUTS come from 
different disciplines

–e.g., software architects, software 
developers, & systems engineers

• Many CUTS users may not be familiar 
with 3rd generation or configuration 
languages

–e.g., C++ & Java or XML, 
respectively

Problem

• Avoiding tedious & error-prone 
manual programming of CoWorkEr

behavior using 3rd generation
languages or configuration files

use?

The harder it is to program CoWorkErs, the less useful CUTS emulation is… Model-Driven Development of Distributed Systems 210

Solution: Use Domain–Specific Modeling Language 
to Program CoWorkEr Behavior

• Workload Modeling Language (WML)

is used to define the behavior of 
CoWorkEr components

Model-Driven Development of Distributed Systems 211

• Workload Modeling Language (WML) 

is used to define the behavior of 
CoWorkEr components

• WML events represent different types 
of workloads in CoWorkEr

Startup workload

Event-driven workload

Solution: Use Domain–Specific Modeling Language 
to Program CoWorkEr Behavior
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• Workload Modeling Language (WML)

is used to define the behavior of 
CoWorkEr components

• WML events represent different types 
of workloads in CoWorkEr

• Actions can be attached to events & 
specified in order of execution to 
define “work sequences”

–Each action has attributes, e.g., 
number of repetitions, amount of 
memory to allocate & etc

Attributes for CPUAction

Workload string

Solution: Use Domain–Specific Modeling Language 
to Program CoWorkEr Behavior
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• Workload Modeling Language (WML)

is used to define the behavior of 
CoWorkEr components

• WML events represent different types 
of workloads in CoWorkEr

• Actions can be attached to events & 
specified in order of execution to 
define “work sequences”

–Each action has attributes, e.g., 
number of repetitions, amount of 
memory to allocate & etc

• WML programs are translated into 
XML characterization files

• Characterization specified in 
CoWorkEr & used to configure its 
behavior

Solution: Use Domain–Specific Modeling Language 
to Program CoWorkEr Behavior
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Challenge 5: Simplify Component Customization

Context

• By default a CoWorkEr can send & 
receive every type of event

• The SLICE components are all 
different, however, & do not 
send/receive the same types of 
events

–i.e., each contains a different 
composition pertaining to its 
specific workload(s)

Problem

• How can we customize CoWorkEr

components to enforce strong type-
checking without requiring time-
consuming modification & 
recompilation of components?

compilation

?
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Custom CoWorkEr

• Event sinks of a CoWorkEr

are delegated to the 
respective event sources of 
the EventHandler

• Events produced by the 
EventProducer are delegated 
to respective events sources 
for a CoWorkEr

• Delegated event sources & 
sinks can be removed from 
CoWorkEr

–Does not require 
recompilation of 
components

Event sources removed

Event sinks removed

Solution: Customize CoWorkErs at System Modeling Level

This technique leverages key properties of CCM assemblies, i.e., virtual APIs Model-Driven Development of Distributed Systems 216

Challenge 6: Informative Analysis of QoS Performance

Too much workload?

Too many components 
deployed on a node?

Context

• There are many components in 
SLICE & combinations in the 
deployment of these components

Problem

• How can we assist users in 
pinpointing problematic areas in 

– Deployment & configuration 
(D&C)?
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Context

• There are many components in 
SLICE & combinations in the 
deployment of these components

Problem

• How can we assist users in 
pinpointing problematic areas in 

– Deployment & configuration 
(D&C)?

– End-to-end QoS of mission-
critical paths?

Challenge 6: Informative Analysis of QoS Performance

Missed deadline
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Solution: Present Metrics Graphically in Layers to 
Support General & Detailed Information

• BenchmarkManagerWeb-interface

(BMW) analyzes & graphically 
displays performance metrics

BMW

reads metrics

displays

Web service
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• BenchmarkManagerWeb-interface

(BMW) analyzes & graphically 
displays performance metrics

• General analysis shows users 
overall performance of each 
CoWorkEr

–e.g., transmisssion delay & 
processing

BMW General Time Data 

CoWorkEr

Host

General analysis of actions

Solution: Present Metrics Graphically in Layers to 
Support General & Detailed Information
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• BenchmarkManagerWeb-interface

(BMW) analyzes & graphically 
displays performance metrics

• General analysis shows users 
overall performance of each 
CoWorkEr

–e.g., transmisssion delay & 
processing

• Detailed analysis shows users the 
performance of an action in the 
respective CoWorkEr

–e.g., memory & CPU actions, 
event handling & etc

Solution: Present Metrics Graphically in Layers to 
Support General & Detailed Information
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• BenchmarkManagerWeb-interface

(BMW) analyzes & graphically 
displays performance metrics

• General analysis shows users 
overall performance of each 
CoWorkEr

–e.g., transmisssion delay & 
processing

• Detailed analysis shows users the 
performance of an action in the 
respective CoWorkEr

–e.g., memory & CPU actions, 
event handling & etc

• Critical paths show users end-to-
end performance of mission-critical 
operational strings

Green means end-to-end 
deadline met

Solution: Present Metrics Graphically in Layers to 
Support General & Detailed Information
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Applying CUTS to the SLICE Scenario

Using ISISLab as our target infra-
structure in conjunction with CUTS

1.Use PICML to define & validate 
infrastructure specifications & 
requirements

2.Use WML to define & validate 
application specifications & 
requirements

3.Use DAnCE to deploy component 
emulators on target infrastructure

4.Use BMW to evaluate & verify QoS 
performance

5.Redefine system D&C & repeat

Express & 

Validate

Design

Rules

www.dre.vanderbilt.edu/ISISlab/
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Defining Components of SLICE Scenario in PICML for CUTS

• Each component in 
SLICE is defined as a 
CoWorkEr

• The default CoWorkEr is
customized to handle 
events specific to its 
representative SLICE 
component

• Each CoWorkEr is
assigned a unique user-
defined ID number

• The benchmark data 
submission rate is set to 
15 seconds

CoWorkEr
Customized
CoWorkEr
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Defining Behavior of SLICE Scenario Components using WML

Effector 1 & Effector 2

Workload
performed every 
second

CPU: 25 reps
PUBLISH: STATUS – SIZE 32

Workload
performed after 
receipt of 
command event

CPU: 25 reps
PUBLISH: STATUS - SIZE 256
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Recap of Questions We Wanted to Answer

1. Can we meet the D&C & performance 
requirements?

2. Are there multiple deployments that meet 
the 350ms critical path deadline?

• e.g., which yields most headroom?

3. Can we meet D&C & performance 
requirements using a single host?

To answer these questions we ran 11 tests using different CoWorkEr D&C’s
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SLICE Scenario Results: Meeting D&C & QoS Requirements
Deployment Table

Test

9

Node 1 Node 2 Node 3

sensor 1 & planner 1 planner 2, configuration, 
& effector 1

sensor 2, error recovery & 
effector 2

Critical Path Timing Information for Test 9

Planner 2 takes the longest 
to process workload

“What if” planner-2 is put on Node 3, which has no critical path components?
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SLICE Scenario Results: Meeting D&C & QoS Requirements
Deployment Table

Test

10

Node 1 Node 2 Node 3

sensor 1 & planner 1 configuration & effector 1 planner 2, sensor 2, error 
recovery & effector 2

Critical path timing information for Test 10
Node 3 is “saturated” with non-critical path components, “what if” we 
evenly distribute critical path workload on collocated components?

Better performancePlanner 2 takes the longest 
to process workload
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SLICE Scenario Results: Meeting D&C & QoS Requirements
Deployment Table

Test

11

Node 1 Node 2 Node 3

sensor 1, planner 1 
& configuration

planner 2 & effector 1 sensor 2, error recovery & 
effector 2

Critical path timing information for Test 11

Worst case passed

We were able to answer the critical path & deployment questions
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SLICE Scenario Results: Meeting D&C & QoS Requirements
Deployment Table

Test

9

10

11

Node 1 Node 2 Node 3

sensor 1 & planner 1 planner 2, configuration, 
& effector 1

Sensor 2, error re 
recovery & effector 2

sensor 1 & planner 1 configuration & effector 
1

planner 2, sensor 2, error 
recovery & effector 2

sensor 1, planner 1 
& configuration

planner 2 & effector 1 sensor 2, error recovery & 
effector 2

Deployment of Critical Path on Multiple Nodes
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• Test 9, 10 & 11 meet the 
performance requirements for the 
average execution time of the 
critical path

• Test 11 meet the performance 
requirements for worst execution 
time

• We did not exhaustively test all 
D&C’s, but that could be done also
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SLICE Scenario Results: Single Host Deployment

Deployment of Critical Path on Single Node
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Deployment Table

Test

4

Node 1 Node 2 Node 3

All components (nothing) (nothing)

Test 4 had a average 
time of 490 ms

We were able to answer the question about deploying on a single node
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Overall Results of SLICE Scenario

Test 11 produced the best results

• Average case: 221 ms

• Worse case: 343 ms

Results of SLICE Scenario
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• Only 4 of 11 
deployments met 
the 350 ms critical 
path deadline for 
average-case time

• Test 11 only test to 
meet critical path 
deadline for worst-
case time

Population size of 11 tests
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Lessons Learned
• SOA middleware technologies 

allowed us to leverage the behavior 
& functionality of target architecture 
for realistic emulations

• SOA technologies allowed us to 
focus on the “business” logic of 
CoWorkErs

–e.g., D&C handled by underlying 
MDD & middleware technology
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Development Timeline
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Lessons Learned
• SOA middleware technologies 

allowed us to leverage the behavior 
& functionality of target architecture 
for realistic emulations

• SOA technologies allowed us to 
focus on the “business” logic of 
CoWorkErs

–e.g., D&C handled by underlying 
MDD & middleware technology

• CUTS allowed us to test 
deployments before full system 
integration testing

• CUTS allowed us to rapidly test 
deployments that would have take 
much longer using ad hoc

techniques

–e.g., hand-coding the D&C of 
components

increased # of tests
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Summary

• We motivated the need for the 
Component Workload Emulator 

(CoWorkEr) Utilization Test Suite 

(CUTS)

• We presented a large-scale DRE 
system example that used CUTS to 
evaluate component D&C before

complete integration

• We presented the design & 
implementation of CUTS, along with 
the design challenges we faced

• CUTS is being integrated into the 
open-source CoSMIC MDD 
toolchain

– www.dre.vanderbilt.edu/cosmic

www.cs.wustl.edu/~schmidt/PDF/CUTS.pdf

www.cs.wustl.edu/~schmidt/PDF/QoSPML-WML.pdf
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Nav Sensors

Expendable
Management

Data LinksMission
Computer

Vehicle
Mgmt

Expendables

•Avionics mission computing product-line 
architecture for Boeing aircraft

•DRE system with 100+ developers, 3,000+ 
software components, 3-5 million lines of C++

•Based on COTS hardware, 
networks, operating 
systems, languages, & 
middleware

Bold Stroke 

Architecture

Radar

Case Study Example: Boeing Bold Stroke

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services
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Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

COTS & standards-based middleware, 

language, OS, network, & hardware 

platforms

• Real-time CORBA middleware services

• ADAPTIVE Communication 
Environment (ACE)

• C++/C & Real-time Java

• VxWorks operating system

• VME, 1553, & Link16

• PowerPC

www.cs.wustl.edu/
~schmidt/TAO.html

Applying COTS to Boeing Bold Stroke
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Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

•Save a considerable amount of 
time/effort compared with 
handcrafting capabilities

•Leverage industry “best 
practices” & patterns in pre-
packaged & ideally standardized 
form

Benefits of Using COTS
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Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

• QoS of COTS components is not 
always suitable for mission-critical 
systems

• COTS technologies address some, but

not all, of the domain-specific

challenges associated with developing 
mission-critical DRE systems

Limitations of Using COTS

What we need is a reuse 
technology for organizing
& automating key roles & 

responsibilities in an 
application domain
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Air
Frame

GPS

FLIR

Legacy DRE systems have 
historically been:

• Stovepiped

• Proprietary 

• Brittle & non-adaptive

• Expensive

• Vulnerable

Consequence:

Small HW/SW 

changes have big 

(negative) impact 

on DRE system 

QoS & maintenance

GPS

FLIRAP

Nav HUD

IFF

Cyclic 
Exec

F-15

Air
Frame

AP
Nav HUD

GPSIFF

FLIR

Cyclic 
Exec

A/V-8B

Air
Frame

Cyclic 
Exec

AP

Nav
HUD

IFF

F/A-18

Air
Frame

AP

Nav HUD
GPS

IFF

FLIR

Cyclic 
Exec UCAV

Motivation for Product-line Architectures (PLAs)
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F-15
product
variant

A/V 8-B
product
variant

F/A 18
product
variant UCAV

product
variant

Product-line
architecture

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

OS & Network ProtocolsOS & Network Protocols

Host Infrastructure MiddlewareHost Infrastructure Middleware

Distribution MiddlewareDistribution Middleware

Common Middleware ServicesCommon Middleware Services

• Frameworks factors out many reusable general-purpose & domain-
specific services from traditional DRE application responsibility

• Essential for product-line architectures (PLAs)

• Product-lines & frameworks offer many configuration opportunities

• e.g., component distribution & deployment, user interfaces & operating 
systems, algorithms & data structures, etc

Air
Frame

AP

Nav
HUD GPS

IFF

FLIR

Domain-specific ServicesDomain-specific Services

Motivation for Product-line Architectures (PLAs)
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• PLA characteristics are 

captured via Scope,

Commonalities, & 

Variabilities (SCV) analysis

• This process can be applied 
to identify commonalities & 
variabilities in a domain to 
guide development of a PLA

•Applying SCV to Bold Stroke

• Scope defines the domain & context of 

the PLA

• Bold Stroke component architecture, 
object-oriented application frameworks, 
& associated components, e.g., GPS, 
Airframe, & Display 

OS & Network ProtocolsOS & Network Protocols

Host Infrastructure MiddlewareHost Infrastructure Middleware

Distribution MiddlewareDistribution Middleware

Common Middleware ServicesCommon Middleware Services

Domain-specific ServicesDomain-specific Services

Air
Frame

AP

Nav
HUD GPS

IFF

FLIR

Overview of Product-line Architectures (PLAs)

Reusable Architecture 
Framework

Reusable Application 
Components
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Applying SCV to the Bold Stroke PLA
•Commonalities describe the attributes that are common across all 
members of the PLA family

•Common object-oriented frameworks & set of component types

• e.g., GPS, Airframe, Navigation, & Display components

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

OS & Network ProtocolsOS & Network Protocols

Host Infrastructure MiddlewareHost Infrastructure Middleware

Distribution MiddlewareDistribution Middleware

Common Middleware ServicesCommon Middleware Services

Domain-specific ServicesDomain-specific Services

•Common middleware 
infrastructure

• e.g., Real-time 
CORBA & a variant 
of Lightweight 
CORBA Component 
Model (CCM) called 
Prism
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Air
Frame

AP

Nav HUD

GPS IFF

FLIRAP

Nav HUD

GPS IFF

FLIR

•Variabilities describe the 
attributes unique to the different 
members of the family 

•Product-dependent component 
implementations (GPS/INS)

•Product-dependent component 
connections

•Product-dependent component 
assemblies (e.g., different 
weapons systems for different 
customers/countries)

•Different hardware, OS, & 
network/bus configurations 

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

OS & Network ProtocolsOS & Network Protocols

Host Infrastructure MiddlewareHost Infrastructure Middleware

Distribution MiddlewareDistribution Middleware

Common Middleware ServicesCommon Middleware Services

Domain-specific ServicesDomain-specific Services

Patterns & frameworks are
essential for developing

reusable PLAs

Applying SCV to the Bold Stroke PLA
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Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

Reusable object-oriented application 

domain-specific middleware framework 

•Configurable to variable infrastructure 
configurations

•Supports systematic reuse of mission 
computing functionality

•3-5 million lines of C++

•Based on many architecture & design 
patterns

Applying Patterns & Frameworks to Bold Stroke

Patterns & frameworks
are also used 

throughout COTS 
software infrastructure
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Legacy Avionics Architectures

Board 1

VME

1553

1: Sensors

generate

data

Board 2

2: I/O via 

interrupts

3: Sensor 

proxies

process data 

& pass to 

missions

functions

4: Mission 

functions 

perform

avionics 

operations

Key System Characteristics
•Hard & soft real-time deadlines

•~20-40 Hz
•Low latency & jitter between 
boards
•~100 usecs

•Periodic & aperiodic processing
•Complex dependencies
•Continuous platform upgrades

Avionics Mission 

Computing Functions

•Weapons targeting 
systems (WTS)

•Airframe & navigation 
(Nav)

•Sensor control (GPS, 
IFF, FLIR)

•Heads-up display 
(HUD)

•Auto-pilot (AP)
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Legacy Avionics Architectures

Key System Characteristics
•Hard & soft real-time deadlines

•~20-40 Hz
•Low latency & jitter between 
boards
•~100 usecs

•Periodic & aperiodic processing
•Complex dependencies
•Continuous platform upgrades

Board 1

VME

1553

1: Sensors

generate

data

Board 2

2: I/O via 

interrupts

3: Sensor 

proxies

process data 

& pass to 

missions

functions

4: Mission 

functions 

perform

avionics 

operations

Limitations with Legacy Avionics 

Architectures

•Stovepiped
•Proprietary
•Expensive
•Vulnerable
•Tightly coupled

•Hard to schedule

•Brittle & non-adaptive

Air
Frame

AP

Nav WTS

GPS IFF

FLIR

Cyclic 
Exec
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Decoupling Avionics Components
Context Problems Solution

•I/O driven DRE 
application

•Complex 
dependencies

•Real-time 
constraints

•Tightly coupled 
components

•Hard to schedule

•Expensive to 
evolve

•Apply the Publisher-

Subscriber architectural
pattern to distribute periodic, 
I/O-driven
data from a single point of 
source to a collection of 
consumers

Event

*

Subscriber

consume

creates receives

Event Channel

attachPublisher
detachPublisher
attachSubscriber
detachSubscriber
pushEvent

Filter

filterEvent

Publisher

produce

Structure

attachSubscriber

produce

pushEvent
event

event

pushEvent

consume

detachSubscriber

: Event

: Subscriber: Event Channel: Publisher

Dynamics 
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Applying the Publisher-Subscriber Pattern to Bold Stroke

Board 1

VME

1553

1: Sensors

generate

data

Board 2

2: I/O via interrupts

4: Event Channel 

pushes events 

to

subscribers(s)

5: Subscribers 

perform

avionics 

operations

GPS IFF FLIR

HUD

Nav

WTS

Air

Frame

Publishers

Subscribers

push(event)

push(event)

Event 

Channel

3: Sensor 

publishers

push events 

to event 

channel

Considerations for implementing the 
Publisher-Subscriber pattern for 
mission computing applications include:
• Event notification model

•Push control vs pull data interactions

• Scheduling & synchronization strategies

•e.g., priority-based dispatching & 
preemption

• Event dependency management

•e.g.,filtering & correlation mechanisms

Bold Stroke uses the Publisher-

Subscriber pattern to decouple sensor 
processing from mission computing 
operations

• Anonymous publisher & subscriber 
relationships

• Group communication

• Asynchrony

Model-Driven Development of Distributed Systems 250

Ensuring Platform-neutral Inter-process Communication
Context Problems Solution

•Mission 
computing
requires remote 
IPC

•Stringent DRE 
requirements

•Applications need capabilities to:
• Support remote communication

• Provide location transparency

• Handle faults

• Manage end-to-end QoS

• Encapsulate low-level system details

•Apply the Broker

architectural pattern 
to provide platform-
neutral comms
between mission 
computing boards

message
exchange

message
exchange

*

marshal
unmarhal
receive_result
service_p

Client Proxy

calls*

*

call_service_p
start_task

Client

1

marshal
unmarshal
dispatch
receive_request

Server Proxy

calls*

start_up
main_loop
service_i

Server

1

1

main_loop
srv_registration
srv_lookup
xmit_message
manage_QoS

Broker1

Structure
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operation (params)
connect

send_request
marshal

unmarshal

dispatch
operation (params)

result

marshalreceive_reply

unmarshal
result

start_upregister_service

assigned
port

Dynamics 

: Broker: Client Proxy : Server Proxy: Client : Server

Ensuring Platform-neutral Inter-process Communication
Context Problems Solution

•Mission 
computing
requires remote 
IPC

•Stringent DRE 
requirements

•Applications need capabilities to:
• Support remote communication

• Provide location transparency

• Handle faults

• Manage end-to-end QoS

• Encapsulate low-level system details

•Apply the Broker

architectural pattern 
to provide platform-
neutral comms
between mission 
computing boards
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Applying the Broker Pattern to Bold Stroke

Board 1

VME

1553

1: Sensors

generate

data

Board 2

2: I/O via interrupts

5: Event Channel 

pushes events 

to subscribers(s)

6: Subscribers 

perform

avionics 

operations

GPS IFF FLIR

HUD Nav WTS
Air

Frame

Publishers

Subscribers

push(event)

push(event)

Event 

Channel

4: Sensor 

publishers

push events 

to event 

channel

Bold Stroke uses the Broker pattern
to shield distributed applications 
from environment heterogeneity, 
e.g.,

•Programming languages

•Operating systems

•Networking protocols

•Hardware
3: Broker

handles I/O 

via upcalls

BrokerA key consideration for 
implementing the Broker pattern
for mission computing applications 
is QoS support

•e.g., latency, jitter, priority 
preservation, dependability, 
security, etc
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Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

• Enables reuse of software 
architectures & designs

• Improves development team 
communication

• Convey “best practices” intuitively

• Transcends language-centric 
biases/myopia

• Abstracts away from many 
unimportant details

Benefits of Patterns

GPS IFF FLIR

HUD

Nav WTS
Air Frame

Publishers

Subscribers

push(event)

push(event)
Event

Channel

Broker

www.cs.wustl.edu/
~schmidt/patterns.html
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Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

• Require significant tedious &
error-prone human effort to 
handcraft pattern 
implementations

• Can be deceptively simple

• Leaves many important details 
unresolved

Limitations of Patterns

GPS IFF FLIR

HUD

Nav WTS
Air Frame

Publishers

Subscribers

push(event)

push(event)
Event

Channel

Broker

www.cs.wustl.edu/
~schmidt/patterns.html

We therefore need 
more than just 

patterns to achieve 
systematic reuse
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Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

Application-specific functionality 

•Frameworks exhibit 
“inversion of control” at
runtime via callbacks

Networking Real-time

Database
GUI

•Frameworks
provide integrated 
domain-specific
structures & 
functionality

Sensor

Management

Route

Planning Heads-up

Display

•Frameworks are 
“semi- complete”
applications

Framework benefits & 

characteristics

www.cs.wustl.edu/
~schmidt/ACE.html

Applying Frameworks to Bold Stroke
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Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

• Frameworks are powerful, but can be 
hard to develop & use effectively

• Significant time required to evaluate 
applicability & quality of a framework for a 
particular domain

• Debugging is tricky due to inversion of 
control

• V&V is tricky due to “late binding”

• May incur performance degradations due 
to  extra (unnecessary) levels of 
indirection

Limitations of Frameworks

www.cs.wustl.edu/
~schmidt/PDF/Queue-04.pdf

We therefore need 
something simpler than 
frameworks to achieve 

systematic reuse
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Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

Product-line component model

• Configurable for product-specific
functionality & execution environment

• Single component development policies

• Standard component packaging 
mechanisms

• 3,000+ software components

Applying Component Middleware to Bold Stroke
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Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

Benefits of Component Middleware

•Creates a standard 
“virtual boundary” around
application component 
implementations that 
interact only via well-
defined interfaces

•Define standard 
container mechanisms 
needed to execute 
components in generic 
component servers 

•Specify the infrastructure 
needed to configure & 
deploy components 
throughout a distributed 
system

<ComponentAssemblyDescription id="a_HUDDisplay">
<connection>

<name>GPS-RateGen</name>
<internalEndPoint><portName>Refresh</portName><instance>a_GPS</
instance>

</internalEndPoint>
<internalEndPoint>

<portName>Pulse</portName><instance>a_RateGen</instance>
</internalEndPoint>

</connection>
<connection>

<name>NavDisplay-GPS</name>
<internalEndPoint><portName>Refresh</portName><instance>a_NavDi
splay</instance>

</internalEndPoint>
<internalEndPoint><portName>Ready</portName><instance>a_GPS</in
stance>

</internalEndPoint>
</connection>

</ComponentAssemblyDescription>

Container

…
…

…

…

…

Model-Driven Development of Distributed Systems 259

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

•Limit to how much application
functionality can be refactored into 
reusable COTS component 
middleware

Middleware

Middleware
Services

DRE Applications

Operating System
& Protocols

Hardware & 
Networks

Limitations of Component Middleware
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Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

•Limit to how much application
functionality can be refactored into 
reusable COTS component 
middleware

•Middleware itself has become hard to 
provision/use

IntServ + Diffserv

RTOS + RT 
Java

RT/DP CORBA + DRTSJ

Load Balancer
FT CORBA

Network latency
& bandwidth

Workload &
Replicas

CPU & memory

Connections &
priority bands

Limitations of Component Middleware
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Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

•Limit to how much application
functionality can be refactored into 
reusable COTS component 
middleware

•Middleware itself has become hard to 
provision/use

•Large # of components can be 
tedious & error-prone to configure & 
deploy without proper integration tool 
support

Limitations of Component Middleware
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Networking InterfacesNetworking Interfaces
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Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

•Limit to how much application
functionality can be refactored into 
reusable COTS component 
middleware

•Middleware itself has become hard to 
provision/use

•Large # of components can be 
tedious & error-prone to configure & 
deploy without proper integration tool 
support

• There are many 
middleware technologies 
to choose from

Middleware

Middleware
Services

DRE Applications

Operating System
& Protocols

Hardware & 
Networks

RT-CORBA

RT-CORBA
Services

RT-CORBA
Apps

J2ME

J2ME
Services

J2ME
Apps

DRTSJ

DRTSJ
Services

DRTSJ
Apps

Limitations of Component Middleware
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Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

Model-driven development 

(MDD)

• Apply MDD tools to 

• Model

• Analyze

• Synthesize

• Provision

middleware & application 
components

• Configure product-specific 
component assembly & 
deployment environments

• Model-based component 
integration policies

Applying MDD to Boeing Bold Stroke

www.isis.vanderbilt.edu/
projects/mobies

<CONFIGURATION_PASS>

<HOME>

<…>

<COMPONENT>

<ID> <…></ID>

<EVENT_SUPPLIER>

<…events this

component supplies…>

</EVENT_SUPPLIER>

</COMPONENT>

</HOME>

</CONFIGURATION_PASS>

<CONFIGURATION_PASS>

<HOME>

<…>

<COMPONENT>

<ID> <…></ID>

<EVENT_SUPPLIER>

<…events this

component supplies…>

</EVENT_SUPPLIER>

</COMPONENT>

</HOME>

</CONFIGURATION_PASS>
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Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

ANALYSIS TOOLS

CODE GENERATORS

Stateflow

Real-time Java

Statecharts

Ptolemy

C/C++

SMV

SPIN

Simulink

XML Ptolemy

APPLICATION MODELING TOOLS

EMBEDDED PLATFORM MODEL

Interaction is based on 

mission-specific

ontologies & semantics

Formal mission specs, 
subsystem models, & 

computational constraints 
are combined into integrated
MDD tool chain & mapped to 

execution platforms

UML/Rose

ESML/GME

PICML/GME

ARIES

TimeWeaver

TimeWiz

Cadena

PowerPC/

ACE+TAO/

BOLD-

STROKE

Applying MDD to Boeing Bold Stroke

www.rl.af.mil/tech/
programs/MoBIES/
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Benefits of MDD
• Increase expressivity 

• e.g., linguistic support to better capture 
design intent 

• Increase precision 

• e.g., mathematical tools for cross-domain 
modeling, synchronizing models, change 
propagation across models, modeling 
security & other QoS aspects 

• Achieve reuse of domain semantics

• Generate code that’s more “platform-
independent” (or not)!

• Support product-line 
architecture development 
& evolution

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

Avionics Mission Computing 

Modeling Languages

Artifact

Generator
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Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

•Modeling technologies 
are still maturing & 
evolving

• i.e., non-standard 
tools

•Magic (& magicians) are 
still necessary for 
success

Model & Component

Library

ApplicationsApplications

$ $ $

Limitations of MDD
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Open MDD R&D Issues

• Inherent Complexities

• Capturing specificity of target domain

• Automated specification & synthesis of 

• Model interpreters

• Model transformations

• Broader range of application 
capabilities

• Static & dynamic QoS properties

• Migration & version control of models

• Scaling & performance

• Verification of the DSLs

Solutions require validation on large-scale, real-world systems

• Accidental Complexities

• Round-trip engineering from 
models source

• Mismatched abstraction levels 
for development vs debugging 

• Tool chain vs monolithic tools

• Backward compatibility of 
modeling tools 

• Standard metamodeling 
languages & tools
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Current Status & Available Tools

• Today’s MDD tools can be used productively – although sometimes 
some “magic” is necessary

• Today’s problem is not really that we need better tools, per se, we

rather need more experience with existing tools!

• Standardization efforts are slowly coming to fruition: EMF/GMF, QVT, 
MIC, etc.

• CoSMIC & CUTS is available from 
www.dre.vanderbilt.edu/cosmic

• GME is available from 
www.isis.vanderbilt.edu/Projects/gme/default.htm

• openArchitectureWare is available from
www.openarchitectureware.org

Start today – it will make you more productive
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What We Hope You Learned Today!

• Key MDD concepts & what kinds of domains & 
problems they address

• What are some popular MDD tools & how they work

• How MDD relates to other software tools & 
(heterogeneous) platform technologies 

• What types of projects are using MDD today & what 
are their experiences

• What are the open issues in MDD R&D & adoption

• Where you can find more information
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Questions?


