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What We Want You to Learn Today

» Key MDD concepts & what kinds of domains &
problems they address

» What are some popular MDD tools & how they work

* How MDD relates to other software tools &
(heterogeneous) platform technologies

» What types of projects are using MDD today & what
are their experiences

» What are the open issues in MDD R&D & adoption

» Where you can find more information
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The Road Ahead

CPU & network performance has increased by 3-8
orders of magnitude in past decades

10 Megahertz to

3+ Gigahertz 1,200 bits/sec to

10+ Gigabits/sec

Extrapolating these trends another decade or so yields @
» ~100 Gigahertz desktops - : o0
. ~100 Gigabits/sec LANs SOFTWARE =
* ~100 Megabits/sec wireless
« ~10 Terabits/sec Internet backbone

RUMNANWAYS

-

Unfortunately, software quality &
productivity hasn’t improved as
rapidly or predictably as hardware
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Why Hardware Improves So Consistently

Advances in hardware & networks stem largely from
R&D on standardized & reusable APls & protocols

x86 & Power PC chipsets TCPI/IP
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Why Software Fails to Improve as Consistently

In general, software has not been as standardized or reusable as hardware
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Proprietary & Stovepiped Application & Infrastructure Software

Air Air GPS

IFF

IFF

Nay Frame .o CNay_ FYR pup FLR _HYD  prame Nav HUD
— cps| |[_A

Frame

1553
VME
Link16

1553
VME
Link16

Standard/COTS Hardware & Networks
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The Promise

*Develop standardize
technologies that:

1. Model

2. Analyze

3. Synthesize &
4. Provision

complex software
systems

<CONFIGURATION_PASS>
<HOME>

<>
<COMPONENT>

o >
</EVENT_SUPPLIER>
<ICOMPONENT>

</HOME>
<ICONFIGURATION_PASS>
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The Reality

« Architects -

(sometimes)use - .
UML to express =
software designs

at a high-level

* Developers write
& evolve code
manually

‘ We ought/need to be able to do much better than this! ‘

Sources of the Problems

Technical Inherent & accidental complexities
Challenges —More automated specification & synthesis of

* Broader range of target domain capabilities

» Model interpreters & transformations

« Static & dynamic quality of service (QoS) properties
—Round-trip engineering from models < source
—Poor support for debugging at the model level
—Version control of models at the model level

Non-Technical Impediments of human nature

Challenges « Organizational, economic, administrative, political, &

psychological barriers
Ineffective technology transition strategies

« Disconnects between methodologies & production
software development realities

 Lack of incremental, integrated, & triaged transitions

’ www.cs.wustl.edu/~schmidt/reuse-lessons.html ‘

Key Challenges for Software Developers

Developers & users of software face
challenges in multiple dimensions

Logical Process
View View
Physical Development
View View
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Key Challenges for Software Developers

Determining units of abstraction
for system (de)composition,
reuse, & validation

» Popular technologies & tools provide
inadequate support for
— Checking pre-/post-conditions & invariants
. — Specifying & analyzing dependencies
Logical p y.g . y. g dep
View — Expressing design intent more clearly
using domain concepts

Client | wCipeL i
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Key Challenges for Software Developers

Key Challenges for Software Developers

* Popular technologies & tools
provide inadequate support for

— Configuring & customizing
components for application
requirements & run-time =
environments

— Automated mapping of
components onto nodes in :
target environments T T — v

Physical
View

Integrating/deploying diverse new &

reusable application components in

a networked environment to ensure
end-to-end QoS requirements

Model-Driven Development of Distributed Systems 13

Devising execution architectures,
concurrency models, & communication styles
that ensure multi-dimensional QoS &
— Identifying & reducing correctness of new/reusable components
performance & robustness -
D Process
; ac View

* Popular technologies & tools
provide inadequate support for

risks earlier in system lifecycle

— Satisfying multiple (often
conflicting) QoS demands

* e.g., secure, real-time, J
reliable - .

— Satisfying QoS demands in
face of fluctuating/insufficient _
resources L (e

* e.g., mobile ad hoc per
networks (MANETS) ——

Model-Driven Development of Distributed Systems 14

Key Challenges for Software Developers

Applications
* Popular technologies & tools 1 - - 1
provide inadequate support for e e ‘ e ‘ et ‘
avoiding “bloatware”, i.e.: pma ConoonentUirases —
— Cyclic dependencies, which DomaintComponents | | Domain2Companents | | DomainiCompanens
make unit testing & reuse
hard Foundation Component Libraries (maintained by project)
S . \
— Excessive link-time Smarboirters N
dependencies, which bloat
. Third Party Libraries (not maintained by project)
the size of executables —1 — ] —
E . I t C++ Standard Library || XML Parsing POSIX 0S| | Ul Component Library || Database Interface
— Excessive compile-time

dependencies, where small
changes trigger massive
recompiles

View

(De)composing systems into
reusable modules (e.g., packages,
subsystems, libraries) that
achieve/preserve QoS properties

Development
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Key Challenges for Software Developers

|G

Capturing functional & QoS
requirements of systems &
reconciling them with other
views during evolution

Use Case
View

* Popular technologies & tools provide inadequate support for

— Ensuring semantic consistency & traceability between requirements &
software artifacts

— Visualizing software architectures from multiple views

Model-Driven Development of Distributed Systems 16
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@ Synchronization
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9 Memory Management Middleware frameworks

Fault Tolerance . .
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Model-driven QoS properties
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checking & static analysis

Formalizing best practices
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‘ There is no single “silver bullet” technology that resolves all software problems!

Promising Solution Approaches

Devising composable
abstractions whose
interfaces & QoS properties
can be specified/analyzed
via metadata

Logical
View

» Components encapsulate “business” logic @
»Components interact via ports
* Provided ports, e.g.,facets
* Required ports, e.g., receptacles Container
* Event sink & source ports

* Containers provide execution environment
Components/containers can also

«Communicate via a middleware bus &
*«Reuse common middleware services

* Aspect-oriented techniques can help with —
integration "W = ‘

Container

Middleware Bus

Persistence || [Notification

’Replication Security ‘

Scheduli
9

Load Balancing
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Promising Solution Approaches

o N
7_; . = ?!;
™ =
fr— | = ::- T
Physical / /
View

Model-driven development &
analysis techniques for optimizing,
verifying, & automating the
deployment & configuration process

Gigabit Ethernet
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Promising Solution Approaches

+ Synthetic workload & emulated Software execution modeling &
components emulation techniques & tools; distributed
continuous quality assurance

* Replaced incrementally with
actual applications & components

Process
View

» Automate QA processes

Build & Test Scoreboard

Model-Driven Development of Distributed Systems 20




Promising Solution Approaches

* Packages view — shows element
tree defined by project's build
class path

Type hierarchy view — shows the
sub- & super-type hierarchies

Outline view — shows the structure
of a compilation unit or class file

Browsing perspective — allows
navigating models using separate
views for projects, packages,
types & members

Wizards for creating elements —
e.g., project, package, class,

Development
interface P

View

Editors — syntax coloring, content
specific code assist, code resolve,
method level edit, import
assistance, quick fix & quick assist

Development environments that provide

multiple views & minimize dependencies

between large-scale software artifacts to
optimize development & test cycles

Model-Driven Development of Distributed Systems

Promising Solution Approaches

Automated tracing of
(in)consistency between
requirement specifications &
associated software artifacts

* One way to automate tracing
between higher-level specifications
& lower-level implementations is to
leverage model-driven development
techniques & tools

| Domain-Specific Modeling
Languages

Artifact )’

Generator,

Configuration
Specification

Analysis Tool

Model-Driven Development of Distributed Systems
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Technology Evolution (1/4)

Programming Languages Model-Driven Engineering (MDE)
& Platforms —_— = = S ————

Model § 1

- @ , o R |
() ——
< Generated
Q Code L= oo
o atform - ht J
o,
>
g + State chart
§ » Data & process flow
5 Large + Petri Nets
: .

Semantic

Gap

Operating C/Fortran
Systems Assembly

Hardware | Machine code |
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Technology Evolution (2/4)

Programming Languages

& Platforms
o
. clxmol 'n(_’u
| T | FeeT B
l e coranmx | 000 |
— DL
C<D | s | )
L |
3 o e |2
o FORTARLE CHUJECT ADAFTER
S,
>
(o
wn
=
)
Q
=
& |Components|
Frameworks

Class Libraries| |C++/Java]

Operating C/Fortran
Systems Assembly

Hardware | Machine code |

*Newer 3r-generation languages &
platforms have raised abstraction level
significantly

*“Horizontal” platform reuse
alleviates the need to redevelop
common services

Application Code

Framework
Pattern Language

Platform

*There are two problems, however:

Platform complexity evolved faster
than 3rd-generation languages

*Much application/platform code still
(unnecessarily) written manually

Model-Driven Development of Distributed Systems
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Technology Evolution (3/4)

Technology Evolution (3/4)

Programming Languages
& Platforms

=

®

<

@

o @

S,

>

(on

2] .

= Saturation!!!!

I3)

Q

=2

© Components t@
Frameworks

[Class Libraries| | C++/Java

L Operating C/Fortran
Systems Assembly

Hardware | Machine code |

Model-Driven Development (MDD)

e Domain-specific
= modeling languages
« ESML
* PICML
» Mathematica
« Excel

Manual * Metamodels

translation
Domain-independent
. modeling languages
" . State Charts
« Interaction Diagrams
* Activity Diagrams

Semi-automZted
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Programmin

& Platforms
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g Languages
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| | Manual

Model-Driven Development (MDD)

Domain-specific
= modeling languages
*« ESML
* PICML
» Mathematica
« Excel
» Metamodels
translation
Domain-independent
. modeling languages
" . State Charts
* Interaction Diagrams
* Activity Diagrams

Semi-automZted

*OMG is evaluating MDE via MIC PSIG
* mic.omg.org

Model Intagratad Computing PSIG
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Technology Evolution (3/4)

Programming Languages
& Platforms

Model §

@ [ Generated Code |
Framework
Pattern Language

Platform

uonoeNSqy JO [oAsT]

ﬁ@
Frameworks

[Class Libraries| |C++/Java |

L Operating C/Fortran
Systems Assembly
Hardware | Machine code |

Model-Driven Development (MDD)

Domain-specific
= modeling languages

«ESML
et * PICML
= « Mathematica
« Excel
Manual * Metamodels

translation
Domain-independent
..modeling languages
" . State Charts
* Interaction Diagrams
* Activity Diagrams

Semi-autom;ted

*OMG is evaluating MDE via MIC PSIG
* mic.omg.org

Technology Evolution (4/4)

Programming Languages
& Platforms

é /g Automation

Model-Driven Development (MDD)

S Domain-specific
= modeling languages
« ESML
* PICML
« Mathematica
« Excel

* Metamodels

Needs
Automation ,_.
4— N

Domain-independent
...modeling languages
" . State Charts
* Interaction Diagrams
o « Activity Diagrams

=
C<D —
[OR Code
9r. Platform
>
o
&
o
2
S Components
Frameworks
[Class Libraries| |C++/Java|*
L Operating C/Fortran
Systems Assembly
Hardware | Machine code |

Needs Automation

Research is needed to automate
DSMLs & model translators

Model-Driven Development of Distributed Systems

27

See February 2006 IEEE Computer special issue on MDE techniques & tools
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Overview of Important Terms

DSL defines what
models “mean”

knowledge

precise/
executable

Domain
Specific
Language

Represent the domain at the
level of designers intent,
rather than implementation
technology
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Overview of Important Terms

An ontology of a domain is often
the starting point for a metamodel.
An ontology is a specification of a
conceptualization.

bounded area of
knowlegelinterest
Ontology

knowledge

Domain
Specific
Language

Model-Driven Development of Distributed Systems 31

Overview of Important Terms

Transform higher-level domain-
oriented model into lower-level
execution-oriented “model” or a
model that selectively represents
some aspect of the original

target
software
architecture

knowledge

Domain
Specific
Language

Transform models
into code and other
artifacts necessary to
run the system on a
given platform

bounded area of
knowlegelinterest

Ontology

Model-Driven Development of Distributed Systems 32




Overview of Important Terms

all this is to be able to run

the software on different

platforms (original focus
of the MDA)

One motivation of doing

target
software
architecture

design
expertise

bounded area of
knowlegel/interest
Ontology

knowledge

multi-step

single-step

Domain
Specific
Language

Metamodel

graphical
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Overview of Important Terms

Realistic systems are always
defined with several models,
each describing a certain
viewpoint or aspect of the
overall system

bounded area of
knowlegel/interest
Ontology

Metametamodel

target
software
architecture

design
expertise

multi-step

single-step

precise/
executable

Domain
Specific
Language

Metamodel

graphical
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Cascading MDD Using Platform Stacking

* The generated code of the lower layer serves as the platform for the
next higher level

* A sequence of generation steps is used, whereas each of the
generates code on which the next step builds

Model for Level 2

Platform Level 2 e

Model for Level 1
Applications

Code Generator

Model for Level 0
Applications

I Code Generator
App Code Level 0

Il

Platform Level 0 (e.g. OS or J2EE)
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Cascading MDD Using M2M

* Here the higher level models are transformed into lower-level models
that serve as input for the lower level generators Model-to-Model

Transformations are used

* Typically, higher level
models are more
specific to a certain
(sub-)domain

Input Models

MDSD-
Infrastructure

Output Model ¥

Model for Subdomain 1

Model for Subdomain 2

M2M/Code
Generator for SD 1

M2M/Code

Generator for SD 2

Programming Model (based on Arch-MM)

Code Generator for
Architectural MDSD Infrastructure

Code for Target Platform
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DYI vs 3rd Party Cartridges

+ Do you build your own generator for your specific architecture?
—This is good, because it’s tailored to your architecture

* Or do you want to (re)use off-the-shelf cartridges for certain standard
technologies (such as J2EE, Hibernate, Spring)?

* You can do the best of both worlds:
- —Define applications using your own metamodels
Conceptional . . .
Architecture (architecture-centric, maybe funtional ones on top)
Model —Transform your models to input models for the off-the-
shelf cartridges on the lower levels

's N
Generator
A N\ ' N\
»  Model suitable »| Off-the-Shelf » Code generated Manually
Cartridge for C2 Cartridge C2 by C2 written code
Specific L Y,
for the

Conceptional ( R

architecture »  Model suitable »| Off-the-Shelf »| Code generated Project Specific

for C3 Cartridge C3 by C3 Code
J \. J c
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Overview of Patterns

*Present solutions *Help resolve *Flexibility
to common key software *Extensibility
software problems design s °Dependability
arising within a forces -Predictability
certain context *Scalability
*Efficiency

*Generally codify expert
knowledge of design strategies,
constraints & “best practices”

*Capture recurring structures &
dynamics among software
participants to facilitate reuse of
successful designs

REMOTING
PATTERNS

AbstractService

service

Client f §
Proxy Service

- 11 )
service service

PATTERN-ORIENTED
OFTWARE

ARCHITECTURE

Em .

PATTERN-RIENTED
SOFTWARE

ARCH
o=n

The Proxy Pattern

‘ MDD tools codify & automate many (but by no means all) aspects of patterns ‘




Overview of Pattern Languages

Motivation

*Individual patterns & pattern
catalogs are insufficient

e
REMOTE
OPERATION

ROXY

OBJECT
EVICTOR

NSION
FACE

ADAPTER

*Software modeling methods

SERIALIZER

=

& tools largely just illustrate
what/how — not why -

systems are designed

9 WRAPPER FACADES

i TMREAD- || ACCEPTOR- |
monmor |l seeciric flcomnecTon
OBJECT STORAGE s

—

B ot on ot w [

BROKER |

-
EXTE
FACTORY

OBSERVER
FCUMPONENY
CONFIGURATOR |
i

INTERCEPTOR |

ACTIVATOR i

STRATEGY

LEADER/
FOLLOWERS

WRAPPER FACADES

HALF-s¥NC/
HALF=ASYNC

Benefits of Pattern Languages

+ Define a vocabulary for talking about software development problems
* Provide a process for the orderly resolution of these problems, eg:

* What are key problems to be resolved & in what order

» What alternatives exist for resolving a given problem

* How should mutual dependencies between the problems be handled

* How to resolve each individual problem most effectively in its context
* Help to generate & reuse software architectures

Model-Driven D4 Pattern languages are crucial for DSLs & frameworks

Overview of Frameworks

Framework Characteristics

*Frameworks exhibit
“inversion of control” at
runtime via callbacks

*Frameworks provide
integrated domain-specific
structures & functionality

Application-specific
functionality

Networking

*Frameworks are
“semi-complete”
applications

Model-Driven Development of Distributed Systems 42

Benefits of Frameworks

* Design reuse

* e.g., by guiding application
developers through the steps
necessary to ensure successful
creation & deployment of
software

AdminClient PickingClient
Admin Admin Picking Picking
Controllers Views Controllers Views
—L— Thin UI Clients ——
Proxy Proxy
T
Broker
1. . Layer Repositor
Distribution
ommunicatior Component
Intrastructure
L1
[ Scheduler/ |
[ActivationList|

WarehouseRepHalfX

Service
Request

Service Service
Request Request

Concurrency
Infrastructure
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Benefits of Frameworks

package orgapachetomcatsession;

import orgapachetomcatcore* ;

import orgapachetomcatutilStringManager;
import javai
import javanet:

import javautilt;

import javaxserviet*;
import javaxservlethttp#;

* Core implementation of a server session

* Qauthor James Duncan Davidson [duncan@engsuncom]
3 fauthor James Todd [gonzogengsuncon]

public class ServerSession {

private StringManager sm =

* Implementation reuse
* e.g., by amortizing software
lifecycle costs & leveraging
previous development &
optimization efforts

public String getld() {
id;

public long getCreationTime() {
return creationTime;

public A tAppl (c

1
boolean create)
ApplicationSession appSession =

text context,

if (appSession == null && create) {

XXX
77 syne to

ion = new Appl . .
appSessionsput (context, appSession);

)

11 xxx
7/ make sure that we haven't gone over the end
77 inactive interval -

71 a new appsession

return appSession;

void removeApplicationSession (Context context) {
appSessionsremove (context) ;

(id, this, context);

end of our
- if so, invalidate & create

Model-Driven Development of Distributed Systems 44




Benefits of Frameworks

« Validation reuse

* e.g., by amortizing the efforts of
validating application- &
platform-independent portions
of software, thereby enhancing

Build Scoreboard

Doxygen

Hulkd Naime I-ihn-k-i nuww Comaplle  Tesin Sauims
Degen "

Lynx

Db Name Lot Pl Conig Setwp  Compile  Teats Siatun

software reliability & scalability
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Summary of Pattern, Framework, & MDD Synergies

’ These technologies codify expertise of domain experts & developers ‘

* Frameworks codify * Patterns codify expertise in * MDD tools codify
expertise in the form of the form of reusable expertise by automating
reusable algorithms, architecture design themes & key aspects of pattern
component & service styles, which can be reused languages & providing
implementations, & event when algorithms, developers with domain-
extensible architectures components implementations,  specific modeling

or frameworks cannot languages to access the

Application-specific
functionality

Cempone
enflgurator

’ There are now powerful feedback loops advancing these technologies

powerful (& complex)
capabilities of frameworks

§

ﬁ

enerale ode
Framework

Reactor Pattern Language

Platform
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Why You Need M2M

* As explained earlier, cascading MDD requires model-to-model
transformations

...... -5 Input Models

1}

1}

i MDSD-
= Infrastructure
)

)

)

)

)

)

)

Output Model

Model for Subdomain 1 Model for Subdomain 2
M2M/Code M2M/Code
Generator for SD 1 Generator for SD 2

Programming Model (based on Arch-MM)

Code Generator for
Architectural MDSD Infrastructure

Code for Target Platform
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Modular, Automated Transformations

» To more easily reuse parts of a transformation, it is a good idea to
modularize a transformation

* Note that in contrast to the OMG, we do not recommend looking at,
changing, or marking the intermediate models

» They are merely a
standardized format
for exchanging data

among transformations

* Example: Multi-Step
transformation from
a banking-specific
DSL to Java via J2EE

32"k1> [ 00 Metamodel ] ?zoElE
Banking-
Metamodell
Bankl> [ Process ] Proces>
Prozess Metamodel J2EE

J2EE Metamodel

Metamodel

Java

BEA/ WLS
Java Metamodel

IBM/
Java

WebSphere
Metamodel

Modular, Automated Transformations Il
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+ Example cont’d:

Now consider a Call-Center application; only the first step needs to be

adapted
gg/ > [00 Metamodel] >
CallCenter
Metamodel
cc/ Process
Prozes;[ Metamodel ] >

exchanged

« If both should be transformed to NET, only the backend needs to be

[00 Metamodel }

0o/
.NET

>

Process
Metamodel

.NET

Prozes>

.NET Metamodel

;;"#ET’ ) C# Metamodel
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Transforming “in the Tool”

Model
(UML)

model using for
example a UML

Developer builds

openArchitectureWare

v export : (may be repeated)
Model s sl I Model
(XMI) [—l "] (Object Graph)
" Model |
— Trans-
i former
y
Generated 1. Modified Model
Code [—1‘ P ] I (Object Graph)
i Code
§-Generator

Transforming

“in the Tool”
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Model
(UML)

export

A 4

Model
(XMI)

Generated
Code

4_[7

openArchitectureWare

(may be repeated)

Model
(Object Graph)

_]<

Code

The XMI produced by
the UML tool is parsed |q.
by the generator tool — her
& an AST is created

in memory
el
| (Object Graph)

[

lel

Generator
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Transforming “in the Tool” Transforming “in the Tool”

Model openArchitectureWare Model openArchitectureWare
(UML) (UML)
A Y Inside the generator, (may be repestec) A xeer Parser (mey e repoatd)
Model model-to-model Model Model [1 fommees | RN Model
(XMI) transformations are used to  [Pject Graph) (XMI) - ”|_(Object Graph)
build new or modified ASTs
. . " Model | | { Model |
The intermediate _A_STS Trans- In a final step, code H  Trans-
cannot be modified former is generated from i former
interactively by the 7 | ™emmesemomeee ‘ the AST ) | ===
developer \ 4
Generated P Modified Model Generated Modified Model
Code R I....... ‘ (Object Graph) Code . (Object Graph)
i Code i Code
i_Generator i Generator
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External Model Markings (AO—Modeling) Model-to—Model Transformations: QVT
* To allow the transformation of a source model into a target model (or to  Most of the transformations built thus far have been constructed with Java
generate code) it is sometimes necessary to provide “support” code

information that is specific to the target meta model —If the metaclasses have a well-designed API (repository API) then this

—Example: Entity Bean vs Type Manager “procedural transformations” does indeed work well
* Adding these to the source model “pollutes” the source model with * However, more dedicated model transformation languages are
concepts specific to the target model becoming available:
* MDA proposes to add “model markings,” but this currently supported —e.g., ATL, MOLA, Wombat (0AW), etc
only by a few tools * The QVT standard is
* Instead, we recommend keeping this information outside of the model becoming a reality Relations Black Box
(e g in an XML file) Language Mappings
R — It will be finalized by
—The transformation engine would use this auxiliary information when the end of 2006 defined Operation
. . In terms of Mappings
executing the transformations « QVT actually comprises Language
three languages: Core
’ This is an example of “aspect-oriented programming/modeling” Language
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Model-to—Model Transformations: QVT Relational

M2M-Transformations: QVT Operational

top relation EntityKeyToTableKey {

checkonly domain alma entity:Entity {
key = entityKeyField:Field {}

}i

enforce domain db table:Table {

key = tableKey:Key {} relation PhysicalQuantityTypeToColumn {
};
pgName, pqUnit, fieldName : String;
when { . . .
EntityToTable (entity, tabld checkonly idoma:.n alma field:Field {
} name = fieldName,
type = pq:PhysicalQuantityType {
where { name = pgName,
KeyRecordToKeyColumns (entit units = pqUnit

} }
}i
enforce domain db table:Table {
columns = column:Column {
name = prefix + fieldName + '_as_' +
paName + '_in ' + pqUnit,
type = AlmaPhysicalQuantityTypeToDbType (pq)

}
}i
primitive domain prefix:String;

}
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mapping DependentPart: :part2table(in prefix : String) : Table

inherits fieldColumns {

var dpTableName := prefix + recordName;
name := dpTableName;
columns := mainColumns +
object Column {
name := ‘key ' + dpTableName;
type := ‘INTEGER’ ;
inKey := true;
}
end { self.parts->map part2columns(result, dpTableName + ‘' ’); }

query PrimitiveType::convertPrimitiveType() : String =

if self.name = "int" then 'INTEGER'
else if self.name = "float" then 'FLOAT'
else if self.name = "long" then 'BIGINT'
else 'DOUBLE'

endif endif endif;
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Many Means of Transformations

» Today, many means of transformations are used:

* Plain old Java * ISIS GReAT
* Eclipse GMT ATL * Several partial QVT implementations
* IBM MTF * UMLX

* A paper by Czarnecki/Helsen gives a very good overview:
www.swen.uwaterloo.ca/~kczarnec/ECE750T7/czarnecki_helsen.pdf

Maodel Transformation

T —~—

*, I
™,
Transformation Rules / \\,\ ~ Dlrectlunallty|
| Rule Application Scoping ]

|Snurna-Tamn1 Relationshi | IRule Scheduling |

Rule Application Strateqy |
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An Architectural Process — A Case Study
Examples of Applying MDD Tools: openArchitectureWare
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Architectural Case Study

* PHASE 1: Elaborate!
— Technology-Independent Architecture
— Programming Model
— Technology Mapping
— Mock Platform
— Vertical Prototype
* PHASE 2: Iterate!
* PHASE 3: Automate!
— Architecture Metamodel
— Glue Code Generation
— DSL-based Programming Model
— Model-based Architecture Validation

Model-Driven Development of Distributed Systems 61

Architectural Case Study

 PHASE 1: Elaborate!
— Technology-Independent Architecture
— Programming Model
— Technology Mapping
— Mock Platform
— Vertical Prototype
* PHASE 2: Iterate!
* PHASE 3: Automate!
— Architecture Metamodel
— Glue Code Generation
— DSL-based Programming Model
— Model-based Architecture Validation

Model-Driven Development of Distributed Systems 62

Phase 1: Elaborate!

—

Y TR P P S

* This first elaboration phase S e T e e

should be handled by a small
team, before the architecture is
rolled out to the whole team

* We want to build an enterprise
system that contains various
subsystems such as customer
management, billing & catalogs

* In addition to managing the data
using a database, forms & the
like, we also have to manage the
associated long-running
business processes

* We will look at how we can
attack this problem below
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Architectural Case Study

* PHASE 1: Elaborate!
— Technology-Independent Architecture
— Programming Model
— Technology Mapping
— Mock Platform
— Vertical Prototype
* PHASE 2: Iterate!
* PHASE 3: Automate!
— Architecture Metamodel
— Glue Code Generation
— DSL-based Programming Model
— Model-based Architecture Validation
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Technology—Independent Architecture

Technology—Independent Architecture

» We decide that our system will be built from components
— Each component can provide a number of interfaces

— It can also use a number of interfaces (provided by other
components)

— Communication is synchronous, Communication is also restricted to
be local

— We design components to be stateless

* In addition to components, we also explicitly support business
processes

— These are modeled as a state machine

— Components can trigger the state machine by supplying events to
them

— Other components can be triggered by the state machine, resulting in
the invocation of certain operations

— Communication to/from processes is asynchronous, remote
communication is supported
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* We decide that our system will be built from components
— Each component can provide a number of interfaces

— It can also use a number of interfaces (provided by other
components)

— Communication is synchronous, Communication is also restricted to
be local

| e Use well-known architectural styles & patterns here

|

:r e Typically these are best practices for architecting certain
kinds of systems independent of a particular technology

| » They provide a reasonable starting point for defining
(aspects of) your systems's architecture

— Other components can be triggered by the state machine, resulting in
the invocation of certain operations

— Communication to/from processes is asynchronous, remote
communication is supported
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Architectural Case Study

* PHASE 1: Elaborate!
— Technology-Independent Architecture
— Programming Model
— Technology Mapping
— Mock Platform
— Vertical Prototype
* PHASE 2: Iterate!
* PHASE 3: Automate!
— Architecture Metamodel
— Glue Code Generation
— DSL-based Programming Model
— Model-based Architecture Validation
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Programming Model

* The programming model uses a simple Dependency Injection
approach a la Spring to define component dependencies on an
interface level

— Spring is a modular framework for Java enterprise applications
(see www.springframework.org)

* An external XML file is responsible for configuring the instances

<beans>
<bean id="proc" class="somePackage.SomeProcess">
<property name="resource"><ref bean="hello"/></property>
</bean>
<bean id="hello" class="somePackage.ExampleComponent">
<property name="console"><ref bean="cons"/></property>
</bean>
<bean id="cons" class="someFramework.StdOutConsole">
</beans>
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Programming Model

* The following piece of code shows the implementation of a simple
example component (note the use of Java 5 annotations)

public @component class ExampleComponent
implements HelloWorld { // provides HelloWorld

private IConsole console;

public Q@resource void setConsole( IConsole c ) {
this.console = c; // setter for console
} // component

public void sayHello( String s ) {
console.write( s );

}
}

* Processes engines are components like any other
* For triggers, they provide an interface w/ void operations

* They also define interfaces with the actions that those components can
implement that want to be notified of state changes
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Programming Model

* Process Component Implementation Example

public @process class SomeProcess
implements ISomeProcessTrigger {

private IHelloWorld resource;

public Q@resource void setResource( IHelloWorld w ) {
this.resource = w;

}

public @trigger void T1l( int procID ) {
SomeProcessInstance i = loadProcess( procID );
if ( guardGl() ) {
// advance to another state..
}
}

public @trigger void T2( int procID ) {
SomeProcessInstance i = loadProcess( procID );
// ..

resource.sayHello( "hello" );
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Architectural Case Study

* PHASE 1: Elaborate!
— Technology-Independent Architecture
— Programming Model
— Technology Mapping
— Mock Platform
— Vertical Prototype
* PHASE 2: Iterate!
* PHASE 3: Automate!
— Architecture Metamodel
— Glue Code Generation
— DSL-based Programming Model
— Model-based Architecture Validation
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Technology Mapping

* For the remote communication between business processes we will use
web services
— From the interfaces such as IHelloWorld, we generate a WSDL
file, & the necessary endpoint implementation We use on of the
many available web service frameworks
» Spring will be used as long as no advanced load balancing &
transaction policies are required

<beans>
<bean id="proc" class="somePackage.SomeProcess'>
<property name="resource"><ref bean="hello"/></property>
</bean>
<bean id="hello" class="somePackage.ExampleComponent'>
<property name="console"><ref bean="cons"/></property>
</bean>
<bean id="cons" class="someFramework.StdOutConsole">
</beans>

* Once this becomes necessary, we will use Stateless Session EJBs
The necessary code to wrap our components inside beans is easy to
write
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Technology Mapping

Architectural Case Study

* Persistence for the process
instances — like any other
persistent data — is managed using
Hibernate

ing Framework

Process
Component C

=

Web Services,
a WSDL file is
generated

—To make this possible, we

create a data class for each

process Spring Framework

Component A

—Since this is a normal value
object, using Hibernate to make ==

it persistent is straight forward
Hibernate [
used for database
access -
Decide about standards

usage here, not earlier Use technology-specific
design patterns here

But keep in mind: First solve
the problem, then look for a Use them as the basis for the
standard - Not vice versa TECHNOLOGY MAPPING

* PHASE 1: Elaborate!
— Technology-Independent Architecture
— Programming Model
— Technology Mapping
— Mock Platform
— Vertical Prototype
* PHASE 2: Iterate!
* PHASE 3: Automate!
— Architecture Metamodel
— Glue Code Generation
— DSL-based Programming Model
— Model-based Architecture Validation
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Mock Platform

« Since we are already using a PROGRAMMING MODEL that resembles
Spring, we use the Spring container to run the application components
locally

« Stubbing out parts is easy based on Springs XML configuration file

+ Since persistence is something that Hibernate takes care of for us, the
MOCK PLATFORM simply ignores the persistence aspect

Deployment
Environment
Application
“business logic”
code F = |

| :
Test Environment
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Architectural Case Study

* PHASE 1: Elaborate!
— Technology-Independent Architecture
— Programming Model
— Technology Mapping
— Mock Platform
— Vertical Prototype
* PHASE 2: Iterate!
* PHASE 3: Automate!
— Architecture Metamodel
— Glue Code Generation
— DSL-based Programming Model
— Model-based Architecture Validation
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Vertical Prototype

* The vertical prototype includes parts of the customer & billing systems

—For creating an invoice, the billing system uses normal interfaces to
query the customer subsystem for customer details

—The invoicing process is based on a long-running process
* A scalability test was executed & resulted in two problems:

—For short running processes, the repeated loading & saving of
persistent process state had become a problem

* A caching layer was added

—Second, web-service based communication with process
components was a problem

« Communication was changed to CORBA for remote cases that
were inside the company
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Vertical Prototype

 The vertical prototype includes parts of the customer & billing systems

—For creating an invoice, the billing system uses normal interfaces to
query the customer subsystem for customer details

—The invoicing process is based on a long-running process

* A scalability test was executed & resulted in two problems:

e Work on performance improvements here, not earlier

oIt is bad practice to optimize design for performance
from the beginning, since this often destroys good
architectural practice

e In certain domains, there are patterns to realize certain
QoS properties (such as stateless design for large-scale
business systems)

e Don't ignore these intentionally at the beginning!
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Architectural Case Study

* PHASE 1: Elaborate!
— Technology-Independent Architecture
— Programming Model
— Technology Mapping
— Mock Platform
— Vertical Prototype
* PHASE 2: Iterate!
* PHASE 3: Automate!
— Architecture Metamodel
— Glue Code Generation
— DSL-based Programming Model
— Model-based Architecture Validation
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Phase 2: lterate!

 Spring was intended for the production environment
* New requirements (versioning!) have made this infeasible
—Spring does not support two important features
1. Dynamic installation/de-installation of components &
2. isolations of components from each other(classloaders)
* Eclipse has been chosen as the new execution framework
—The PROGRAMMING MODEL did not change
—The TECHNOLOGY MAPPING, however, had to be adapted
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Architectural Case Study

* PHASE 1: Elaborate!
— Technology-Independent Architecture
— Programming Model
— Technology Mapping
— Mock Platform
— Vertical Prototype
* PHASE 2: Iterate!
* PHASE 3: Automate!
— Architecture Metamodel
— Glue Code Generation
— DSL-based Programming Model
— Model-based Architecture Validation
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Architecture Metamodel

if a component B is a new version
| of a component A, then B has to
have the same interfaces,
additional provided interfaces,
fewer required interfaces or new
version of interfaces of A

a new version of an interface has to
1-=1 have the same return type and the
same parameters - or parameters
with subtypes.

~= newVersionOf %, == newVersionOf
\
¥ 0.n ¥ 0.n

Operation

Component Interface

requiredinterface,_|
0.n

Parameter

returnType

Components can
provide & require
interfaces

type

State
| Machine I. > State
1.n

to

from
0.n 0.n
| Transition Trigger |
1 Operation }
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Architecture Metamodel

if a component B is a new version
_J of a component A, then B has to
have the same interfaces,
additional provided interfaces,
fewer required interfaces or new
version of interfaces of A

a new version of an interface has to
have the same return type and the
same parameters - or parameters
with subtypes.

v

P

i

i

P

P

i

1

i

E

| <& newVersionOf \, == newVersionOf

P

! {1 0.n N\ £1 0.n

H —~ >

--4 0.n Operation
Component Interface

requiredinterfact

o.n T

Interfaces have
operations — they're
defined as usual

Parameter

returnType

type

State
Machine

to
0.n 0..n

» Trigger |
! Transition I::I Operation |
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Architecture Metamodel

if a component B is a new version
_J of acomponent A, then B has to
have the same interfaces,
additional provided interfaces,
fewer required interfaces or new
version of interfaces of A

anew version of an interface has to
have the same return type and the
same parameters - or parameters
with subtypes.

<= newVersionOf = newVersionOf

;1 0.n ;1 0.n

ER i

-+ 0.
Component Interface
requiredinterface,|

- 0.n' T

Operation

Parameter
Container

returnType

P C istic
n

type

Process Components
are special kinds of
components

rimitiveType
ComplexType
State
| Machine . ) State
1.n
0.n 0..n

» Trigger |
! Transition I::I Operation |

from
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Architecture Metamodel

if a component B is a new version
| of a component A, then B has to
have the same interfaces,
additional provided interfaces,
fewer required interfaces or new
version of interfaces of A

a new version of an interface has to
1-=1 have the same return type and the
same parameters - or parameters
with subtypes.

~« newVersionOf %, == newVersionOf
\
¥ 0.n N 0.n
P

Operation

Component Interface

requiredinterface |

o 0.n 0-n

Container

Parameter

returnType

Characteristic

A process

Process component’s process
is described using a
state machine

State
| Machine I. > State
1.n

to

PrimitiveType

ComplexType
0.n 0.n
| Transition Trigger |
1 Operation }

from
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Architecture Metamodel

if a component B is a new version
| of a component A, then B has to
have the same interfaces,
additional provided interfaces,
fewer required interfaces or new
version of interfaces of A

a new version of an interface has to
have the same return type and the
same parameters - or parameters
with subtypes.

~= newVersionOf %, == newVersionOf
\
¥ 0.n ¥ 0.n
P S
== 0.n Operation

Component

requiredinterface,_|

on 0.n

Container

Interface

Parameter

Characteristic

PrimitiveType

returnType

State
Machine
1.n

State

n
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0.n

& the triggers
are special kinds
of operations

0..
1

Transition Trigg?r
Operation
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Architecture Metamodel

if a component B is a new version
of a component A, then B has to
have the same interfaces,
additional provided interfaces,
fewer required interfaces or new
version of interfaces of A

a new version of an interface has to
1-=1 have the same return type and the
same parameters - or parameters
with subtypes.

<= newVersionOf %, == newVersionOf
\
¥ 0.n ' 2 0.n
p
== 0.n
Component Interface

requiredinterface |

on 0.n

Container

returnType

A container runs
a number of
components

from _l
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0...
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! Transition I::I Operation |

Operation
Parameter
type
pe
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Process

State
| Machine . ) State
1.n

to
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Architecture Metamodel

if a component B is a new version
of a component A, then B has to
have the same interfaces,
additional provided interfaces,
fewer required interfaces or new
version of interfaces of A

s

anew version of an interface has to
1-=1 have the same return type and the

with subtypes.

ame parameters - or parameters

Constraints are
used to define
the semantics of
versioning

Component
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Architectural Case Study

* PHASE 1: Elaborate!
— Technology-Independent Architecture
— Programming Model
— Technology Mapping
— Mock Platform
— Vertical Prototype
* PHASE 2: Iterate!
* PHASE 3: Automate!
— Architecture Metamodel
— Glue Code Generation
— DSL-based Programming Model
— Model-based Architecture Validation
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Glue Code Generation

« Our scenario has several useful locations for glue code generation
—We generate the Hibernate mapping files

—We generate the web service & CORBA adapters based on the
interfaces & data types that are used for communication The generator
uses reflection to obtain the necessary type information

—Finally, we generate the process interfaces from the state machine
implementations

—h Hibermate

l—/‘ Mapping Files

CORBA and TN WSDL Files,

Web Service v IDL Files
Adapters

Java Cade + Annotations i > Process
: Interfaces

* In the programming model, we use Java 5 annotations to mark up
those aspects that cannot be derived by using reflection alone

+ Annotations can help a code generator to “know what to generate”
without making the programming model overly ugly
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Architectural Case Study

* PHASE 1: Elaborate!
— Technology-Independent Architecture
— Programming Model
— Technology Mapping
— Mock Platform
— Vertical Prototype
* PHASE 2: Iterate!
* PHASE 3: Automate!
— Architecture Metamodel
— Glue Code Generation
— DSL-based Programming Model
— Model-based Architecture Validation
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DSlL—-based Programming Model

* We use DSLs for components, interfaces & dependencies
Describing this aspect in a model has two benefits:

— First, the GLUE CODE GENERATION can use a more
semantically rich model as its input &

— The model allows for very powerful MODEL-BASED
ARCHITECTURE VALIDATION (see below)
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DSL-based

Programming Model

IHelloWorld
IConole <<component>> _O
- HelloWorld
{persistent}
<<component>>
StdOutConsole

* From these diagrams:

—We can generate a skeleton component class
—All the necessary interfaces

* Developers simply inherit from the generated skeleton & implement

the operations defined by the provided interfaces

<<interface>>

w—# <<gen-code>>
Somelnterface

<<generate>> <<gen-code>>
<<componen>> [ g |
SomeComponent

Some-
Interface.java

Some

<<man-code>>
Component ST
a nent.java
Base.java
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DSL—-based Programming Model

Type Model

<<entity>>
person Person

AddressManager

name: String
firstName: String

q..__.__.

$ 0..n
address| <<interface>> <<valuetype>>
Store AddressStore Address
CustomerManager addOrUpdateContact( p: Person) : void street: String
addAddress( p: Person, a: Address) : void zip: String
getAddresses( p: Person ) : Address[] City: String
Composition Model System Model

<configurations>
<configuration nam

<system Type model defines
ddressStuff"> <systel .
<deployment name="am" type="AddressManager"> <node components (Wh|Ch are
<wire name="personDAO" target="personDAQ"/> <node . . .
</deployment> <sysem  iNstantiatable types), interfaces
<deployment name="personDAQ" type="PersonDAQ"/> <systel
</configuration>

<node
ustomerStuff">

& data types, as well as the

<systel H
m" type="CustomerManager"> </system depdendenCIes among them
<wire name=" e" target=": iff:am"/>
</deployment>
</configuration>

<configuration name="test" includes="addressStuff, customerStuff'/>
</configurations>
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DSL—based Programming Model

addAddress( p: Person, a: Aq
getAddresses( p: Person ) : A

Type Model
<<entity>>
P
AddressManager person erson
name: String
i firstName: String
i
i ¢
address «<interfacesl  COmMposition Model defines
S AddressStor named configurations of
CustomerManager addOrUpdateContact( p: Per:

component instances & the
wiring among them

<configurations>

</deployment>

</configuration>

</deployment>
</configuration>

</configurations>

<configuration name="addressStuff">
<deployment name="am" type="AddressManager">
<wire name="personDAQ" target="personDAQ"/>
<deployment name="personDAQ" type="PersonDAO"/>

<configuration name="customerStuff">

<deployment name="cm" type="CustomerManager">
<wire name="addressStore" target=":addressStuff:am"/>

<configuration name="test" includes="addressStuff, customerStuff"/>

ﬂel

<systems>
<system name="production">

<node name="server" type="spring" configuration="

<node name="client" type="eclipse" configuratiol
<system>

<system name="test">

ddressStuff'/>
"customerStuff'/>

<node name="test" type="spring" configuration="test"/>
<system>

</systems>
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DSlL—-based Programming Model

Type Model
<<entity>>
P
AddressManager person erson
name: String
i firstName: String
System model deploys
address «interff  CONfigurations onto systems
s Adiress & nodes Nodes define the
ddOrUpdateContactf i
Customertlanager | |eoipiseconeets  Kind of system they
getAddresses( p: Persol represent
Composition Model System Model V
<configurations> <systems>
<configuration name="addressStuff">

<deployment name="am" type="AddressManager"> <node name="server" type="spring" configuration="addressStuff"/>
<wire name="personDAQ" target="personDAQ"/> <node name="client" type="eclipse" configuration="customerStuff'/>

</deployment> <system>

<deployment name="personDAQ" type="PersonDAO"/> <system name="test">

</configuration>

<configuration name="customerStuff">

<system name="production">

<node name="test" type="spring" configuration="test"/>
<system>
<deployment name="cm" type="CustomerManager"> </systems>
<wire name="addressStore" target=":addressStuff:am"/>
</deployment>
</configuration>

<configuration name="test" includes="addressStuff, customerStuff"/>
</configurations>
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DSL—-based Programming Model

* Using Cascaded MDD, we generate
—DAO Components for Entities from the Entities in the model
—An interface for the DAO component,
—As well as the implementation code for the DAO & the Entity itself

. > . <<generate>> <<gen-code>>
<<entity>> <<transform>> <<interface>> /_\—V SomeEntity-
SomeEntity SomeEntityDAO DAO.java

<<transform>>
>

<<generate>> <<gen-code>>
<<component>> /\—V .
SomeEntity-

SomeEntityDAO DAOBase

Java

<<generate>>

i

<<gen-code>>
SomeEntity-
DAO.java

<<generate>>

<<gen-code>>
SomeEntity.java
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DSL—-based Programming Model

* We also use cascading for the Process Components

First, developers
model the process
component itself

sm AProcess )
P 1 N
AProcess s1 2 <<entity>>
| S| AProcessData
A v attributes...
A v
* £
% - S3 O
s <<generate>>
<<trigger-interfa g 9
AProcessinte: v
<<gen-code>>
operations/ <<generate>> <<generate>> AProcess-
Data.java

<<gen-code>>
AProcessBase
.Jjava

<<gen-code>>

K AProcessProcBase.java

guard operations... (abstract)
action methods... (abstract)

i

<<man-code>>
AProcess.java

1
data
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DSL—based Programming Model

» We also use cascading for the Process Components

sm AProcess )
v 1 A
AProcess s1 g <<entity>>
- S| AProcessData
A v attributes...
A v
* £
5]
2 O <<generate>>
<<trigger-interface>> g
AProcessinterface v
<<gen-code>>
operations... <<generate>> <<generate>> AProcess-
Data.java

<<gen-code>>
<<gen-code>>

—/I\ 1
ProcessBase (1 | .
AProcessProcBase.java data

They also model a Jjava
trigger interface for
that component with

no operations T

guard operations... (abstract)
action methods... (abstract)

<<man-code>>
AProcess.java
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DSlL—-based Programming Model

» We also use cascading for the Process Components

sm AProcess )

p
AProcess

*

<<trigger-interface>>
AProcessinterface

operations...

s1

<<transform>>

®

>

<<entity>>
AProcessData

<<transform>>

attributes...

2<<genera(e>>

<<generate>>

<<gen-code>>
AProcessBase
.java

>>

Developers then model the state
machine for that process
component & associate it with
the process component

<<gen-code>>
AProcess-

i

<<man-code>>
AProcess.java
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DSL—-based Programming Model

* We also use cascading for the Process Components

sm AProcess )

p
AProcess

<<trigger-interface>>
AProcessinterface

operations...

s1

|

<transform>>

<<transform>>

()
O

—»| AProcessData

DSL—-based Programming Model

<<entity>>

attributes...

: <<generate>>

\<generate>>

2<<generate>>

<<gen-code>>
AProcess-
Data.java

<<gen-code>>

<<gen-code>>
cessBase (q | q
. AProcessProcBase.java
Using M2M, the B2

operations are derived

1
data

from the triggers used
in the state machine

guard operations... (abstract)
action methods... (abstract)

i

<<man-code>>
AProcess.java
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sm AProcess )

AProcess s1

<<transform>>

()
O

A
N
* E
O 4
8 s3
<<trigger-interface>> g
v
AProcessinterface v
operations... <<generate>>

<<gen-code>>
AProcessBase
.Jjava

<<gen-g

mach

guard operatiol

i

* We also use cascading for the Process Components

<<entity>>

—»| AProcessData

attributes...

<<generate>>

Using M2M, the Entity

- that stores process
instances persistently is
[ AProcessPr¢  derived from the state

ine; then the Entity
actionmethod  transformations kick in —

see before

<<man-code>>
AProcess.java
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DSL—based Programming Model

» We also use cascading for the Process Components

sm AProcess )

p
AProcess

<<trigger-interface>>
AProcessinterface

operations...

As usual, from

components we generate
skeleton base classes

- A
1 ’é <<entity>>
I S—>| AProcessData
X L attributes...
x v
g B
S
S 4
§ O <<generate>>
v
<<gen-code>>
<<generate>> <<generate>> ADPI;OC.ess-
ata.java
<<gen-code>> <<gen-code>> X
AProcessBase ; j
e K AProcessProcBase.java data

guard operations... (abstract)
action methods... (abstract)

i

<<man-code>>
AProcess.java

DSlL—-based Programming Model
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» We also use cascading for the Process Components

| sm AProcess )

Instead of letting developers
implement the business logic
manually, we generate an
“Intermediate” class that
contains the executable, &

<<transform>>

—»| AProcessData

<<entity>>

attributes...

2<<genera(e>>

persistence-aware state machine

l/‘ <<generate>>

<<gen-code>>
AProcess-
Data.java

<<gen-code>>

.java

AProcessBase [q |

<
<<gen-code>>
AProcessProcBase.java

1
data

guard operations... (abstract)
action methods... (abstract)

i

<<man-code>>
AProcess.java
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DSL—-based Programming Model

* We also use cascading for the Process Components

sm AProcess )

p
AProcess

<<entity>>

—»| AProcessData

<<transform>>

Finally, developers extend s

that intermediate class & X«Qenem»

implement guard & action

operations manually by 2 SIS
<<generate>>

. AProcess-
overriding abstract methods Data.java

i\ 1
<<gen-code>>

Al .

\ < AProcessProcBase.java data

guard operations... (abstract)
action methods... (abstract)

i

<<man-code>>
AProcess.java
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Architectural Case Study

* PHASE 1: Elaborate!
— Technology-Independent Architecture
— Programming Model
— Technology Mapping
— Mock Platform
— Vertical Prototype
* PHASE 2: Iterate!
* PHASE 3: Automate!
— Architecture Metamodel
— Glue Code Generation
— DSL-based Programming Model
— Model-based Architecture Validation
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Model-Based Architecture Validation

* We can use automated model checking to verify that
— For triggers in processes there is a component that calls the trigger

— Dependency management: It is easy to detect circular
dependencies among components

— Components are assigned to layers (app, service, base) &
dependencies are only allowed in certain directions

* The component signature generated from the model prevents
developers from creating dependencies to components that are not
described in the model
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Model-Based Architecture Validation

* Another really important aspect in our example system is evolution of
interfaces:

<<component>> | > <<interface>> ~ [TTTTTTTTTTTT H
SomeCompV1 Somelnterface +
A A soSomething(int, ValueObject) <<vo>>
[:\ * ValueObject
<<newVersionOf>> i —<interface>> A
! Anotherinterface
1
e
1
<<component>>  [777777"" ! |
1 .
SomeCompVv2 | _____________ a <<newVersionOf>> <<newVersionOf>>
<<newVersionOf>>
<<interface>>
<<component>> D I3 rfaceV3 N <<yo>>
SomeCompV3 e ValueObjectV3
soSomething(int, ValueObjectV2)

anAdditionalOperation()
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Model-Driven Development

of Distributed Systems CON TE N TS
-]

Introduction & Motivation

Definition of Terms

Architecture-Centric MDD & Cascading

Role of Frameworks & Patterns in the Context of MDD
Model-to-Model Transformations

An Architectural Process — A Case Study

Examples of Applying MDD Tools:
openArchitectureWare

A Metamodel for Component-based Development

System Execution Modeling Tools: GME, CoSMIC, & CUTS
Product-line Architecture Case Study

Summary

D-O-C

vd@

Status / Track Record

* Open Source

* Version 4.1 is current

* Proven track record in various domains & project

contexts

—e.g., telcos, internet, enterprise, embedded realtime,

finance, ...

open
« www.openarchitectureware.org Algchitecture

(such as EMF)

IDE-portions based on Eclipse

openArchitectureWare.org

dare

(Optional) Integration with Eclipse Modelling facilities
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Overview

Textual
Syntax Spec
Ecore
xText
Model Verification usin:
AR 9
Custor instanceof | 1} instanceof o o Constraints
phic | P Y 3 v o Integrating Generating Code
L ¥ with Manually Writlen Code
Custom
i " Code G i
i Metamodel 11 Metamodel | Textual Editor €@  Code Generation
2 3 3 @  Wodel Madification/Completion
builds 3 o instanceof instanceof '.-"' builds
) 4 ° Model-to-Model Transformation
S — > Model Il Model | Xpand @  Loading/Storing Madels
builds Y 'y Xtend Model Editing based on Custom-
- Y o o - o o built Textual Editors

Classic o T

o Xtend Xtend 1 @  Model Editing using UML Tools

Generated Code diting C
ML Tool 4
u 00 (any textual artefact) o
Serialized
Model (.xmi)

Recipe F/'W °

Manually Written
Code
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Defining the Metamodel

=] Glatformfresou cefoand,deme, gl tatemadine2 modelstatemachine?;ecore!
E-8 stabemachine?
- named
; = name : EString
8 StateMachine - CompositeState
- CompositeStats - Stats °
-5 states : Abstractstate
53 transitions : Transition
= E BbstractState
&3 inTransitions : Transition
-+ 52 qutTransitions : Transition
£ actions : Action
H state -» AbstractState, Mamed
[ StartState -» AbstractStats
~H Stopstate -» AbstractState, Mamed
= E Transtion -3 Named
L from : Abstractstate
- to: AbstractState
2 event : EString

"o guard : Estring

(=[] Action > Mamed
- kind : Ackionind

B Actionkind

b= ENTRY =1

| Prablems | 1nads: | Declration | comale TR

Defat value
[P -
Instance Class Mame.
Interlace

Mame

The metamodel is

defined using
EMF.

EMF provides
tree-based
editors to define
the metamodel.

E Abotractals, Nacod

k| b
1% Srabe

L= =2 | Prﬁli Yk

Metamodel | £
w
Graphical B
Editor z
Constraints E g
o
o
Code = T
Generator g g
®
Racipas 5 §
-
4
Modal zE
i ¥
Transformation | '3 I~
Textual zE
. &
Editor ig
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Building the Graphical Editor

Building the Graphical Editor Il

» The editor is based on the metamodel defined before.
* A number of additional models has to be defined:

— A model defining the graphical notation

— A model for the editor’s pallette & other tooling

— A mapping model that binds these two models to the
domain metamodel

+ A generator generates the concrete editor based on
these models.

» The editor is build with the Eclipse GMF, the Graphical
Modelling Framework.

Metamodel ;
w
Graphical 'i
Editor [
Constraints % g
o
Code = g
Generator ‘3 &
g
Recipes. 5 ]
o8
o
Maodal 4
Transformation ‘E, E

...diagram

‘Enis 77777777 ‘FEMF 7777777777777777777 :
I | |

|
: Metamedel } |

ecore

| | |
| [ |
| | |
: ‘ Graphical Notation :
‘ } gmfgraph |
| | |
I ) |
| , | ., - |
| i EMF Genmodel | Mapping Model Tool Definition I
} genmodel } gmfmap gmftool :
I LI ~_ | |
I | |
I |
I |
| |
| |
| ..edit .. .editor i GMF Gen Model |
I i |
I |
I |
I |
I |
| |
| |

|

|

|

|

|

[} gmfgen
R S
|

|

|

[

|

Metamodel ;
w
Graphical 'i
Editor [
Constraints % g
o
Code = g
Generator ‘3 &
g
Recipes. 5 ]
o8
o
Maodal 4
Transformation ‘E, E

e |32 - poTm , e |32
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Building the Graphical Editor Ill Constraints
« Here is the editor. started in the runtime workbench. with Metamode! | £ Constraints are rules that models must conform to in order Metamodel | £
our CD Player example. to be valid. Thgse are in addition to the structures that the
e T metamodel defines.
e . 3 p w X . . . Graphical &
. L; | T Editor a A constraint is a boolean expression (a.k.a predicate) that Editor &
Ctm [ must be true for a model to conform to a metamodel.
e e
= @& b onsiints | 5§ Constraint Evaluation should be available constrants |3 3
s ENTRY sty , Trarutes, o 5
Overview — in batch mode (when processing the model)
Pane
- code [EE — as well as interactively, during the modelling phase in the code [EE
Palette Generator | $& editor Gonorator | S &
= - ... & we don’t want to implement constraints twice to have -
These rectangles Reclpes §§ them available in both places! Recipes §§
are to demo © ©
A decorations © Model .
= Element - Functional languages are often used here. -
e gropertics i Trahodal 13§ Tranfomation | £ &
s — UML’s OCL (Object Constraint Language) is a good s
example,
Tl 152 — We use oAW’s check language, which is alike OCL Tl 152
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Constraints |l Constraints Il
* Here are some examt ritten in oAW’s Checks Motamodel | £ « In this model there Metamodel | £
language. i are two errors - o
[F] exampleFromatF. oaw creraterron@pplicable .
hmport statemachinez; Graphical | & — There are two . $ Graphical | &
context StateMachine ERROR "States must have unigue Names™ : Editor © StateS Wlth the Editor ©
states.typelelect (3tate) . foriall (51| !states.typelelectiState) .
exists(s2| [s1 != s2) &€ (sl.name == s52.nsme] ));: same name (Off) wp_;ﬂ:'um .
context MNamed if !Transition.isInstance (this) ERROR this.metaType.name+” must be nswed™: & — ;E ENTR & — ;E
this.nawe '= null; onstrain 1;' onstrain 1;'
context StartState ERROR "no incoming transitions allowved™: ° - The Start State has °
this.inTransitions.size == 0; Erroi;r::\:ssesage more than one out-
Cunte? ?rtSaE f:ﬁgRszz:aiz j:ate st nrit transition\: ExPrfeasI:ieon is Gode g g Transition - Gode g g
WARNING « The validation is et
+ Note the code completion & error highlighting © s executed automatically e | 2R
ecipes TG ecipes TG
a 1‘5 r‘“'l;i]s-?sir.inn.ialnstsnce(t.hisj ERROR this.wetaType.n hme+n ‘g ] C||Ck|ng the error 4| =
context StartState ERROR "no incoming transitions allowed”: message selects % ot £ dovebe | Dovtratn | rovertes
is.inTransitions.size == 0; @ E . 2 ervors, 1) maering, 0 wdos (Fiter matitod 2 of 16 o) o g
o cTa[tmn; L;t-ﬂhstractStata ’ B T'anng::"Ia"m Ea E the respeCtlve [} xol:la!e--\n\hmux oul Irarodion l'::l':‘:e lﬂ.dﬂm.:—\f.enmn.. ":‘l:::. I T M‘“ : i Ea E
context 5 _ el & out transition®: ““ ” O Statem cunt hawe urec Narred cplayerst... cavt demo.gef statemachi... CoPlayer
this. o ot o o broken andel _
fancene AR — 7“*}“' 3 element in the dia- Tom |53
this. o epoorContainer EObjert - EObject Editar - gram. Editar R~
© outTransitions List - AbstractState |
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Code Generation Code Generation I
» Code Generation is used to generate executable Metamodel | & “Det cimvict B e Ton Ty * The blue text is Metamodel | &
code from models. v uic ron generated into the
L. ) N : target file. ) N
* Code Generation is based on the metamodel & uses Crapmical | & s (e i 9 Crapmical | &
templates to attach to-be-generated source code. of the state * The capitalized
) words are xPand
* In openArchitectureWare, ~ constraints | 53 constraints | 53
we use a template | CompositaStats onstraint 3 5 keywords anstrain z i
B
language called xPand. ) Lterates m cans another > Black text are
B | Code zE over all template metamodel Code zE
. i s S Genera i the stat T Genera i
It provides a number of e o |34 eStates | oown susieriieoniTaseision properties o |34
advanced features such as N B ASasa Kkmalaiin e Sous. Sonsa
polymorphism, AO support ‘kugmm“m Recipes 53 — Extamsion Con « DEFINE...END- reces 53
and a powerful integrated — t s £ g DEFINE blocks 4
. 1 |
expression language. AER Cike methods in 00, are called
a E FMDDEY TRE templates are o ]
. Temp|ates can access ﬁan:‘::’mlallnn Ea 2 E ass(ocratte)dlwith a templates' ﬁan:'::’mlallnn Ea 2
B”[I.:[::hlI'..II'.\!n'.Tn:al'.lb.‘. FOR Stace®d meta)class . .
metamodel properties «DEFINE SwitchBysedlmpl FOR StateMachines ) * The whole thlng IS
seamlessly TR et e ) [G Towual | % g e e called a template Towual | %
public static final int «s.constant Editor - file Editar ic
«EHDF OREACH: cu: ate * teld |sm) .
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Code Generation llI

Code Generation IV

w w
H H H Metamodel H Metamodel
* One can add behaviour to existing metaclasses clamodel | 3 »  Workflow loads the model, checks it (same camodel | 3
. \ . . .
using oAW’s Xtend language. constraints as in Editor!) & then generates code.
Imports a ) Graphical H A Ba Graphical H
Editor L Editor
limport simplesw; ' @ [E] Generatoru ¢ nstep¥iinthe; ... ) Ot cereratorBacken ' ©
<workflows> ORI
String basePathi) : basePackage () /fcpl=cExtensions are ;
String basePackage(] : "de.jax"; typically defined g§ coomponent ©lass="oaw.ewf. TodReader s g§
fogalmetaciass Comstraints | o 2 <metaliodelFile value="statemachine?.ecore™/> Qlnumberof Comstraints | o 2
String constantNeme (Named this): neme.toUpperctas © wodelFile value="§{madelFile}"/> parametzr_s are ©
String methodNewe [Action this) : name.toFirstLower Ly coutputslon value="model"/> passeciny
have more than one <firstElementOnly walue="true"/>
String implBaseClassName (StateMachine this) “aparamater 100e [ = </ component> =
String implClassName (StateMachine this) — srUpper (] ; Code %E A Code %E
String fglmplBaseClassiame (Statelachine this): basePackage [} +"."+implBaseClassName () : Generator e% <component ©lass="oaw.check.CheckComy sém: Icr;tv;:kefileeas Generator e%
String folmplclassNawe (StateMachine this) : basePackage () +". "+implClassName () cwetaliodel id="wm" class="org.ope in the editor /EwEHeralodel ™
<metallodelFile value="statemaching
" <«/metalodelx "
2 - ine2:: e o TE
. . . Reclpes = <checkFile value="statemachine2 ::oconst EatchErrors"/> Recipes =
* Extensions can be called using member-style syntax: 52 <expression value=rmedsl.eallconteny”. .. This starts the/ - 32
. </ component> first, ,top level™
myAction.methodName() template
- <component id="generator" class="oaw.xpany e POnErrors="trus"> -
H H Modeal =c <metaModel idRef="simpleSM"/> Modeal =c
* Extensions can be used in Xpand templates, Check Transformation | § & <expend value="templates::Root::root FOR §{slat)"/> Transformation | § &£
files as well as in other Extension files. o vers .
advices value="tewplates::aspects::Logging”/ >
<heautifier class="org.openarchitecturevare.xpand?.output.Javabeautifier"/>
* They are imported into template files using the Toxwal |3 % «/conponencs Toxusl | 2%
ditor -] q ditor -]
= Code is =
EXTENSION keyword </vorktiovs automatically
beautified
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w w
1 H H Metamodel ’ Metamodel
» There are various ways of integrating generated code clamodel | 3 » Here’s an error that suggests that | extend my camodel | 3
with non-generated code: manually written class from the generated base
Graphical H CIass - Graphical H
Editor [ Editor [
2 Fuckage Explorer . Cutine| 1= % ™ =0l totarer smva 1, =0)
+ L madel =l package ar. jnu: =l
W bl
a) ) = § :" :{:::n public class CdPlayer { ) = §
Constraints ot Constraints
2 5 - (£ At aedCelPlaryrs v 1.3 (ASCI] 4} ) 2 5
B copuyerhctions. e 13 (ARSI -Ker)
b) 5 [ C:blapavens java L1 (511 o)
) ClPlayerSabes java 1,9 (ASCTY 4dv)
- = o surman -]
Code R i Code R
Generator i Recipes can be | ) Generator iz
] arranged 8 4} ]
\.--K--.‘ hierarchically
] @ P ¢ 4 -]
] -
! Recipss %% ey oot et shamacbina e T M.q.sm.n.‘[u-;,.J m Recipes %%
= (e sevtee oecten roeres ey [ETTRRORERN, =
L TR YT R S ——r——— ey . | vabm
@ fim the [ o] o jx Celelagar | Bty g gt e o e g el
oy b lass do. jau. Abstyach Flayer " -
Model zE = | ol : Madel 2E
c) d) e) Transformation | § &£ LR fu‘:;:‘::’m.-ni Eobmet]. Transformation | § &£
Green" ones o projecthisng derma, gnd st atemachingl, exh. .,
o T :
[ generated code | non-generated code This is a canlalsolbe
« failed check hidden ] Here you can see
Textual zE additional Textual zE
Editar k1 information about Editor ic
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the selected recipe
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Recipes Il

Recipes IV

* | now add the respective extends clause, & the
message goes away — automatically.

1% Package Explorer £ _Outine o & T e 0| ca
-0 mncalel = package de. jax: ~lm
3 e
4 mogen f public class CdPlager extends Abstraccdd?lager |
B de.
- ] butrstcelayer s 1.3 (RSC11 Hhee) )
¥

erichons. v 1.3 (ASCI )
dPaverEvents.save 1.1 (ASCIL Hev)
ot ates. ey 1.3 (ASCH b}

) Py e 1.1 (A
B o] CoPlayerTest java L1 (ASCIH
I JRE System Libeary [k 5]
1 s ieenten o
B statemachine recoes

0w demo.gnd statemachine generstor [cvs sourceforge.ne
& R P S P LI—I o _|—|
Problems | Javadoc Dedaration | Properties | Matery | B Recees 52 Hgp oo
@ crgacess. sk score.mel. {Class: org. ecipse. e | I

& For the CdFlayer you b s g openarchitectuneware.recpe.ed...

@ ok L o cpenrcitachsewrn. o k. .

e jan.CPlayer

orgecipes. enf scone. mpl E0bject]. .
irerd e Shodermachan? exa...
Ty e

Adding the extends
clause makes all of

Metamodel H

w

Graphical LEL

Editor 5]
Constraints % g
o
Code = g
Generator ‘5 &
w
Recipes % é
&

Model

Transformation

oAW
xTand

Now | get a number of compile errors because | have to
implement the abstract methods defined in the super
class:

(TR svvador | Declraton  Propertes | story ooges
7 ervoes, O warnings, 0 infios (Fiter maktched 7 of 130 bems)
Descrption

| nesren | ran | tocation |

Cetayer. ok cdr darss g hitamachi. . ina 1
oaed,dama. grif stitemachi,.. Ine 1
© i typn Corr va  oarrd.dena.gd ststemachi.. e 3
D 1hm type Cblpme mut rnplen wa  oawed demo g statemachi._. Ine 3
0 Tha typa Cipr st inplierart B inhuetad bitract athod ClsyarAmiond utDomrl)  COFSyEe.java oot demo.gni statemachi._. ine 3
D Th Rype CoPlaer st inplerian the inherted sbitract nathod CoflaverAdtions. AantPlayingl) CoFtaver lva ool demo o statomachi.., e 3
© Tre kype CoPlaryer must implemerk the inherbed sbutract method Cflarerictions siopPlayngl) Cfterirlava  coved der ol Adtomachi., Ine 3

] e Py st
O The byen CePlyre munt

| finally implement them sensibly, & everything is ok.

The Recipe Framework & the Compiler have guided me
through the manual implementation steps.

— If I didn’t like the compiler errors, we could also add
recipe tasks for the individual operations.

— 0AW comes with a number of predefined recipe
checks for Java. But you can also define your own

Metamodel H

w

Graphical LEL

Editor 5]
Constraints % g
o
Code = g
Generator ‘5 &
w
Recipes % é
&

Model

Transformation

them green chass i Jar. AbsractCOPlayer Taxtual 2% K Textual zE
Bdior | Z checks, e.g. to verify C++ code. Bdior | 31
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Recipes V Model Transformations |
* Here’s the implementation of the Recipes. This workflow Metamodel | & * Model Transformations create one or more new Metamodel | &
component must be added to the workflow. models from one or more input models. The input
You extend one of a craphical | models are left unchanged. oo | &
number of suitable g 3 Editor z
el Sowt e M AV RSN Rt Pase classes.- — Often used for stepwise refinement of models &
e s _ modularizing generators
public class PecipeCrentor cxtends AbstractExpreszionfiecipeCreator | Constraints % g ] Constraints % g
override .and override a ° — Input/Output Metamodels are different hd
protects suitable template
Lise - new AreaylistaCheck: method H H H
e et e |22 * Model Modifications are used to alter or complete an code |22
String pame = (Scring) facede.evaluace ("newe®); o . . =
e o Gonerator | 4 existing model Generator | 3
e You can then create
shacks gt sce 1 =ny/numbery - * For both kinds, we use the xTend language, an :
Recipes %g extension of the openArchitectureWare expression Reclpes 5;
‘& to provide an iwplewetation class nausd - language.
PERANGE: ! T LIS a1 This one checks . .
that a class extends Mads! « Alternative languages are available such as Wombat, Model

JavaSupet LypeCh

another one

project, implclasshame, implEssed assisme )
[ sopertheck 1:

And return the
checks to the
framework

Transformation

oAW
xTand

Textual
Editor

oAW
xTaxt
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ATL, MTF or Tefkat (soon: various QVT
implementations)

Transformation

Textual
Editor
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oAW
xTand

AW

xTend

oAW
xTaxt




Model Transformation Il

* The model modification shows how to add an
additional state & some transitions to an existing state
machine (emergency shutdown)

Extensions can
import other

cyShutdown.ext X

import stat hinez; " -
ort statemachine E—— @

extension statewachineZ::constraints::Statemachine;

StateMachine wodify(StateMachine sm) :
sw.transitions.addill(sm.allConcreteStates () .createTransition()) ->
=m.states.add (createShutbomn () ->
=m:

nCreate extensions™

guarantee that for

each set of
parameters the
identical result will
be returned.

private create State this createShutDovn() :
setNawe ("EmergencyShucDowm™) ;

private create Transition this createTransition(State s) :
setEvent {"Error") ->
setNawe ("Aborting™) ->
setFromis] -»
setToicreateShutbowni] ) ;

Therefore
createShutDown()
will always return

Metamodel ;
w
Graphical LEL
Editor 5]
Constraints % g
o
Code = g
Generator ‘3 &
g
Recipes 5 T
o8
o
Model = E
Transformation % <]

Model Transformation Il

* The generator is based on an implementation-
specific metamodel without the concept of composite
states.

* This makes the templates simple, because we don‘t
have to bridge the whole abstraction gap (from model
to code) in the templates.

+ Additionally, the generator is more reusable, because
the abstractions are more general.

«  We will show a transformation which transforms
models described with our GMF editor into models
expected by the generator.

Metamodel ;
w
Graphical LEL
Editor 5]
Constraints % g
o
Code = g
Generator ‘3 &
g
Recipes 5 T
o8
o
Model = E
Transformation % <]

the same element. T;:il‘“: % ::5 T;:il‘“: %:; :‘f
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Model Transformation IV Textual Editor |
. ] . . . ]
*  We want to transform from the editor’s Metamodel | 3 » A graphical notation is not always the best syntax for Metamodel | 3
metamodel ‘statemachine2’ to the DSLs.
enerator’'s metamodel ‘simpleSM’ . . . . .

9 P Capmeal | & * So, while GMF provides a means to generate editors Crapeal | &
e — for graphical notations, we also need to be able to

ion —oatemsiis oo emies 1t men s come up with editors for textual syntaxes. ]
extension org: :Dpenarch;t..ecr.uremare: ;;1:11: 110, ’ :ﬁnn:::it‘:s‘g:;?a"ze’ Constraints % g . . Constraints % g

: ° * These editors need to include at least ©
create simple3M::StateMachine createStatemachine (StateMachin= =m)

cetmame (on. name] > . States inherit outgoing S t h htl ht

setInitialState (sw.concrereState () .oreatedtate()l | - transitions from their parent i ntax ni | N

sc;e;addl;;sm.auCancr;ce;c;ces 3] .chatZSEatE()J i> states Code = E y a g g g Code E 2

actions.addill (sm.ehllContents. cypeSelect (Aotion) . name. creaceic Genarator k- % . Generator -] E

events.addAll (sm.edllContents. typeSelect | Transition) .event. ¢ith Eor those transitions the - SyntaX error CheCkIng

) exit actions are inherited, too
private create simpleSM::State createState(State =) @ - . . . .

setlame (2. name) > o . — Semantic constraint checking _ z %

transitions.addAll {s.allOutTransitions () .createTransition(|of); UNify action & event Recipes 5 Recipes E i

elements with the same 13 o
private create simpleSM::Action createkction|String n) : name-

setName (n) ;

; . . Model zE Mocal zE
pr;\;:;:m:x(':?te SimpleSM::Event createEvent(String n) : T““’z"‘r"aﬁon %'E T'ansm;alim ‘ﬂt':
private create simpleSM::Transition createTransitioniTransition t, Ztate =) @

actions.addill (al lACLions (S,C.00.CONCrEtESTATE ()] . name . createlotion ()] ->

setEvent (t.event.createEvent ()] —-> Textual zE Textual 2%

setTo(t.to.concreteState () .createState ()] Editor e Editor T
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Textual Editor Il

*  We use oAW'’s textual DSL generator framework
xText

* Based on a BNF-like language it provides:
— An EMF-based metamodel (representing the AST)

— An Antlr parser instantiating dynamic EMF-
models

— An Eclipse text editor plugin providing
» syntax highlighting
* An outline view,
» syntax checking

+ as well as constraints checking based on a Check
file, as always oAW

Metamodel H
w
Graphical B
Editor 3
Constraints E g
o
o
Code = ®
Generator g g
g
) =
Racipas g -2
4
Maodal

Transformation

AW
xTend

Textual Editor IlI

* The grammar (shown in * The generated eCore AST
the boostrapped editor) model

(= textualsm
= CompositeStats -» AbstractState
5% states : AbstractState
= [ Abstractstate
= name : EString
&3 transitions ¢ Transition
53 exithctions | Action

The first rule
describes the
root element
of the AST

N

(entryictions+=iction)*
(transitions+=Transition) *
(exithotions+=Action) *

(states+=ibstractState) ©
i Rule
name
Abstract AbstractState ¥

CompositeState | State:

Rule names
will
become the
AST classes

22 entryActions : Action
[ state -> AbstractState
B action

= name : EString
(= [ Transition
= state : EString

Jtate : = event : EString

"state" name=ID "{"
(entryictions+=iction
(transitions+=Transition| *

States contain
a number of
entry actions,
transitions &
exit actions

(exithketions+=hetion) *

nyny

dction @
A" name=ID;

Transition :
event=ID "->" state=ID;

These variables
will become
attributes of

Assigns an
indentifier to
a variable

Metamodel H
w
Graphical B
Editor 3
Constraints E g
o
o
Code = ®
Generator g g
g
) =
Racipas g -2
4
Maodal

Transformation

Textual 2% " Textual 2%
Editor = 'E (here: state) the AST class Editor = 'E
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Literal | BZ outline 52
e Y defi dditioal H hat should b Metamodel | = « The generated e B0 off Metamodel | =
ou can define additioal constraints that should be & Nhoss o ersateprssssd o On &
. . . - e ecome
validated in the generated editor. editor & it's K oras & @shidom
BshutDown =@ Open
L. s out“ne view poveriwitchPressed —> e @ opent] -»on
* This is based on oAW’s Check language Graphical | i -0 © pomerSntatpressad > Off Graphical | i
Editor s state Open { @ @doseTray Editor s
BopenTray @ @openTray
. . . s
— i.e. These are constraints like all the others you've openClozeressed = On & @ Conposte Cn
& poverswitchEressed, o2 QEEE H @ openClosePressed -> Open
already come across Belnsers . S
; zE . @ @checkD _ z3
; Censtraints = 2 i =-@ Stop Constraints = 2
(YT —— =5 =h Q@ T composite SEaly e oo @ playPressed - Play Q@
Rasousen St =] = @ @stopPlaying
&l e eraraooe st e statemashine On | are =0
i extrnmian org:openarchitecturswase s s tams T - BcheckeD _evalukatlied & stopressed-> Stop -
=i [ BusteMachine . i . - . Code z: openClosePressxy N Fealtime © paussPressed -> Pause Code TE
e Efiring e S SRS Bovie S SR R R heoe Generator | § & | powerswicchPressed > Off © @startPlaying Generator | § &
B e S iR /¢ children =@ Pause
e f':;,;‘::_’md‘ context Stace WARNING "The state "+name+” 13 never referenced” : state Stop ( © stopPressed - Stop
: : sCanEainar.. thie || @stopPlaying @ pausePressed - Flay
ALITERES1C1000 11 €X50TS (013 SEALe=wnimt) i PlayPressed - Play o (Epasserng )
Racipas g S - ' Racipas g S
no chila states” 3 & state Play { 2
st g st [ @startPlaying d
ﬁ;‘::;;fc“ stopPressed -> Stop
1 PR — context Abate State KRROK smLe SEALe Tdpame: pausePressed —> Pause
2 vt rsn alLibotractBtares ] oe - | , -
1% mabActions  Actiony st T Modal 5 < state Pause { Modal 5 2
R antrphtond : Atoh Ry Transformation | 5 I~ @pausePlaying Transformation | 5 I~
stopPressed -> Stop
context Transition if state() '=null ERROR pausePressed -» Play
state () .efontaines == contain atell elontaines; | ' v
Textual % Textual %
ho | i = i =
o : " ™ o Editor ] Editor =
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AW
xTend
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Why?

» Based on our experience, the
core “asset” in model-driven
component based
development is not a
generator that generated
some J2EE code, rather, the
“right” selection of models
& viewpoints is essential

+ So these slides contain
exactly this: a reference
metamodel that has been
used in many, many different
projects
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Three Basic Viewpoints

» Type Model: Components, Interfaces, Data Types
+ Composition Model: Instances, “Wirings”

+ System Model: Nodes, Channels, Deployments
[Type Mosel |

AddressManager frahon

“production™
‘servar” fype="spang” configuration="addmesSaatf 1>
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Type Metamodel

» Components
* Interfaces
» Operations

Component *  Interface b_. Operation |. * Parameter
providedinterface

name name name | name

Component »
required Interface target lre[urnTl.,rpe
Interface | Requirement

Type
name
name s
exception | *
Exception

Model-Driven Development of Distributed Systems 140




Type Metamodel Il (Data)

Composition Metamodel

» Component

« Data Types .
e Cross-References Instances Compovont providedinterface lorfe
C .t name name
. onnectors, 73 * 5! Component 5
“W- . » 'y required Interface target
Type Irin g type Interface | Requirement
name name
‘P 4 cireq Compaonent Stuff
| Composition Stuff
Complex : Attribute o Primitive
5 ] Configuration * | Component |. s Wire  |..........
tpe attribits name type Ty I instance Instance i
name name m—
Enti * context Wire inv;
Ref:ma’ce i + ] the type of the target
ref target instance must provide
name i) the Interface pointed
isBidirectional Entity Data - to by the Wire's cireq’s
s ponentl ;
wrgetmatipicry | rranaer
sourceMultiplicity ta rgel' Object InterfaceRequirements
there must be a Wire of the same
name
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System Metamodel Viewpoint Dependencies
* Hardware + Dependencies between Viewpoint Models are only
« Deployment allowed in the way shown below in order to
— Be able to have several compositions per type model
— And several system models per composition
Configuration |. *5| Component |. ' Wire
name instance |  Instance name  This is important to be able to have several “systems”,
name I — Several deployed locally for testing, using only a subset of
Composition Stuff y '™ the defined components,

System Stuff

1

System |. ; Node |. »| Container
*

name name name
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— And “the real system”

A

System Model(s) ]

Composition Model(s) » Type/Data Model
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Component Implementation

Component Implementation Il

* We have not yet talked about the implementation code
that needs to go along with components.

— As a default, you will provide the implementation by a
manually written subclass

<. <<gen-code>>

< >>
s ’ﬂm—__’ Some-

Somelnterface Interface.java

r ’
f }

<<generate>> <<gen-code>> : p

<<compeonent>> Kl—— <<man- > &
P /—\——7 Some H an-code! ;

SomeComponent GOt { SomeCompo-
PO nentjava !
Base.java

» However, for special kinds of components (“‘component
kind” will be defined later) can use different
implementation strategies -> Cascading!
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* Remember Ty
the example " AProcess ' (o) | J—
of the process : {ﬂ.) M
components —x 4 (@ 2
from before: AProcessinartace | ) ¥ . S
. paratians.. FIa—— 2 F— mﬂ::-
* Various other R i e [
implementation il A
stragies can be used, o )
such as: i
— Rule-Engines |
— “Procedural” DSLs or action
semantics

* Note that, here, interpreters can often be used sensibly
instead of generating code!
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Aspect Models

+ Often, the described three viewpoints are not enough,
additional aspects need to be described.

» These go into separate aspect models, each describing
a well-defined aspect of the system.
— Each of them uses a suitable DSL/syntax
— The generator acts as a weaver

« Typical Examples are

— Persistence

— Security
Forms, Layout, Pageflow
Timing, QoS in General
Packaging & Deployment
Diagnostics & Monitoring
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Separate Interfaces

* You might not need separate Interfaces
— Operations could be annotated directly to components
— Dependencies would be to components, not to interfaces

* Relationships between interfaces are often needed,

— “if you require this interface, you also have to provide that
one”
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Component Types

» Often different “kinds” of Components are needed.
— To manage dependencies,
— And to define implementation strategies

pon context Application-
Com ot Component inv:
name No provided interfaces
i are allowed
Service App n ...
Component | <<valiiDep== | Component
DAO Domain Legcy GUI Facade
Component Component Adapter Component Component
x T T Component 'y
i S L
<<valdDep>> i <<validDep>> <<validDep>> |
<<validDep>>

<=<validDep=>
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Component Layering

 Alternatively you can simply annotate each component
with a layer

*
Cc » Interface <<enumeration>>
providedinterface LayerType
name name
layer: LayerType ' * 4| cComp t _|layer: LayerType domain
required | Interface Ealget' gui
Interface | Requirement facade

name
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Component Signatures

* You might need to provide several implementations (i.e.
components) for the same signature (i.e.
provided/required interfaces).

— So you need to separate implementation from signature

Component . > Interface
Signature providedinterface
name

name f._" Component »
'S required Interface target
implemented  |nterface | Requirement
Signature

name

required
Interface

Component
Implementation

ConfigParam

default
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Hierarchical Components |

« This allows an infinite nesting of component structures
* It requires the concept of ports

* Note that the clear boundaries between type &
composition models are blurted (which makes this
approach a bit more advanced!)

+ Example:

HierarchicalComponentA
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Hierarchical Components ||

Configuration Parameters

»| Component

may have additional
properties that define
how interface is used

¥Pe { ame

* Port

» Interface

name *\92’ name

port

Parameters allow for dynamic configuration of

components.

p—— D There is a wide variety of potential value definition
DelegatingWire
| HierarchicalComponent | | RequiredPort | [ ProvidedPort | L scopes
p2's owning
» component must be Component . " ConfigParam Attribute
the same as p1's i 9 >
Comj il ‘. *‘; Por instance's owning name default name
hierarchical
name name p1 component 1
7 'y = Atype Component Stuff
- ! P Rz I Composition Stuff
o oz B ; positi u
One of the port instances's ports Connecting Delegating DelegatingWire inv: Configuration +| Component l.__", ConfigParam
must be a provided port, the Wire Wire 4 lfpl's portis a instance Instance Value
other a required port. Interfaces ProvidedPort, then p2 hame
of the two ports must be the l_é—" must also be a name | |
same ProvidedPort. Similar
e > Wire for RequiredPorts. StaticConfig Dynamic
Interface of p1's Part context Componentinstance inv: ParamValua ConfigParam
nams must be same as p2's foreach of type's ConfigParams value Value
interface there must be a ConfigParamValue
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Behaviour Asynchronous Communication

« Different (types of) Components typically have different

lifecycles

» The threading model is typically different, too.

+ Also, some components might be stateless, while others
are stateful (with persistent state, or not)

communication with others

— Note that this has to be specified in the type model — since
it affects the API!

« Some components might need asynchronous

Component
name

Interface

*  Interface <<enumeration>>
providedinterface CommType
name
Component > sync
Interface target async-oneway
Requirement async-syncW$
async-poll
name async-callback
comm: CommType
n InterfaceR: irement inv:

if aneway or syncWithServer is used, all operations in
the target interface must be void, and not throw any
exceptions!

Service <<enumeration>> <<enumeration>>
Component ThreadingType LifecycleType
lifecycle: LifecycleType SingleThread Simple
threading: ThreadingType ThreadSafe Withlnit
Active
0.1
Complex 4 Componeﬁt
Type State
isPersistent
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Events

Subsystems & Business Components

» Events are a way to signal information from a
component to another, asynchronously.

— Sometimes it is useful to allow for violations of the
(otherwise rigidly enforced) dependency rules

*

Complex Attribute
Type attribute
name
Component |¢ * Event
producer
name
*
consumer

Model-Driven Development of Distributed Systems 157

+ If the number of components grows, additional means to
organize them are required.

» The internal structure of subsystems or business
components can be defined by enforcing certain policies
wrt. Component types

— For example, each business component must have exactly

one facade
[ Ew ]
‘=! Interface |

- Subsystem
context Business- k—' " R
Component inv: p| Service
Must contain exactly T Componant
one FacadeComponent ¢‘r\
H Business l I I
Seememnenenas Component
Facade Gul
Component Component
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Data

» More elaborate data structures are often required
— Typical example is based on entities & dependent types

+ DAOComponents are used to manage the entities & their
associated dependent types

+ Ownership & Scope of data types is essential
— Indirect dependency management

- paCkaglng Complex
Type
Comp t » Entity Dependent
T usedEntity Type |
Value
r -
T baseType T Type
DAO
Component
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Wiring

» Optional wires might be useful

« Dynamic Wires don’t specify the target instance, but
rather a set of properties based on which at runtime, the
target can be found

— Important for dynamic systems, e.g. P2P

a) b)
Component |. LY Wire Component
Instance Instance
name
name name
target
backupTarget Interface

requiredinterface

Model-Driven Development of Distributed Systems 160




Container Types & Networks

» This allows for more specific description of hardware,

— Networks & network types describe means to
communicate

— Whereas container types are important to distinguish
various execution environments (server, local, ...)

Configuration . ‘5 Component |‘ * Wire < ' ti
Instance NodeType

instance
name name

name T

Composition Stuff *

System Stuff I hosts
<<gnumeration>>

A
System ’_;, Node . N Container E1 ContainerType
- =1
name name name %
type: NodeType type: ContainerType Z
%+ node1 1 nodez
v’ A A <<enumeration>>
Network NetworkType

name
type: NetworkType
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Versioning

+ Capturing versioning & type evolution information explicitly
in the model allows for definitive statements about
component compatibility & system evolution.

- newVersionOf

" 0.1

k
*

Component Interface

providedinterface
name name

- new\ersionOf
=

* o Cor t >
et ’ required Interface target

Interface | Requirement

name

- pewlmplementationOf
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Generic Modeling Environment (GME)

| “Write Code That Writes Code That Writes Code!” |

GME Architecture

Application
Decorator m- an Decorator
Developers Generic Modeling Environment 4
(Modelers) L _
N\
N\
N N /
) R
) — [
y
MDD Tool UML / OCL
Devel opers Paradigm Definition
(Metamodelers)
Storage Options

| Supports “correct-by-construction” of software systems

GME is open-source: www.isis.vanderbilt.edu/Projects/gme/default.htm




MDD Application D

evelopment with GME

« Application S iuuax At 4 iuvaAmETERED T bw
developers use 8 mmm
modeling environments [ gy
created w/MetaGME to | <
build applications m_

~Capture elements & || ___ (7] - o | —

dependencies | - 2 | e

visually - .
.

CompoenPackige

rens.

Example DSL is the
“Platform-Independent
Component Modeling

o~
ComporentPakageRssenis

Language” (PICML) tool
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MDD Application Development with GME

+ Application -
developers use [ crmcmr
modeling environments L
created w/MetaGME to i = p—
build applications P | TR B occoe e
—Capture elements & s = T Brtmmorcommen e e
dependencies R

visually

—Model interpreter r‘;m:ffl
produces something i
useful from the oo
models

*e.g., 3 generation
code, simulations,
deployment

Levels</name>

<internalEndpoint>
<portName>qosLevels</portName>

F64D91BA4ESE" />
</internalEndpoint>
<internalEndpoint>

i i:idref="Local . 7EF8B77A-FSEA-
4D1A-942E-13AETCFED30A" />
</internalEndpoint>
</connection>
<connection>
1

. qosLevels</name>

<internalEndpoint>
<portName>qosLevels</portName>
A2E802C33E32"/>

<instance xmi:idref=" ictor_}
</internalEndpoint>
<internalEndpoint>

<ingt—

sourceManagerComponent_7EF8B77A-FSEA-

descriptions &
configurations ‘

Model-Driven Development of

PICML generates XML descriptors
corresponding to OMG Deployment
& Configuration (D&C) specification/

MDD Tool Development in GME

*Tool developers use

MetaGME to develop a | =
domain-specific ’ |
graphical modeling 2
environment

—Define syntax &
visualization of the
environment via
metamodeling

PP [ [ ey

HaJéd ATMTTEOET ¢ o EXe¥

[ it fom [0 o
Aaren | owares i

e e a3
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MDD Tool Deve

lopment in GME

etaliil - PICHL - [InberitableTypes
Wt e e S
fidldy g

T e [t lper [Famigibes

*Tool developers use
MetaGME to develop a
domain-specific
graphical modeling
environment

B

—Define syntax &
visualization of the
environment via

metamodeling

—Define static s
semantics via Object [N
Constraint Language ®
(OCL)

nibencn Consnrts |

sy

TPIGHL] o]
"%
Ll Jd A TETEEED ¢ 8 EX 0%
gt Conwarer =] s R Zoom 105w

NbwiiAndBepnan

Cancrvie'ialuPaini

RhriLocalkndiesiac

ConcrainEvaniPareni

[CorceteE vt werk

Alrtaes | Proimmce | Progerien |

s concise, passrts s sl s {ebast” T et - Mot sy v st s o)

KT 100% Matac {13 B
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MDD Tool Development in GME

*Tool developers use
MetaGME to develop a
domain-specific
graphical modeling
environment

—Define syntax & _
. . . [rm— - <eonnaction>
visualization of the —_— — dictor_gostevels
. . " e </nama>
enVIronmen.t Vla i r—_'. i i :: = nﬁfonuimh“:za::ﬂsctmrmm
<inatance xmi:idrafe=
metamodeling e
5 c,!f internalEn d‘pm nt>
—Define static Sl i
semantics via Object | itance i ideet :
Constraint Language S immalladesints
(OCL) &)
—Dynamic semantics P P G0
implemented via >
. . N o p Y L A
model interpreters (v) (w) (w) (&) (n) (n)
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Applying GME to System Execution Modeling

System Execution Modeling Workflow

1. Compose scenarios to
exercise critical system

Model
paths/layers Eermont posocie
2. Associate performance Ex"e”me”‘e’ Characterstios

properties with scenarios &
assign properties to

components specific to T .
paths/layers : '

3. Configure workload generators
to run experiments, generate
path-/layer-specific
deployment plans, & measure ————
performance along critical T
paths/layers ——e

4. Feedback results into models :
to verify if deployment plan &
configurations meet
performance requirements

Component Interaction

‘
Deployment
Plan

Context: Service—Oriented Architectures

« Historically, distributed real-time &
embedded (DRE) systems were built

/ \ directly atop OS & protocols

Applications

Operating System &

Communication Protocols
Hardware Devices
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Context: Service—Oriented Architectures

« Historically, distributed real-time &
embedded (DRE) systems were built
[ Appl"tions } directly atop OS & protocols

+ Traditional methods of development have
been replaced by middleware layers to

N reuse architectures & code for enterprise

DRE systems

Service-Oriented ) . .
S e R e * Viewed externally as Service-Oriented

Architecture (SOA) Middleware

Operating System &
Communication Protocols

Hardware Devices

Note: our techniques also apply to conventional enterprise distributed systems




Context: Service—Oriented Architectures

« Historically, distributed real-time &
embedded (DRE) systems were built

[ Appl"tions } directly atop OS & protocols

« Traditional methods of development have
been replaced by middleware layers to
N reuse architectures & code for enterprise

: DRE systems
Multi-layer Resource i . )
Manager (MLRM) * Viewed externally as Service-Oriented

Architecture (SOA) Middleware

* e.g., DARPA Adaptive & Reflective
Management System (ARMS) program’s
Multi-layer Resource Manager (MLRM)

Operating System &
Communication Protocols + MLRM leverages standards-based

Hardware Devices SOA middleware to manage resources

for shipboard computing environments

Model-Driven‘ dtsn.darpa.mil/ixodarpatech/ixo_FeatureDetail.asp?id=6 ‘

ARMS Multi-Layer Resource Manager (MLRM)

« ARMS MLRM architecture
} includes

{ Applications —Top domain layer

. o . containing components
‘ DomElisspelie Senlves that interact with the ship
mission manager

Domain Layer

— — — — —Middle resource pool
—
el ) layer is an abstraction for

a set of computer nodes

eqdource Pool Layer managed by a pool
[N (S (EES—" [E— manager
—Bottom resource layer
Resource Layer \ l managers the actual
[r— [re——— r— pr—— resource computing

components, i.e., CPUs,

memory, networks, etc.

Model-Driven Develd www. cs.wustl.edu/~schmidt/PDF/JSS-2006.pdf |

Serialized Phasing is Common in Enterprise DRE Systems

sensor \r— 1 P -Aror recovery effector
— '/planner planner \‘1_' e—

sensor configuration effector

System
infrastructure
components
developed first

wrce Pool L:ly l

R Te Layer l
I__' [— [— [F—

§> P88

Ta rgel Infrastructure

Application components
developed after infrastructure
is sufficiently mature

Level of Abstraction

Development Timeline
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Serialized Phasing is Common in Enterprise DRE Systems

System integration &
testing occurs only after | seasor - Aror covery

finishing application = /
development

Integration
Surprises!!!

Level of Abstraction

_| Ta rgel En{raslruclure

Development Timeline
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Complexities of Serialized Phasing

Still in development w0 /' J
sensor \F—-_J——- error recovery effector

p——/plannar planner \I T

sensor configuration effector

Ready for testing

-— |

c myn

kel - e Complexities

§ 4 l » System infrastructure cannot be

@ — . p— tested adequately until applications
< | { are done

“6 t er i

©

>

O

|

r{j\ 4 |

AB\ 6\
sl

_| Target lni’rasln.lclule

Development Timeline

Complexities of Serialized Phasing

End-to-end
performance of
critical path?

I/ System bottleneck’?
I P
sepsor \\F—- error covery :; ector

'__' p nner pi ner

7(sor

|
/unguraluon /airéclor

c wgs
o Domain Layer Complexities
- f f -— -—
§ l » System infrastructure cannot be
D ,_,._ epur ﬁﬂﬂ‘-‘r % tested adequately until applications
_Q -—
< i\ \ 7 4 are done
o %' [ : * Entire system must be deployed &
% Vo A T configureq (D&C) properly to meet
- QoS requirements

2 - « Existing evaluation tools do not

: &7 _\ support “what if’ evaluation
| Target nfrastructure |

Development Timeline
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Often, QoS requirements of components aren’t known until late in the lifecycle

Unresolved QoS Concerns with Serialized Phasing

Meet QoS l——'
requirements? —— \,—— | p— Aror covery

/ pldnner

fector

plasiner

[
iguration ctor
%

S s0r
Ciommain Layor Key QoS concerns
1 * Which D&C’s meet the QoS

requirements?

Level of Abstraction

;‘ Target Infrastructure

Development Timeline
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Unresolved QoS Concerns with Serialized Phasing

Performance p——-
metrics? sensor \r——- f——-Aror covery

/ pldnner I
/uﬂ@uralion /afféclor

S s0r
Ciommain Layor Key QoS concerns

1 * Which D&C’s meet the QoS
requirements?

fector

plasiner

* What is the worse/average/best
time for various workloads?

Level of Abstraction

H _ =
;‘ Target Infrastructure

Development Timeline
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Unresolved QoS Concerns with Serialized Phasing

\ | f
sepsor \f""""’" [r— Aror covery ector

System
overload?

ctor

f
/uaﬁ’guralion

5 i Key QoS concerns

= s}

3 « Which D&C’s meet the QoS

E + ﬂ"“' requirements?

f_: 4 » What is the worse/average/best
% I time for various workloads?

2

|

[AA /\\\\V/’

* How much workload can the system
7 handle until its end-to-end QoS
_\ requirements are compromised?

__|_ Ta rgel ini’rasln.lclu!e .

Development Timeline

It can take a long time to address these concerns using serialized phasing!! ‘

Related Large-Scale System Development Problems

Release X Release X+1
| N [e—— - planner2 7 r
N /1 \ g - eror recover™. . eifector 1
sensor ‘a:'l_"—' .f_"""./” IO reCovEn e o0 y ////P' ] < x\\?mﬁﬂumhnj/ (main)
I'_“—/fﬁ’nlannar planner ™ Evolution . S
o J N |
sensor Surprises!!! —— e
plannes 3 eMactor 3
Domain Layer Domain Layer

\@m 0 M}U. T _g

— | g i
;,4\ 5\ {,’J\ J;\I Now s hg ))

networks, operating
- systems, middleware,
Ts rgel ini’rasln.lclu!e

app"cation _ Tsrgel ini’raslruclu!e
Developmentk components, etc. J

Level of Abstraction
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Promising Solution Approach: New Generation of
System Execution Modeling (SEM) Tools

Tools to express & validate design rules

* Help applications adhere to system
specifications at design-time

* “Correct-by-construction”
Tools to ensure design conformance

* Help properly deploy & configure
applications to enforce system
design rules at run-time

w ierr . Conduct
Tools to conduct “what if” analysis “What if’

* Help analyze QoS concerns prior to IR

completing the entire system

* e.g., before system integration phase

The cycle is repeated when developing application & infrastructure components
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Our Approach: Emulate Application Behavior via
QoS-enabled SOA Middleware & MDD Tools

Component Workload Emulator (CoWorker)
Utilization Test Suite Workflow (CUTS):
While creating target infrastructure P .
1. Use the PICML domain-specific -
language (DSL) to define & validate
infrastructure specifications &
requirements
2. Use PICML & WML DSLs to emulg E;g;‘izz?e&
& validate application specifications 8 Design
requirements
3. Use CIAO & DANCE middleware &
PICML DSL to generate D&C
metadata to ensure apps conform to
system specifications & requirements
4. Use BMW analysis tools to evaluate
& verify QoS performance
5. Redefine system D&C & repeat

Enable “application” testing to evaluate target infrastructure earlier in lifecycle ‘




Motivation for Using Emulation

» Can use actual target infrastructure ,__

* Rather than less precise
simulations that abstract out key
QoS properties

nldmmr

configuration

Domain Layer

» Many artifacts can be used directly
in the final production system

* e.g., models of application
component relationships & D&C
plans

« Early feedback to developers,
architects & systems engineers

* Instead of waiting to complete
application components before
conducting performance
experiments

Target Infrastructure
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Our SOA Middleware & MDD Tool Infrastructure

System Design & Specification Tools PICML & CIAO & DANCE

» Define & validate system
specification & requirements

System Assembly & Packaging Tools Enee
+ Compose implementation & Cogﬁfﬁ;‘nce
configuration information into E 2
. xpress
deployable assemblies Validate
System Deployment Tools '?:Slign
ules
» Automates the deployment of system
components & assemblies to Cvfl’ﬂgflcft

component servers Analysis

Component Implementation
Framework

CUTS & BMW

+ Automates the implementation of
many system component features

’ www.dre.vanderbilt.edu/CIAO & www.dre.vanderbilt.edu/cosmic ‘

ARMS MLRM Case Study: SLICE Scenario (1/2)

sensor 1\, | | Aror recovery effector 1
(main) (main)

r-—s-_q/planner 1 planner 2\'..__.,. [r—

sensor 2 configurati:)Tﬁector 2 (backup)

Component Interaction for SLICE Scenario

D&C & Performance Requirements &
Constraints

* Critical path deadline is 350 ms

* Main sensor to main effector
through configuration

» To ensure availability, components in
* Three hosts critical paths should not be collocated
* One database is shared between + Main sensor & main effector must be

all hosts (used largely offline) = deployed on separate hosts

Target Infrastructure

Model-Driven Development of DistributEExamme design rulesj

ARMS MLRM Case Study: SLICE Scenario (2/2)

f— 350ms deadline
error reCOVMeﬁector 1
(main) I

sensor 1 \,

| (main)
'-“-—‘ plannel" 1 planner 2 \'-“—q '-“—q
sensor 2 configuration effector 2

Some questions we’d like to answer

1. Can a particular D&C meet end-to-
end performance requirements?

Target Infrastructure
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ARMS MLRM Case Study: SLICE Scenario (2/2)
[— f

sensor. 1 \, | - Aror recovery

/_effector 1

maln) /A (main)
/planner 1 planner Z\F‘-. % F‘-I
sensar 2 r‘,‘,‘»\—' . conflguratlon —-"gffector 2

""Some questions we’d like to answer

1. Can a particular D&C meet end-to-
end performance requirements?

2. Are there multiple deployments that
meet the 350ms critical path
deadline?

* e.g., which yields most headroom?

Target Infrastructure
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ARMS MLRM Case Study: SLICE Scenario (2/2)

sensor 1\, L} -Aror recovery\ / effector 1

maln) A7\ (main)
/planner 1 planner Z\I_._.q r—-,_q
Sensor. 2 § ] cenﬂguratlon __.—efféctor 2

Some questlons we’d like to answer

1. Can a particular D&C meet end-to-
end performance requirements?

2. Are there multiple deployments that
meet the 350ms critical path
deadline?

* e.g., which yields most headroom?

3. Can we meet the 350ms critical path
deadline with all component deployed
on a single host?

Target Infrastructure
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Representing SLICE Scenario in PICML

Conceptual model
» Conceptual models

re—

\ . /' can be helpful at

sensor 1 Y FW—_,y,  crror recovery effector 1 certain design phases

(main) (main)

I"_"""/planner1 planner 2\: f '« But they are also
AN

iqurati impreci non-
sensor 2 configuration offector 2 precise & no

@ automated

== i S « PICML model

provides detailed

representation of

component properties
& interconnections

)  They are also precise
X Th | i
PICML Model of SLICE Scenario & automated
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Summary of CUTS Challenges

Emulate component behavioD 1. Evaluate QoS f
characteristics of DRE

systems

2. Emulate QoS
characteristics of DRE
systems

Average- & worst-
cast latency & jitter

PICML Model of SLICE Scenario
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Summary of CUTS Challenges

Single-point of
data collection

Define behavior
declaratively

1. Evaluate QoS
characteristics of DRE
systems

2. Emulate QoS

characteristics of DRE
systems

3. Non-intrusive

benchmarking &
evaluation

4. Simplifying component

behavior specification

Model-Driven Development of Distributed Systems

Summary of CUTS Challenges

Customizing generic
components?

1. Evaluate QoS
characteristics of DRE
systems

2. Emulate QoS

characteristics of DRE
systems

. Non-intrusive

benchmarking &
evaluation

. Simplifying component

behavior specification

. Simplify component

customization

Model-Driven Development of Distributed Systems
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Summary of CUTS Challenges

Time-critical end-to-end path
through operational string

1. Evaluate QoS
characteristics of DRE
systems

2. Emulate QoS

characteristics of DRE
systems

. Non-intrusive
benchmarking &
evaluation

. Simplifying component
behavior specification

. Simplify component
customization

. Informative analysis of
performance

Model-Driven Development of Distributed Systems

Challenge 1: Evaluating QoS Characteristics of

Enterprise DRE Systems Early in Life-cycle

Context

* In phase 1 of ARMS, QoS
evaluation was not done until
application integration

—Prolonged project

c . - .
S N development & QA
-16 BENsOr .‘1—- .'_- A7 emor recovery v eftecior .
@ e paner o e~ e * N phase 2 of ARMS, MLRM is
g sansor wigwaion  eteter  jmplemented using Real-time
< CCM (via CIAO & DANCE)
S5 . mnLNRE .
S e f— « Software components &
2l hall imilar in both
4l \LAU{WPNILaye, | challenges are similar in bo
— — — phases

[ l RegoufTe Layer 1

pr— | — p——

Development Timeline
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Challenge 1: Evaluating QoS Characteristics of

Enterprise DRE Systems Early in Life-cycle

Context

* In phase 1 of ARMS, QoS
evaluation was not done until
application integration

—Prolonged project
development & QA

* In phase 2 of ARMS, MLRM is
implemented using Real-time
CCM (via CIAO & DANCE)

a-n Laye
« Software components &
challenges are similar in both
phases

E!g“'g Problem

. * How to evaluate MLRM QoS
earlier in lifecycle?

—i.e., prior to integration

Level of Abstraction

Development Timeline
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Solution: Evaluate Component QoS & Behavior

using Component—-based Emulators

» System components are CoWorkEr
represented as

Component Workload
Emulators (CoWorkErs)

* Each CoWorkEris a CCM
assembly component
constructed from CCM
monolithic components

» Each CoWorkEr has an
optional database

—Can be local or remote

» CoWorkErs can be - Y ' :
interconnected to form :
operational strings — ! J—p—
—Basically a “work flow” oy e s

) T planner  piarner r——,, “I'——
abstraction 4

Bansor w\l’mmhm effachr
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Challenge 2: Emulating Behavior & QoS of

Enterprise DRE Systems

Context
“ * In phase 1 of ARMS, QoS evaluation
Test A = JESPN  was not done until integration
(ad hoc) (ad hoc) . i
* QoS testing was done using ad hoc
techniques
Phase 1 3 Phase 2 _e g, creating non-reusable artifacts
& tests that do not fully exercise the
infrastructure

Problem

Test A :> Test '\ | * How to emulate behavior & QoS in a
reusable manner to evaluate the

complete infrastructure & apply tests in
different contexts

Phase 2 : Phase N
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Solution: Emulate Component Behavior & QoS

Using Configurable CoWorkErs

uuuuuuuuuu

ssessment

gy Emulate workloads, e.g.,
CPU, database & memory

[BSHER PR 1 ommand
,,,,,,,,,

Inksound

WLGCPLWarker

,,,,,,,,,

characterizationFile

Qutbound

IO

. '
el LGSImEw ertHandRES

am=DBHast Stustion

,,,,,,,,,,

Stustion

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

I 1ok i
S, s Hner g o :
deteas T 4
WLGBEnchmarkAger
— o LS B ansgat] WL Trigger
By % % [WSTiger |

Bum
iALE timerBenchmarkReguest

.

Statuz

S
Fi
=3

Model-Driven Development of Distributed Systems 200




Solution: Emulate Component Behavior & QoS

Solution: Emulate Component Behavior & QoS

Using Configurable CoWorkErs

D | Perform background |- e L
Dﬁ : workloads red >
T WL GSimEventProducer R

ommand

2

Commanct
eeeeeeeeee

o
Inbourn

3
:

Quthound

nameDBHost

3
g 2
£ 5
& E

Track

WG Trigger
[WISTigger |

LG timerBenchmarkReguest

Using Configurable CoWorkErs

2

el Receive events from CoWorkErs lrw 7 ] D

-----

ommand

aaaaaaaa

D

aaaaaaaaaa Quthound

nameDBHost

.
g H
5 g

Track

WG Trigger

Track
[WIETigger ]

LG timerBenchmarkReguest
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Solution: Emulate Component Behavior & QoS

Using Configurable CoWorkErs

aaaaaaaaaa

Assessment
ommand
,,,,,,,,,,
seichalesfa
Inibaund
setegof o )
characterizationFile \
= i " D\b»\r Qutbound
OUEO e I e : o N
debelto| ALGEIMEwSRIHANIEEE - - | = ™
[ WLESmE vk ] a -
,,,,,,,,,, er | |rameDEHe Stustion
Stustian
deteabesTo e e
1 ! sen Status
D o H
S, s iy H
deleghe:To : "
WWLGBenchmarkAgent ol Track
— [ WG Bercimarkaget]
[ WLGTrigger

Bum

Track =0
) ) X % [WSTiger |
i

G timerBenchmarkReguest
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Challenge 3: Non-Intrusive Benchmarking & Evaluation

Context

* The SLICE scenario of MLRM is
composed of multiple
components deployed over
multiple nodes

» Each component, including
components in assemblies, must
be monitored & evaluated

= .

E%L .II—F\IZ i . -
I;] Target Infrastructure u
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Challenge 3: Non-Intrusive Benchmarking & Evaluation

Context

Collects all the metrics for experim@ « The SLICE scenario of MLRM is
—F i composed of multiple
B,
i components deployed over
multiple nodes

& « Each component, including
components in assemblies, must
be monitored & evaluated

Problem

* Collecting data from each
component without interfering
with emulation

+ Collecting data without unduly
perturbing operational
performance measures
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Solution: Decouple Emulation & Benchmarking

» CUTS environment is decoupled
into two sections

— Emulation & benchmarking Emulation

Benchmarking
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Solution: Decouple Emulation & Benchmarking

* CUTS environment is decoupled
into two sections

— Emulation & benchmarking

» Data acquisition done in two
phases at lower priority than
emulation —

1.BenchmarkAgent collects i
performance metrics -

2.BenchmarkAgent submits r“'_
data to =
BenchmarkDataCollector at
user-defined intervals

L e

Each CoWorkEr has
a BenchmarkAgent
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Solution: Decouple Emulation & Benchmarking
* CUTS environment is decoupled
into two sections
— Emulation & benchmarking

+ Data acquisition done in two
phases at lower priority than
emulation

1. BenchmarkAgent collects
performance metrics

2.BenchmarkAgent submits

data to - N
BenchmarkDataCollector at P e
user-defined intervals ooy L

* BenchmarkDataCollector stores %“

performance metrics in database
for offline analysis

* Separate networks are used for
CoWorkEr communication &
data acquisition
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Challenge 4: Simplify Characterization of Workload

Context

» People developing & using the SLICE
scenario with CUTS come from
different disciplines

—e.g., software architects, software
developers, & systems engineers

* Many CUTS users may not be familiar
with 3 generation or configuration
languages

—e.g., C++ & Java or XML,
respectively
Problem

* Avoiding tedious & error-prone

manual programming of CoWorkEr
behavior using 3 generation
languages or configuration files

’ The harder it is to program CoWorkErs, the less useful CUTS emulation is... ‘

Solution: Use Domain—Specific Modeling Language

to Program CoWorkEr Behavior

» Workload Modeling Language (WML)
is used to define the behavior of

CoWorkEr components — Baorars B s <24
Fildaa I8 ) 4 .{Jﬂ ’l"r'rf‘:l‘ .!.

T e o

=] B Zmmfi

KNS o LSOt 38 W
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Solution: Use Domain—Specific Modeling Language
to Program CoWorkEr Behavior

« Workload Modeling Language (WML) Start kload
artup workloa

is used to define the behavior of

CoWorkEr components

* WML events represent different types . | Bl

of workloads in CoWorkEr T e
e 8 OB

Event-driven workload
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Solution: Use Domain—Specific Modeling Language

to Program CoWorkEr Behavior

» Workload Modeling Language (WML)
is used to define the behavior of
CoWorkEr components

Workload string

+ WML events represent different types
of workloads in CoWorkEr

+ Actions can be attached to events & | |
specified in order of execution to
define “work sequences”

—Each action has attributes, e.g., B — E!
number of repetitions, amount of ; i ona
. |rPuAHu|
memory to allocate & etc e | e Bt

Attributes for CPUAction
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Solution: Use Domain—Specific Modeling Language
to Program CoWorkEr Behavior

* Workload Modeling Language (WML)  — & B _
is used to define the behavior of et ﬂ JA’ Q

CoWorkEr components B Fe)! Ej : :g _._'_'I‘.'_'} .

I

of workloads in CoWorkEr

» WML events represent different typesl—= r Aoty Momoyocas
;\'II-E"ASSESEIIIBHISIIH[VEHI' count="1% />

« Actions can be attached to events & |
specified in order of execution to
define “work sequences”

“"ALLOGATE' />

="DEALLOCATL® />
Type="CommandSimEvent” dataSre="120" />

—Each action has attributes, e.g., L st
number of repetitions, amount of [
memory to allocate & etc

* WML programs are translated into
XML characterization files

+ Characterization specified in
CoWorkEr & used to configure its
behavior

Model-Driven Development of Distributed Systems 213

Challenge 5: Simplify Component Customization

Context
i
? E G e * By default a CoWorkEr can send &

T ) receive every type of event

; * The SLICE components are all
CommonyLGAssembly different, however, & do not
send/receive the same types of
events

—i.e., each contains a different
composition pertaining to its
specific workload(s)

Problem

* How can we customize CoWorkEr
compilation components to enforce strong type-
checking without requiring time-
consuming modification &
recompilation of components?
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Solution: Customize CoWorkErs at System Modeling Level

* Event sinks of a CoWorkEr
are delegated to the
respective event sources of
the EventHandler

» Events produced by the
EventProducer are delegated
to respective events sources
for a CoWorkEr

* Delegated event sources &
sinks can be removed from
CoWorkEr

—Does not require
recompilation of
components

Custom CoWorkEr

Event sources removed

Event sinks removed

This technique leverages key properties of CCM assemblies, i.e., virtual APIs

Challenge 6: Informative Analysis of QoS Performance

Too much workload? Context

* There are many components in
SLICE & combinations in the
deployment of these components

Problem

» How can we assist users in
pinpointing problematic areas in

— Deployment & configuration
(D&C)?

il

3

Target Infrastructure

Too many components
deployed on a node?
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Challenge 6: Informative Analysis of QoS Performance

Missed deadline

Context
* There are many components in
SLICE & combinations in the
deployment of these components
Problem
* How can we assist users in
pinpointing problematic areas in
— Deployment & configuration
(D&C)?
— End-to-end QoS of mission-
critical paths?

Solution: Present Metrics Graphically in Layers to

Support General & Detailed Information

» BenchmarkManagerWeb-interface
(BMW) analyzes & graphically
displays performance metrics

ol = L5093
Mg Benchmark Manager Web
?’/_-:\.- Tests
e o]
* B i peplegmest e e ot e
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anmatrte
L I e L | |
P L e
-
G semplete (] 8
ammptete
tmmpiets

u reads metrics

= |displays  Bmw

Web service
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Solution: Present Metrics Graphically in Layers to

Support General & Detailed Information

* BenchmarkManagerWeb-interface
(BMW) analyzes & graphically
displays performance metrics

» General analysis shows users

overall performance of each
CoWorkEr

General analysis of actions

BMW General Time Data

—e.g., transmisssion delay &
processing

CoWorkEr

Erol

bl loh Vandarbi B4y Command EDvinctor-y  Haaimiisin

Fuent -3 WiG Workload  Timeline Snapsbaia §00 - Avaffiew benrese et
ai 1

ai 1 is i
i [ i 4
teCemcar-d s ?
[T »

LTI I ]

0984
[T T i
066738 4 1
M am

aooMa o 1
[Tt 1
Iien nar ]

Trasmanon

farteh £y Command treDetnctor

slay
Enbiteitied  Ta Witkad

EESE SIS S EEEEEEEEESEEEE
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Solution: Present Metrics Graphically in Layers to

Support General & Detailed Information

* BenchmarkManagerWeb-interface
(BMW) analyzes & graphically
displays performance metrics

» General analysis shows users
overall performance of each
CoWorkEr

—e.g., transmisssion delay &
processing
* Detailed analysis shows users the
performance of an action in the
respective CoWorkEr
—e.g., memory & CPU actions,
event handling & etc

Timing Variation for Total Workload for A nfigQ
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Solution: Present Metrics Graphically in Layers to

Support General & Detailed Information
* BenchmarkManagerWeb-interface
(BMW) analyzes & graphically Green means end-to-end
displays performance metrics deadline met
» General analysis shows users

overall performance of each
CoWorkEr

—e.g., transmisssion delay &

processing g

« Detailed analysis shows users the — _
performance of an action in the B | ISt

respective CoWorkEr 5

—e.g., memory & CPU actions,

event handling & etc R

« Critical paths show users end-to-

end performance of mission-critical I ——

operational strings

]
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Applying CUTS to the SLICE Scenario

Using ISISLab as our target infra-
structure in conjunction with CUTS

1.Use PICML to define & validate e
infrastructure specifications & !
requirements

2.Use WML to define & validate

application specifications & Express &
requirements Validate
Design
3.Use DAnCE to deploy component Rules

emulators on target infrastructure Conduct

4.Use BMW to evaluate & verify QoS Xxgry‘s';
performance

5.Redefine system D&C & repeat

www.dre.vanderbilt.edu/ISISlab/
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Defining Components of SLICE Scenario in PICML for CUTS

Customized
CoWorkEr

* Each component in
SLICE is defined as a
CoWorkEr

* The default CoWorkEr is
customized to handle ; 1
events specific to its e 1 i L ol |
representative SLICE = = 77 W2 s, Y i N [r—

component | l - _ ! _.:__:
« Each CoWorkEr is ; T

assigned a unique user- J —-_.L l:_ﬂf! ?L l'-J 5

defined ID number - “[ | rpemrmre 3 ;-

* The benchmark data P
submission rate is set to Sl s
15 seconds

timerBenchmarkRequest

Defining Behavior of SLICE Scenario Components using WML

Effector 1 & Effector 2
Workload CPU: 25 reps =
performed every | PUBLISH: STATUS — SIZE 32 [ﬁ Pty CPur  Odpdtvin
second G
Workload CPU: 25 reps L ewsrfuany ol oumiten
performed after PUBLISH: STATUS - SIZE 256 T
receipt of .-.mge.-l
command event
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Recap of Questions We Wanted to Answer

I 1. Can we meet the D&C & performance
requirements?

2. Are there multiple deployments that meet
the 350ms critical path deadline?

* e.g., which yields most headroom?

3. Can we meet D&C & performance
requirements using a single host?

Target Infrastructure

To answer these questions we ran 11 tests using different CoWorkEr D&C’s
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SLICE Scenario Results: Meeting D&C & QoS Requirements

Deployment Table

Node 1
9 sensor 1 & planner 1 | planner 2, configuration, | sensor 2, error recovery &
& effector 1 effector 2

Planner 2 takes the Iongestj

to process workload
Average Critical Path Time 251ms, De S

4 8 2 &

21 ]

[ Command [ EnvDetector-1 O Track [JPlan-1
[ ConfigOptimization [ Comman d [ Effector-1 1 Deadine [l Headroom

Critical Path Timing Information for Test 9

[ situation O Planez [ Assessment ‘

’ “What if” planner-2 is put on Node 3, which has no critical path components? ‘
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SLICE Scenario Results: Meeting D&C & QoS Requirements

Deployment Table

10 |sensor 1 & planner 1 | configuration & effector 1 | planner 2, sensor 2, error
recovery & effector 2

Planner 2 takes the longest Better performance

to process workload
ritical Path Time 235ms, Deadline 350ms

[ stuntion M2 [] dssmssmert

[ ] Command [ ] Ernvtsetacter-1 [ Track [ ]#tan-t
W resdoon

[ <onhigtptmzation O cormnand [m e [ BN
Critical path timing information for Test 10
Node 3 is “saturated” with non-critical path components, “what if’ we
evenly distribute critical path workload on collocated components?
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SLICE Scenario Results: Meeting D&C & QoS Requirements

Deployment Table

11 | sensor 1, planner 1 | planner 2 & effector 1 sensor 2, error recovery &

& configuration effector 2

EWorst case passed

Worst Case Critical Path Time 343ms, Deadline 350ms

05e

- = " W 0 ©
3 a = & g @

se
0L
o1

‘ [ comman: d [ envDetectar-1 rrack [JPlan-1 [ situatian O rlan-2 [ Assessment: ‘

[ ConfigOptimization [ Comman d [ Effector-1 [l Deadine [l Headroom

Critical path timing information for Test 11
’ We were able to answer the critical path & deployment questions ‘
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SLICE Scenario Results: Meeting D&C & QoS Requirements

Deployment Table

Test Node 1 Node 2 Node 3
9 sensor 1 & planner 1 | planner 2, configuration, | Sensor 2, error re
& effector 1 recovery & effector 2
10 |sensor 1 & planner 1 | configuration & effector | planner 2, sensor 2, error
1 recovery & effector 2
1 sensor 1, planner 1 planner 2 & effector 1 sensor 2, error recovery &
& configuration effector 2

* Test9, 10 & 11 meet the
performance requirements for the
average execution time of the
critical path

Deployment of Critical Path on Multiple Nodes

» Test 11 meet the performance
requirements for worst execution
time

Completion
Time of Critical
Path (ms)

w ~
(42 o
o o o

©

10 1"

» We did not exhaustively test all Test
D&C'’s, but that could be done also

‘l Avg. Time @ Worse Time ‘
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SLICE Scenario Results: Single Host Deployment

Deployment Table

4 | All components (nothing) (nothing)

Deployment of Critical Path on Single Node

Test 4 had a average
time of 490 ms

B Avg. Time @ Worse Time ‘ ‘

£ 5 5 1400
S 2 £ 1050 -
Toe 700-
£ EE 350
6oF 0 -

4

Test Number

We were able to answer the question about deploying on a single node
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Overall Results of SLICE Scenario

SLICE Test Results

Passed

Test 11 produced the best results
» Average case: 221 ms

Faile * Worse case: 343 ms
64%

Population size of 11 tests
. OnIy4 of 11 Results of SLICE Scenario
deployments met
the 350 ms critical
path deadline for
average-case time

* Test 11 only test to
meet critical path

deadline for worst-
case time ‘l Avg. Time @ Worse Time ‘

1400
1050 +

700 +
o CIriir
04
1 2 3 4 5 6 7 8 9 10 11
Test Number

Critical Path
Completion Time (ms)
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Lessons Learned

» SOA middleware technologies

allowed us to leverage the behavior P oo O -

& functionality of target architecture serior . error acovery, / eteqior

for realistic emulations ’—;\V/pla’n'ner plariper \,-.-. ——
« SOA technologies allowed us to songor | L conguriton _ pgetr

focus on the “business” logic of e " R piaiy

CoWorkErs {E— - 3

—e.g., D&C handled by underlying
MDD & middleware technology

— ; —
Sespurce Pogl Layer o

,,,,,,,,

e Target Infrastructure
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Lessons Learned

+ SOA middleware technologies
allowed us to leverage the behavior

& functionality of target architecture .
for realistic emulations increased # of tests

» SOA technologies allowed us to
focus on the “business” logic of
CoWorkErs

—e.g., D&C handled by underlying
MDD & middleware technology

+ CUTS allowed us to test
deployments before full system
integration testing

* CUTS allowed us to rapidly test N i SSp—
deployments that would have take g
much longer using ad hoc PR
techniques e —

—e.g., hand-coding the D&C of

— ,__\  P—

N - N A
sensor . T m. orror recovery™._ effector
] -
.~ planner  planner . [mm— o —
’ N

Sensor configuration effector

Level of Abstraction

components Development Timeline
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Summary

* We motivated the need for the
Component Workload Emulator

(CoWorkEr) Utilization Test Suite |~~~ NFE-—
(CUTS) ' . = : kg

+ We presented a large-scale DRE ki -
system example that used CUTS to —
evaluate component D&C before I r S —
complete integration - \EJ' — l

ESpUrce Fool Layer

» We presented the design & f ~— -~
implementation of CUTS, along with - Py i
the design challenges we faced — —

» CUTS is being integrated into the
open-source CoSMIC MDD
toolchain

— www.dre.vanderbilt.edu/cosmic

Target Infrastructure

www.cs.wustl.edu/~schmidt/PDF/CUTS.pdf
www.cs.wustl.edu/~schmidt/PDF/QoSPML-WML.pdf

Model-Driven Development

of Distributed Systems CON TE N TS
|

Introduction & Motivation

Definition of Terms

Architecture-Centric MDD & Cascading

Role of Frameworks & Patterns in the Context of MDD
Model-to-Model Transformations

An Architectural Process — A Case Study

Examples of Applying MDD Tools: openArchitectureWare
A Metamodel for Component-based Development

System Execution Modeling Tools: GME, CoSMIC, & CUTS

Product-line Architecture Case Study

e Summary

-G véiter)

Case Study Example: Boeing Bold Stroke

Nav Sensors | [ Vehicle I Mission | Data Links \ §
g Computer \ <

I T I
,’/ \ 0 t
* Avionics mission computing product-line

Bold Stroke \ . . .
architecture for Boeing aircraft

Architecture | \
*DRE system with 100+ developers, 3,000+
\ software components, 3-5 million lines of C++

5:2%33;2'& @ @ %§
, ‘5&\\

\
\

*Based on COTS hardware,
~ networks, operating

y systems, languages, &

/ p ~ middleware

[mlon Computing Service# ]
Q 1

Middleware Infrastruc
<[ Operating System I ‘ ‘

~ Networking Interfaces I 4
Hardware (CPU, Memory, 1/0) } it
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Applying COTS to Boeing Bold Stroke

COTS & standards-based middleware,

/—“‘ mew_ ( \] language, OS, network, & hardware
[ o J _”““““‘f_ --|~ = platforms
[;m » Real-time CORBA middleware services

i) (2|« ADAPTIVE Communication
' Environment (ACE)

* C++/C & Real-time Java

* VxWorks operating system
* VME, 1553, & Link16
* PowerPC

www.cs.wustl.edu/
~schmidt/TAO.html
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Benefits of Using COTS

munn J n;:"—"’- |( SERVER \
S ’ «Save a considerable amount of
time/effort compared with

handcrafting capabilities

*Leverage industry “best
practices” & patterns in pre-
packaged & ideally standardized
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Limitations of Using COTS

/ - * QoS of COTS components is not
[ cuieNt J Py | servir \ always suitable for mission-critical
T e . systems

REAL-TIME ORB CORE T8 e 1]
ESIOPs

» COTS technologies address some, but
not all, of the domain-specific
challenges associated with developing

mission-critical DRE systems

What we need is a reuse

technology for organizing

& automating key roles &
responsibilities in an
application domain
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Motivation for Product-line Architectures (PLAS)

Air Air

HUD

Nav Frame Nav HUD
AP %uk AP @LIR
IFF 'GPS Fr‘;:‘e IFF
o A
Aty
Cyclic Cyclic %IS‘
Exe! FIA18 Exec UCAV
Legacy DRE systems have
historically been: Consequence:
. Stovepiped Small HW/SW

« Proprietary changgs hqve big
) ) (negative) impact
* Brittle & non-adaptive on DRE system
* Expensive QoS & maintenance
* Vulnerable
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Motivation for Product-line Architectures (PLAS)

~ T Fats
AV 8-B product
%Z?:'_ﬁt variant UCAV
F-15 A product
4 ir 1 variant
roduct ” /
?/ariant 2 ﬁ R /MS ’ Fram; ]
HUD ~ GPS
‘ /4 ‘ / Moo
07t [ Domain-specific Services
E=c i e Services | / 7 ‘
( B [ Distribution Middleware  }
= %
[ Host Infrastructure Middleware Product-ine
[ 0OS & Network Protocols ’ architecture

[_ Hardware (CPU, Memory, I10) ]

* Frameworks factors out many reusable general-purpose & domain-
specific services from traditional DRE application responsibility

« Essential for product-line architectures (PLAs)
* Product-lines & frameworks offer many configuration opportunities

* e.g., component distribution & deployment, user interfaces & operating
systems, algorithms & data structures, etc
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Overview of Product-line Architectures (PLAS)

* PLA characteristics are *Applying SCV to Bold Stroke
captured via Scope, « Scope defines the domain & context of
Commonalities, & the PLA
Variabilities (SCV) analysis
* This process can be applied
to identify commonalities &
variabilities in a domain to
guide development of a PLA

* Bold Stroke component architecture,
object-oriented application frameworks,
& associated components, e.g., GPS,
Airframe, & Display

Reusable Application |
Components | ™.,

Reusable Architecture | y {/7/ "’““’(1
Framework |, , , y
P I’ L Domain-specific Services /w_] 7//
[/ Common Middleware Services ‘[ ]
[ Distribution Middleware :|

[[_Host Infrastructure Middleware J
[7 OS & Network Protocols |

ﬁ / “enir
— //’ . FLIR AP/ Frame~ )
LLL &8 7 2 i) )
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Applying SCV to the Bold Stroke PLA

«Commonalities describe the attributes that are common across all
members of the PLA family

+Common object-oriented frameworks & set of component types
* e.g., GPS, Airframe, Navigation, & Display components

«Common middleware

infrastructure ‘ l l : : ‘
* e.g., Real-time s e i .
. Ispla Irame eads
CORBA & a Va“ant Component Com;)onyent Component D\splayp
of Lightweight - : /,
AN 7 / /
CoRsacomponent e Ef I
o el ( ) calle LA, /X L Z 7 A
Prism M Bold Stroke Common Components | ‘/

Domain-specific Services ]

[
] ﬂ Common Middleware Services ]
[ Distribution Middleware ]
(-
{
b

Host Infrastructure Middleware |
OS & Network Protocols ] ]
Hardware (CPU, Memory, 1/0) |
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Applying SCV to the Bold Stroke PLA

« Variabilities describe the

i . . aps Displa Airframe Heads U
att”butes un|que to the d|fferent Component CompZnim Component D\splayp
members of the family /

*Product-dependent component
implementations (GPS/INS)

Bold Stroke Common Components I

*Product-dependent component ces-zon: - erenaee ePs-2otz
connections N %é% P Ney P
HUD LIR AP LIR | AP %LIR
*Product-dependent component  * @Ps eps wE| huo e
assembilies (e.g., different FIA 18 F F 15K ucAv
weapons systems for different t’%‘ -y ey 4
customers/countries) R s g

«Different hardware, OS, &

z 7 1 ”
L 20 ) L)

. . :
network/bus configurations s [ 7
Patterns & frameworks are N e ServicosHill |
. g ¢ Distribution Middleware ( /
essentlal for developlng [ﬂostlnfrastructure Middleware V4
reusable PLAs - [ OS&NetworkProtocols  }
[ Hardware (CPU, Memory, I0) ] W

74

7
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Applying Patterns & Frameworks to Bold Stroke

4 N

Reusable object-oriented application
domain-specific middleware framework

+Configurable to variable infrastructure
configurations

*Supports systematic reuse of mission
computing functionality

*3-5 million lines of C++

*Based on many architecture & design
patterns

Networking Interfaces

dware (CPU, Memory, |/

Patterns & frameworks
are also used
throughout COTS
software infrastructure
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Legacy Avionics Architectures

Key System Characteristics
*Hard & soft real-time deadlines
*~20-40 Hz
*Low latency & jitter between
boards
*~100 usecs
*Periodic & aperiodic processing
*Complex dependencies
*Continuous platform upgrades

f Avionics Mission \

Computing Functions

*Weapons targeting
systems (WTS)

+Airframe & navigation
(Nav)

*Sensor control (GPS,
IFF, FLIR)

*Heads-up display
HUD

(HUD)
+Auto-pilot (AP) J

(] 1:Sensors

4: Mission
functions
perform
avionics
operations

3: Sensor
proxies
process data
& pass to
missions
functions

2: 1/0 via
interrupts

generate
data
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Legacy Avionics Architectures

Key System Characteristics
*Hard & soft real-time deadlines
+~20-40 Hz
*Low latency & jitter between
boards
*~100 usecs
*Periodic & aperiodic processing
*Complex dependencies
*Continuous platform upgrades

Limitations with Legacy Avionics
Architectures

»Stovepiped

*Proprietary

*Expensive

*Vulnerable

* Tightly coupled

*Hard to schedule

* Brittle & non-adaptive

f Air \ 4: Mission
Nav  Frame tg functions

perform
AP FLIR avionics
operations
GPS '&=—_ —X

[ 3: Sensor
proxies
process data
& pass to
missions
functions

J 2: /0 via

interrupts

1: Sensors
generate
data

Decoupling Avionics Components
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Context Problems Solution
+1/O driven DRE +Tightly coupled *Apply the Publisher-
application components Subscriber architectural
+Complex +Hard to schedule pattern to distribute periodic,
dependencies . - |/O-driven
Real-ti Explenswe to data from a single point of
ea:[ "T‘e; evolve source to a collection of
constraints consumers
Structure Dynamics

Publisher H Event Channel |_| Subscriber l : Publisher ‘ | : Event Channel | l : Subscriber ‘
attachPublisher .

A detachPublisher consume attachSubscriber
attachSubscriber produce “Evert
detachSubscriber RS - Event
pushEvent ! pushEvent

77777777777 . — event
: : iushEvent
creates . receives consume
4 ' V. >
Event Filter
filterEvent detachSubscriber
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Applying the Publisher-Subscriber Pattern to Bold Stroke

Bold Stroke uses the Publisher-
Subscriber pattern to decouple sensor
processing from mission computing
operations

* Anonymous publisher & subscriber
relationships

* Group communication
* Asynchrony

Considerations for implementing the
Publisher-Subscriber pattern for

mission computing applications include:

* Event notification model
*Push control vs pull data interactions
» Scheduling & synchronization strategies
*e.g., priority-based dispatching &
preemption
» Event dependency management

+e.g. filtering & correlation mechanisms

- 5: Subscribers
f Subscribers \ perform
WTS avionics

operations

h

: Event Channel
pushes events

\

to
subscribers(s)

@

: Sensor
publishers
push events
to event
channel

1: Sensors
generate
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Ensuring Platform-neutral Inter-process Communication

Context Problems Solution
*Mission *Applications need capabilities to: *Apply the Broker
computing « Support remote communication architectural pattern

requires remote

IPC

«Stringent DRE

requirements

*Provide location transparency
*Handle faults

*Manage end-to-end QoS

* Encapsulate low-level system details

to provide platform-
neutral comms
between mission
computing boards

Client Proxy Server Proxy
marshal Structure marshal
unmarhal unmarshal
receive_result dispatch
service_p * 1 . | receive_request

« | calls NIEEREI Y main_loop message * | calls

exchange EWACE[S el (ely) exchange
1 srv_lookup 1
- xmit_message Server
Client manage_QoS
- — start_up

call_service_p main_loop
start_task service_i
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Ensuring Platform-neutral Inter-process Communication

Applying the Broker Pattern to Bold Stroke

Solution

*Apply the Broker
architectural pattern

Bold Stroke uses the Broker pattern
to shield distributed applications
from environment heterogeneity,

Subscribers \
WTS

-m Air
Frame

Context Problems

*Mission * Applications need capabilities to:
computing * Support remote communication
requires remote * Provide location transparency
IPC +Handle faults

+Stringent DRE

*Manage end-to-end QoS

to provide platform-
neutral comms
between mission

e.g.,
*Programming languages

Event
Channel

requirements

* Encapsulate low-level system details

computing boards

| : Client |

| : Client Proxy |

operation (params)

register_service

. Server Proxy

[: Server |

start_up

Dynamics

connect

| ] marshal
send_request

assigned
port

:| unmarshal
:|dispatch

operation (params)

receive_reply

|| unmarshal

T
festht

marshal

resutt™ "

Model-Driven Development of Distributed Systems 251

*Operating systems
*Networking protocols
*Hardware

A key consideration for
implementing the Broker pattern
for mission computing applications
is QoS support

*e.g., latency, jitter, priority
preservation, dependability,
security, etc

6: Subscribers
perform
avionics
operations

S,

: Event Channel
pushes events
to subscribers(s)

4: Sensor
publishers
push events
to event
channel

@

: Broker
handles I/O
via upcalls

2: /0 via interrupts

-

: Sensors
generate
g, data
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Benefits of Patterns

Limitations of Patterns

« Enables reuse of software
architectures & designs

* Improves development team
communication

» Convey “best practices” intuitively

» Transcends language-centric
biases/myopia

* Abstracts away from many
unimportant details

www.cs.wustl.edu/
~schmidt/patterns.html

* Require significant tedious &
error-prone human effort to
handcraft pattern
implementations

+ Can be deceptively simple

* Leaves many important details
unresolved

We therefore need
more than just
patterns to achieve
systematic reuse

www.cs.wustl.edu/
~schmidt/patterns.html
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Applying Frameworks to Bold Stroke

Limitations of Frameworks

Application-specific functlonallty Framework benefits &

‘ l characteristics

«Frameworks exhibit
Networking

Route « . »
p.ann.ng Heads u inversion of control” at
D'SP"V runtime via callbacks

*Frameworks
provide integrated
domain-specific
structures &
functionality

(eal time
Database

*Frameworks are
“semi- complete”
applications

www.cs.wustl.edu/
~schmidt/ACE.html

» Frameworks are powerful, but can be

\ hard to develop & use effectively

« Significant time required to evaluate
applicability & quality of a framework for a
particular domain

» Debugging is tricky due to inversion of
control

* V&V is tricky due to “late binding”

» May incur performance degradations due
to extra (unnecessary) levels of
indirection

We therefore need
something simpler than
frameworks to achieve

systematic reuse

www.cs.wustl.edu/
~schmidt/PDF/Queue-04.pdf
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Applying Component Middleware to Bold Stroke

/ Positioning Unit \ Product-line component model
i1 1 . e
l" ’"’::J = ,:“i..}&":i“‘“’“‘* + Configurable for product-specific
= e ~—* functionality & execution environment
[ mstrament Giaster | + Single component development policies
{D_“—E » Standard component packaging
\ l_w mechanisms

+ 3,000+ software components
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Benefits of Component Middleware

*Creates a standard *Define standard * Specify the infrastructure
“virtual boundary” around container mechanisms needed to configure &
application component needed to execute deploy components
implementations that components in generic  throughout a distributed
interact only via well- component servers system

defined interfaces

04@

|,

» -t D

Container
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Limitations of Component Middleware

/ \ +Limit to how much application
| DRE Applications ‘ functionality can be refactored into
reusable COTS component

Middl .
middleware

Middleware

Operating System
& Protocols
Hardware &
K Networks

Limitations of Component Middleware

/ \ Limit to how much application
functionality can be refactored into
reusable COTS component
Load Balancer Workload & .
FT CORBA middleware
Connections & . .
RT/DP CORBA + DRTSJ -Middleware itself has become hard to

ava
i Network latenc:
IntServ + Diffserv m
L}

(Hardware (CPU, Memor
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Limitations of Component Middleware

/ \ *Limit to how much application

functionality can be refactored into
reusable COTS component
middleware

*Middleware itself has become hard to
provision/use

+Large # of components can be
tedious & error-prone to configure &
deploy without proper integration tool

Limitations of Component Middleware

/ \ Limit to how much application
N | | e ove. functionality can be refactored into
reusable COTS component
middleware

J2ME

DRTSJ
Services Services

RT-CORBA
Services

*Middleware itself has become hard to
provision/use

RT-CORBA J2ME DRTSJ

Operating System
& Protocols

Large # of components can be

tedious & error-prone to configure &
deploy without proper integration tool
support

Hardware &
Networks

* There are many
middleware technologies
to choose from
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Model-driven development
(MDD)

* Apply MDD tools to
* Model

Instrument Cluster M Analyze

* Synthesize

GUiDplay

* Provision

<CONFIGURATION_PASS>
<HOME>
<.>

middleware & application
components

SEvent suppLieR>
« Configure product-specific
component assembly &

deployment environments

<JHOME>
<ICONFIGURATION_PASS>

*Model-based component
integration policies

www.isis.vanderbilt.edu/

projects/mobies

Applying MDD to Boeing Bold Stroke

EMBEDDED PLATFORM MODEL

UML/Rose Avianics Mission Contral Architecture
ESML/GME ~ o PowerPC/
PICML/GME — ACE+TAO/
—t o S BOLD-
i a = - STROKE
APPLICATION MODELING TOOLS

Formal mission specs,
subsystem models, &
computational constraints
are combined into integrated
MDD tool chain & mapped to
execution platforms

Interaction is based on
mission-specific
ontologies & semantics

CIC++

sMmv

SPIN
Real-time Java
Ptolemy

CODE GENERATORS

Statecharts

Ptolemy
Simulink
XML

www.rl.af.mil/tech/
programs/MoBIES/
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— . Benefits of MDD
w:alvn Comptiting
Modeling Languages « Increase expressivity
_ * e.g., linguistic support to better capture
r - ilmpa design intent
. - = Wi 2.7 < Increase precision
ﬂ * e.g., mathematical tools for cross-domain
et )) modeling, synchronizing models, change
propagation across models, modeling
security & other QoS aspects
;.) + Achieve reuse of domain semantics
h -y » Generate code that's more “platform-

_J“" e ! ? independent” (or not)!

» Support product-line
% architecture development
S50 7 L Lo & evolution

ardware (CPU, Memory, I/
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Limitations of MDD

Model & Component
Library

*Modeling technologies
are still maturing &
evolving

* i.e., non-standard
tools
*Magic (& magicians) are

Networking Interfaces still necessary for
ardware (CPU, Memory, I/ i success
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Model-Driven Development

of Distributed Systems CON TE N TS
o]

Introduction & Motivation

Definition of Terms

Architecture-Centric MDD & Cascading

Role of Frameworks & Patterns in the Context of MDD
Model-to-Model Transformations

An Architectural Process — A Case Study

Examples of Applying MDD Tools: openArchitectureWare
A Metamodel for Component-based Development

System Execution Modeling Tools: GME, CoSMIC, & CUTS
Product-line Architecture Case Study

® Summary

DRGHO vélter)

Open MDD R&D Issues

» Accidental Complexities * Inherent Complexities

* Round-trip engineering from » Capturing specificity of target domain

models «> source » Automated specification & synthesis of

* Mismatched abstraction levels

* Model interpreters
for development vs debugging B

. s * Model transformations
» Tool chain vs monolithic tools

* Broader range of application

» Backward compatibility of capabilities

modeling tools
+ Static & dynamic QoS properties

+ Standard metamodeling
languages & tools » Migration & version control of models
* Scaling & performance

« Verification of the DSLs

Solutions require validation on large-scale, real-world systems
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Current Status & Available Tools

* Today’s MDD tools can be used productively — although sometimes
some “magic” is necessary

» Today’s problem is not really that we need better tools, per se, we
rather need more experience with existing tools!

+ Standardization efforts are slowly coming to fruition: EMF/GMF, QVT,
MIC, etc.

Start today — it will make you more productive

*« CoSMIC & CUTS is available from
www.dre.vanderbilt.edu/cosmic

* GME is available from
www.isis.vanderbilt.edu/Projects/gme/default.ntm

» openArchitectureWare is available from
www.openarchitectureware.org
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What We Hope You Learned Today!

» Key MDD concepts & what kinds of domains &
problems they address

» What are some popular MDD tools & how they work

* How MDD relates to other software tools &
(heterogeneous) platform technologies

» What types of projects are using MDD today & what
are their experiences

» What are the open issues in MDD R&D & adoption

» Where you can find more information
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Questions?

SOuVENEZ-Vous/ o
LA SEULE CHOSE QUE NOUS
AYONS A CRAINDRE, CEST
QUE LE CIEL NOUus ToMmBE
SUrR LA TETE/
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