Documenting Software Architectures [EESES

Software Architecture
Documentation In the Real World
OOPSLA 2007 Tutorial

Copyright is held by the author/owner(s). Markus VOIter

OOPSLA 2007, October 21-25, 2007,
Montréal, Québec, Canada. voelter@acm.org

ACM 07/0010. www.voelter.de

© 2007 Markus Volter

ingenieurbiro fur softwaretechnologie www.voelter.de

Documenting Software Architectures A

About me

volter

ingenieurbiiro fiir softwaretechnologie

® Independent Consultant Markus Volter
. voelter@acm.org
® Based out of Goeppingen, www.voelter.de
Germany
® Focus on

® Model-Driven Software
Development

® Software Architecture
® Product Line Engineering

www.voelter.de -2 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures A

® Documenting Software Architectures
® (Structured) Glossaries
® Patterns and the Pattern Form
® Pattern Languages
® Tutorials and FAQs
® Diagramming and Modeling
® Channels
® What about Code?
® Specifics for Product Lines & Platforms

® |ayout and Typography
® Diagramming Guidelines
® Summary

ingenieurbiro fur softwaretechnologie www.voelter.de -3 - ©2007 Markus Vélter

C I pnr~nwv N\ v~
) Ltvvail © A1 U

I~ +
Vil 1

|r-\
(|

1~ P +Ar\+]
P U iteCau

=

1a

® Documenting Software Architectures
® (Structured) Glossaries
® Patterns and the Pattern Form
® Pattern Languages
® Tutorials and FAQs
® Diagramming and Modeling
® Channels
® What about Code?
® Specifics for Product Lines & Platforms

® |ayout and Typography
® Diagramming Guidelines

® Summary

P

Documenting Software Architectures A

er

ingenieurbtro fir softwaretechnologie www.voelter.de

© 2007 Markus Volter

Documenting Software Architectures | o

What is Software Architecture

Wikipedia:

The software architecture of a program or computing
system is the structure or structures of the system, which
comprise software elements, the externally visible
properties of those elements, and the relationships
between them.

Eoin Woods:
Software architecture is the set of design decisions which,

If made incorrectly, may cause your project to be
cancelled.

Hayes-Roth:
The architecture of a complex software system is its "style
and method of design and construction”.

ingenieurbiro fur softwaretechnologie www.voelter.de -5 - ©2007 Markus Vélter

Documenting Software Architectures | o

What is Software Architecture 11

® Boehm, et al., 1995:
A software system architecture comprises

® A collection of software and system components,
connections, and constraints.

® A collection of system stakeholders' need statements.

® A rationale which demonstrates that the components,
connections, and constraints define a system that, if
Implemented, would satisfy the collection of system
stakeholders' need statements.

'Y o VS =

ULl .

Architecture is everything that is expensive to change
later.

® Mine:
Everything that needs to be consistent throughout a
software system

www.voelter.de -6 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures | o

Architecture/System Categories — Focus

® Small, ad-hoc systems typically developed by small
teams

® [arge systems, that are developed by larger teams,
typically long-lived, strategic

® Product Lines & Platforms, i.e. base architectures on
top of which a family of systems is built often by several
teams, strategqic

® We will primarily focus on large systems & product
lines — since for small ad-hoc systems architecture
documentation is often not essential

ingenieurbiro fur softwaretechnologie www.voelter.de =7 = ©2007 Markus Vélter

Aspects of Software Architecture

Documenting Software Architectures 5

® This diagram outlines a number of terms and concepts
we will use in the rest of this presentation.

Application

Programming Model

Conceptual Architecture

Technology Mapping

Implementation
Technologies

Language(s)

ingenieurbiro fur softwaretechnologie www.voelter.de

© 2007 Markus Volter

Documenting Software Architectures [ESESEsE

Application vs. Conceptual Architecture

® Any non-trivial, well-architected system typically consists
of many instances of a limited set of concepts.

® Components & Connectors, Pipes & Filters, Layers, etc.
® Architectural Patterns & Styles are good starting points

® We call these limited set of concepts and their
relationships the conceptual architecture

® The concrete instantiation of these concepts used to build
a specific application is called the application
architecture

® A well-defined conceptual architecture is essential for
large systems and product lines — to make sure the
system(s) is/are
® internally consistent
® understandable

® cvyolvable

www.voelter.de -9 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures & A

Application vs. Conceptual Architecture 11: Examples

Application Architecture:

We want to build an enterprise system that contains
various subsystems such as customer management,
billing and catalogs. In addition to managing the data
using a database, forms and the like, we also have to
manage the associated long-running business
processes.

Conceptual Architecture:

Core building blocks are components, interfaces, data
types, business processes and communication
channels. Communication is synchronous and local.
Communication to/from processes is asynchronous and
remote. Components are deployed/hosted in some kind
of container that takes care of the technical concerns.

www.voelter.de -10 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures & o

Conceptual Architecture vs. Technology Decisions

® A conceptual architecture should be as independent of
specific technology decisions as possible (POJOSs)

® Technologies include OS, DOC or Messaging Middleware,
drivers, Ul frameworks

® We do not aim to abstract away languages or paradigms

® The mapping to a specific technology (or several
technologies) should be specified in a separate step

® The mapping should be guided by non-functional and
operational requirements that are specified as part of
the conceptual architecture

® This approach is essential to make sure the technological
aspects are well isolated:

® to be able to exchange some of the technologies

® to simplify application development by isolating it as
far as possible from the details of the technologies

www.voelter.de -11 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures | o

Conceptual Architecture vs. Technology Decisions: EX.

® Components are implemented as stateless session
beans with local interfaces only.

® Processes are implemented as message driven beans;
messaging is implemented via a JMS implementation.

® Data structures and process state are persisted into a
relational database using JPA-based persistence.

® \We use JBoss as the J2EE container to host the
application components.

® Oracle 1s used as the database.

ingenieurbiro fur softwaretechnologie www.voelter.de -12 - ©2007 Markus Vélter

Documenting Software Architectures | o

Conceptual Architecture vs. Programming Model

® The conceptual architecture and its concrete technological
realization can be quite complex — in order to satisfy all
the (non-functional) requirements

® Application developers have to be given a well-defined
programming model that makes application
development based on the architecture as straight forward
as possible

® “Make typical cases simple, and exceptional cases
possible”

® The programming model should hide as much of the
technology as possible — and make the conceptual
architecture accessible

® |t can be seen as the “architecture API”

ingenieurbiro fur softwaretechnologie www.voelter.de -13 - ©2007 Markus Vélter

Documenting Software Architectures A

Conceptual Architecture vs. Programming Model: Example

® How do | write a component?

® How do | specify a process”?

® How do | instantiate a data object?

® How do | use channels for communication?

® How do | send events to a process?
® How do | pass data along?

® What are the services the container will provide for me?

® Which features of the Java programming language can |
not use”?

ingenieurbiro fur softwaretechnologie www.voelter.de -14 - ©2007 Markus Vélter

Documenting Software Architectures &

Conceptual Architecture vs. Programming Model: Example I

® A component:

public @component class AddressManager
implements IAddressStore {// provides AddressStore

private IPersonDAO personDAO;

public @resource void setPersonDAO(IPersonDAO d) {
this.personDAO = d; // setter for dao
3} // interface

public void addOrUpdateContact(Person p) {

// from lAddressStore ® A process COmp’tZ

public @process class PaymentProcess
implements IPaymentProcessTrigger {

.

public void addAddress(Person p, Addyq
// from 1Addrg

3} o private ICustomerManager custMgt;
public Address[] getAddresses(Person public @resource void setCustomerManager (
o // from 1Addre ICustomerManager mgr) {
} this_custMgr = mgr;
3} 3

public @trigger void paymentMade(int proclD) {
PaymentProcesslinstance i1 = loadProcess(proclD);
if (amountCorrect()) {
// advance to another state..

}
}

public @trigger void paymentTimeout(int proclD) {
PaymentProcesslnstance 1 = loadProcess(proclD);
. send reminder using the custMgr ...

© 2007 Markus Volter

www.voelter.de

ingenieurbiuro fur softwaretechnologie

Documenting Software Architectures [ESESEsE

Architectural Process

® An architecture (conceptual and application) evolves
over time as we build a system (or over several systems)

® There may be a more or less appropriate initial idea...
® ... maybe based on architectural styles & patterns ...
® ... but it will always evolve over time

® However, at any given time there is the one-and-only
correct architecture

® The notion of what this one-and-only correct architecture
IS changes over time, but at any given time it is well-
defined

® So, it is essential that applications are (in the process of
becoming) consistent with that architecture at any
point in time to keep the system consistent

® |deally you want to “enforce” the architecture via tools...

ingenieurbiro fur softwaretechnologie www.voelter.de - 16 - ©2007 Markus Vélter

Documenting Software Architectures A

What needs to be documented?

® Conceptual level:
® The conceptual architecture
® Stakeholders and their needs
® Rationales why the conceptual architecture is as it is
® The programming model
® The technology mapping

® Application Level.:
® The application architecture
® Stakeholders and their needs
® Rationales why the application architecture is as it is

® We will focus mainly on the conceptual level

ivé@

ingenieurbiro fur softwaretechnologie www.voelter.de -17 - ©2007 Markus Vélter

Documenting Software Architectures A

® Documenting Software Architectures
® (Structured) Glossaries
® Patterns and the Pattern Form
® Pattern Languages
® Tutorials and FAQs
® Diagramming and Modeling
® Channels
® What about Code?
® Specifics for Product Lines & Platforms

® |ayout and Typography
® Diagramming Guidelines
® Summary

ingenieurbiro fur softwaretechnologie www.voelter.de -18 - ©2007 Markus Vélter

Documenting Software Architectures | o

Documentation Fundamentals for all Artifacts

® For each artifact, define and state the target audience —
and make sure the content is relevant to that audience

® Use a suitable medium/channel (see below)
® Document only as little as possible

® Avoid duplication! Document every aspect in one place
only — and use links (not just references!) to connect
related topics

® Just as with code, put documentation into the Version
Control System (and not on some strange Web
Collaboration Platform)

® That’s true for the development of the docs
® There might be a different publishing channel

www.voelter.de -19 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures | o

Documentation Fundamentals for all Artifacts 11

® Always document top down

® provide progressively more details only for those
readers who want to actually know them

® Make sure concepts and the big picture is
understandable without rummaging through all the
details!

® Try to structure an architecture (or at least its
documentation) into layers, or levels, or rings

® First cover only the basic layer
® Then add more and more layers to the picture
® This makes things easier to comprehend

® Visualize! ... see later.

ingenieurbiro fur softwaretechnologie www.voelter.de - 20 - ©2007 Markus Vélter

Documenting Software Architectures A

® Documenting Software Architectures
® (Structured) Glossaries
® Patterns and the Pattern Form
® Pattern Languages
® Tutorials and FAQs
® Diagramming and Modeling
® Channels
® What about Code?
® Specifics for Product Lines & Platforms

® |ayout and Typography
® Diagramming Guidelines
® Summary

ingenieurbiro fur softwaretechnologie www.voelter.de = 2L = ©2007 Markus Vélter

Documenting Software Architectures | o

Glossaries

® A glossary lists the relevant architectural concepts
and their meaning and relationships

® |t is useful to iIntroduce the basic ideas and familiarize
readers with the terms used in the architecture

® To make the glossary less abstract, make sure an
example is provided for each of the introduced terms

® |t can be used for the conceptual architecture and the
application architecture — but it iIs more important for
the conceptual architecture

® Target Audience: Everybody technical

ingenieurbiro fur softwaretechnologie www.voelter.de = 22 = ©2007 Markus Vélter

Glossary Example

Documenting Software Architectures

Data type

Complex Type

Entity

Data Transfer
Object

Interface

Component

Process

Reprezents a certain chunk of data. Data types can
either be simple types (string, int, boolean and the like)
or Complex Types.

A complex data type is basically a lilce a struct in that it
has named and typed attributes. There are two kinds of
complex data types: Entities and Dafa Transfer Chjects

perzistent entities that have a well-defined identity (and
can thus be searched), and that can have relationships to
other entities.

Data transfer objects have no identity and are not
persistent.

A contract that containg a number of operations;
operations are defined in the usual way (parameters,
return type, exceptions)

A component iz a well-defined piece of behaviour. It
does not implement technical concems. Each
component can provide a number of fréerfaces. It can
alzo use a mumber of interfaces (provided by other
components). Components are stateless (i.e. cannot

“remember” things from one invocation to another)

We also explicitly support business processes. These
are considered to be expressable as state machines.
Components can trigger the state machine by supplying
events to them. In turn, other components can be
triggered by the state machine, resulting in the
invocation of certain operations defined by one of their
provided interfaces.

ingenieurbiro fur softwaretechnologie

www.voelter.de

© 2007 Markus Volter

Documenting Software Architectures | o

Structured Glossaries

® Represents the core concepts as a diagram, highlighting
the relationships between the concepts

® UML Class Diagrams are very well suited for this kind of
description

® They are an addition to normal glossaries, not a
replacement, since they don’t explain concepts — they
just show their relationships

® For modelers: these are not the same as meta models,
since they are less formal, less detailed, and generally not
“implementable”

www.voelter.de - 24 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures

Structured Glossaries Example

is of type
Data Type [«
Simple Type Parameter |« Operation [« Interface
has many has many
A A
. uses
Complex Type provides any number
any number

T of of

DTO references Process [« Component
triggers

A

Entity

invokes

© 2007 Markus Volter

ingenieurbiro fur softwaretechnologie www.voelter.de

Documenting Software Architectures A

® Documenting Software Architectures
® (Structured) Glossaries
® Patterns and the Pattern Form
® Pattern Languages
® Tutorials and FAQs
® Diagramming and Modeling
® Channels
® What about Code?
® Specifics for Product Lines & Platforms

® |ayout and Typography
® Diagramming Guidelines
® Summary

ingenieurbiro fur softwaretechnologie www.voelter.de - 26 - ©2007 Markus Vélter

Documenting Software Architectures | o

Referencing Patterns

® If you’re describing a certain software structure, and that
structure has already been documented as a pattern, then
It makes sense to reference that pattern — your readers
might know it!

® There’s a huge body of patterns in the literature, on
topics such as
® Distributed (Object) Systems [POSA2, POSA4]
® Remoting Infrastructures [Remoting Patterns]
® Resource Management [POSA3]
® pPatterns of Enterprise Application Architecture [POEAA]
® Enterprise Integration Patterns [EIP], Integration Patterns

[IP]

www.voelter.de - 27 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures | o

Architectural Patterns

® Architectural patterns can be used to describe well-
working architectural styles and blueprints.

® Many have been described in the POSA series books, for
example, specifically in [POSA1].

® Examples include
® Blackboard
® Pipes and Filters
® Microkernel
® Components & Connectors

® Many of the same architectures have also been
documented as architectural styles by the SEI. These
can be references, too, of course.

www.voelter.de - 28 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures

Architectural Patterns and Styles; Overview

Independent parts Data Flow Data Centered
i 7 i
|] |] |]
el Event/Message- Batch Sequential Pipes and Filters Reposito Blackboard
Processes bases Systems q P P v
|]
Workflow
Plug-ins Components Call and Return
fiY
| |
Virtual Machine
S Procedural Object oriented Layers
| | _
Frameworks Reflection
Interpreter Rule-Based Microkernel

ingenieurbiro fur softwaretechnologie

www.voelter.de

© 2007 Markus Volter

Documenting Software Architectures A

The Pipes and Filters Pattern

PR P

wuimbnail:

The Pipes and Filters pattern provides a structure for systems that
process a stream of data.

Each processing step is encapsulated in a filter component.
Data is passed through pipes between adjacent filters.
Recombining filters allows you to build families of related systems.

data data™

! I

data’ data” data™

filter n filter n-1 filter 1 filter 0

>

dataflow

® Known Uses:

Compilers (different stages)
UNIX shells

CMS Pipelines

Image Processing (ALMA)

ingenieurbiro fur softwaretechnologie www.voelter.de - 30 - ©2007 Markus Vélter

Documenting Software Architectures A

Architectural Patterns / The Pipes and Filters Pattern 11

® Conseqgquences:

-+ No intermediate files necessary, but possible

+ Flexibility by filter exchange or recombination

+ Reuse of filter components

-+ Rapid prototyping of pipelines

—+ Possibility of improved efficiency by parallel processing

— Shared state may be expensive and complicated
— Possible data transformation overhead
— Error Handling

© 2007 Markus Volter

ingenieurbtro fir softwaretechnologie www.voelter.de -31 -

Documenting Software Architectures & A

Architectural Patterns as Fix Points

® Architectural Patterns serve as fix points in the design
space of an architecture.

® You understand the requirements

® You design an initial architecture

® You find it resembles a certain architectural pattern
® You analyze the differences. Are they essential?

® You then look at the patterns consequences to see Iif they
are acceptable.

® Then you may want to iterate... until you maybe hit
another pattern in the architectural design space.

® When using MDSD, architectural patterns can be used as a
basis for architectureal metamodels (see below)

® The solution structure of an architectural pattern can be
described as a metamodel.

ingenieurbiro fur softwaretechnologie www.voelter.de -32 - ©2007 Markus Vélter

Documenting Software Architectures A

Writing your own Patterns

® |f you come up with certain recurring best practices in
your domain (technical or functional) you may want to
write these down as patterns.

® The pattern forms (there are various forms) all have in

common that they require the author to structure the
content very strictly.

® This forces the author to think hard about stuff such as
applicability, forces or consequences

® [For readers, well-structured content becomes easier to

nf\mnlﬂﬁ'/‘\f\h

~
CUIIIpIClICIU

ingenieurbiro fur softwaretechnologie www.voelter.de -33 - ©2007 Markus Vélter

Documenting Software Architectures [ESESEsE

Using the Pattern Form

® Even if something is not recurring and hence is not a
pattern...

® Writing things up Iin pattern form improves the
effectiveness of commmunication, provides a means to
break down complex structures and generally improves
writing style (and author proficiency).

® Once you’re accustomed to the patterns form, you will
use It implicitly when writing any kind of technical
documentation, i.e.

® Start by setting the context,

® Explain when and for who the following stuff is interesting
® Describe problem and solution in increasing levels of detall
® And then elaborate on the consequences.

® Finally, you’ll point to related material

www.voelter.de -34 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures A

® Documenting Software Architectures
® (Structured) Glossaries
® Patterns and the Pattern Form
® Pattern Languages
® Tutorials and FAQs
® Diagramming and Modeling
® Channels
® What about Code?
® Specifics for Product Lines & Platforms

® |ayout and Typography
® Diagramming Guidelines
® Summary

ingenieurbiro fur softwaretechnologie www.voelter.de - 35 - ©2007 Markus Vélter

Documenting Software Architectures | o

The challenge of documenting complex architectures

® |t is not enough to simply collect descriptive data
about an architecture

® e.g. a big UML model or a collection of diagrams or APIs

® rather, communicating an architecture requires a well-
defined, didactic approach, where

® You start with a motivation of what the general problem
IS (what is it that the architecture should achieve)

® Then you provide an overview over the solution strategy
® ... and progressively provide more and more details ...
® Until you’ve covered all cases incl. border cases

ingenieurbiro fur softwaretechnologie www.voelter.de - 36 - ©2007 Markus Vélter

Documenting Software Architectures [ESESEsE

Inner Structures of complex Systems

® Pattern Languages are collections/sequences of patterns
that describe a “whole”,

® The overall structure of the system is too complicated to
be described in one step — thus the language.

® Sometimes there are alternative sequences through the
pattern language describing various alternatives of the
“whole”

® Group patterns into chapters to implement the
layers/levels/rings mentioned before

® A pattern language thus describes how to build such a
complex system of a certain type

® There are various examples of such pattern languages,

® Many cover middleware technology [Server Component
Patterns, Remoting Patterns] , and

® They are published in various forms

ingenieurbiro fur softwaretechnologie www.voelter.de -37 - ©2007 Markus Vélter

Documenting Software Architectures 5

From Patterns to Pattern Languages

. .. . Context
® The pattern is the undividable entity of
. Problem
knowledge/documentation
Forces
-~ sowton
Consequences

® Pattern Languages are built by having subsequent
patterns solve problems that arise from using a

previous pattern.

.......

Pattern 1 Pattern 2

Pattern 3

Pattern 4

X
(OJ
Pattern 0
D
o

www.voelter.de © 2007 Markus Volter

ingenieurbiro fur softwaretechnologie

Documenting Software Architectures [ESESEsE

Example: Remoting

® Describes the internal architecture of REMOTING
remoting middleware such as CORBA, PATTERNS

Internet and Enterprise

WebServices or .NET Remoting

® |t can be seen as a pattern language that
describes the internal details of Broker

architectures in industrial practice.

{ Process A Process B
f————— ﬂl N N R s » (> Remote
| Client 1 Object
I
______ I Py
5 _Cg 5) invoker operation
1) submit request | c
| § | /
Requestor P | ’jc Invoker
11 3) forward L
) 2) marshal request . 4) unmarshal
i =
Marshaller | O Marshaller

- 39 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie www.voelter.de

Documenting Software Architectures §

Example: Remoting 11

® A structured glossary (per chapter!) shows the
conceptual relationship between the patterns

INTERFACE DESCRIPTION

MARSHALLER

REQUESTOR — 3 ReMOTING €—— INVOKER

raises raises

- ERROR 0
0% SN
2 Qv $ O

c 2 - >, v 9

® 29 % o

) © o R Z

-~ $ S S

CLIENT REQUEST ———o———=——3 SERVER REQUEST
HANDLER Wwith HANDLER

© 2007 Markus Volter

ingenieurbiro fur softwaretechnologie www.voelter.de

Documenting Software Architectures | o

Example: Remoting 111: Server Request Handler

® Context: You are providing remote objects in a server
application, and invokers are used for message dispatching

® Problem:
® The request message has to be received from the network;

® Managing communication channels efficiently and effectively is
essential

® Network communication needs to be coordinated and optimized

® Solution: Server request handler deals with all communication
Issues of a server application:

® Receives messages from the networ
® Combines the message fragments to complete messages
® Dispatches the messages to the correct invoker
{

Manages all the required resources (connections, threads, ...)

www.voelter.de -41 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures 5

Example: Remoting 1V: Server Request Handler 2

® Each pattern in the language is illustrated with a diagram that
shows the relationships and interactions with other building
blocks of the overall system.

Client Process Server Process
[| _Jommmmem T T :
I R '%\' \\\\\ P N
6 Requestor 2 Invoker
St 1=)
4 ° (O— Sener Request 4
E B Handler thread pool
O
(O— Client Request s (j connection
Handler v OS APIs ™ pool

ingenieurbiro fur softwaretechnologie www.voelter.de -42 - ©2007 Markus Vélter

Documenting Software Architectures

Example: Remoting V

® Here is another view showing the interactions, grouped
Into layers

Client Server
c
g,
S 2 T drommmmmememeeees » Remote
27 Client _
o R e Object
Q.
E — *
h 4 i i
]]
[[
Client ! operation | operation
Proxy 1 op | op
c ! |
C_) —_ v : :
70 v v =
S E‘ (invocation data)
S N N e LS >
c Requestor < | f Invoker
i [reéu!tdata)
H] +
L T
H |
P i Marshaller Marshaller : P
]
B message : : A : message
~ > 1] !]
(o)) P 1 | ! 1
%m (invocation messages)
a e Client Request [---------========"1 Rt »| Server Request
29 Handler - oo mmmmmmmmee o] demmommecmcomoeo Handler
o (result messages)

© 2007 Markus Volter

ingenieurbiro fur softwaretechnologie www.voelter.de

Documenting Software Architectures 5

Example: Remoting VI

® Interesting interactions are illustrated with sequence
diagrams (typically a couple of diagrams per chapter)

Request m:Message Invoker Marshaller Llnvocation Re”f““e
Handler Data Object
i i i i
| | | | |
| <<receive>> ' : :
] i i i
| <<create>> : : :
: > : ! !
1 ' 1 1 1
| invoke(m) | | | |
| : > : :
' : 1i := unmarshal(m) '
| i L P! <<create>> '
| " 0 ' |
| i | | > :
: X : : : :
: — : :
| i invokeMethod(i) | |
0 0 ' ! 0
!) ! ! !
0 0 ! 0
! ! ! ! !
! ! ' : !
' | someMethod(x) I '
] L [|).
: : : ' :
]]] X]
]]]]
! ! ! !

© 2007 Markus Volter

ingenieurbiro fur softwaretechnologie www.voelter.de

Documenting Software Architectures §

Example: Remoting — Technology Projection; .NET Example

® This view maps the patterns (general concepts) to a
specific example (in this case, .NET remoting)

Client ‘ Server
s INTERFACE
30 Remote DESCRIPTION
23 Object
<5 Client L ReMOTE
Server OBJECT
App ol
Transparent | —, CLIENT PROXY
Proxy ol / ! DISCOVERY
< REQUESTER
- g 0/ g i Dispatcher
@ |/ INVOCATION
2> Real Prox _ .
(&)
oS y &| / INTERCEPTOR Sink o INVOKER
> - i : ~
= - | | \ . ~~ LIFECYCLE
Sink INVOCATION i B Sink IANAGER
® T CONTEXT
Formatter - = Form r
: o \VARSHALLER —J-e ~ormaite
Sink ; ; Sink
'PROTOCOL'
| —

. PLUGINS |

Channel Sink°/ \.Channel Sink

invocation msg)

Messaging/
Request Layer

NET Runtime |2 - F="» NET Runtime
nd € Fmmmomnomokade »
\ result msg) /
SCIDIIIIIIIIT CLIENT X222 / S — SERVER /222222277
REQUEST REQUEST

— /\ HANDLER HANDLER
It

www.voelter.de © 2007 Markus Volter

ingenieurbiro fur softwaretechnologie

Documenting Software Architectures 5

Example: Remoting - Identification

® This additional layer/level/ring explains how remote
objects are identified — note how we refer to the
patterns from the lower layers.

[
5o NS
“o 2
S Q. L5
v ABSOLUTE OBJECT
L OOKUP OBJECT ID

Is part of > REFERENCE

sahmuepl

www.voelter.de - 46 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures 5

Example: Remoting - Lifecycle

® This layer explains the different lifecycle patterns and
the associated (de-)activation strategies

sajenuelsul

\ 4
STATIC INSTANCE

optimizes

LAZY ACQUISITION

LIFECYCLE MANAGER Client
—. =1
7 2
& Q
@ 5
- =t
=, D
=1 @
8 n

v
\ 4

CLIENT-DEPENDENT
INSTANCE

N

PER-REQUEST INSTANCE

\

optimizes
/4
e
3
salinbal

\
POOLING LEASING

may use

PASSIVATION
< < may use

ingenieurbtro fir softwaretechnologie

www.voelter.de -47 - © 2007 Markus Volter

Documenting Software Architectures

Example: Extension Layers

® Extending the communication ® Extending the internal
framework with out-of-band Infrastructure
data or cross-cutting
functionality

QOS OBSERVER

0
S
=
o
£
Client v
S Remote Object
&
Y,
CLIENT _ AL
S INVOCATION 0 8
PR & ¢® INTERCEPTOR %7, c So
% NP, 40,0 @ LOCATION g9
% NP o4, %5 @ 83
3 S o Sr @ FORWARDER E8
v 58 ¢ v LOCAL OBJECT
REQUESTOR g INVOKER f LIFECYCLE MANAGER

CONFIGURATION
GROUP

updates
client's

INVOCATION CONTEXT

2, i

©

2

%, Y
\@
A 4
I
»

SERVER REQUEST

sosn
sosn

optimizes
resource
consumption

<

<
L
ép
v

CLIENT REQUEST
HANDLER

'O/U -\(\\0
T o
PROTOCOL

PLUG-IN

communicates w ith
HANDLER

ingenieurbUro flir softwaretechnologie www.voelter.de - 48 -

© 2007 Markus Volter

Documenting Software Architectures A

® Documenting Software Architectures
® (Structured) Glossaries
® Patterns and the Pattern Form
® Pattern Languages
® Tutorials and FAQs
® Diagramming and Modeling
® Channels
® What about Code?
® Specifics for Product Lines & Platforms

® |ayout and Typography
® Diagramming Guidelines
® Summary

ingenieurbiro fur softwaretechnologie www.voelter.de -49 - ©2007 Markus Vélter

Documenting Software Architectures | o

Tutorials & FAQs

® When documenting the programming model, the
respective documentation

® Needs to be problem - solution-based

® Needs to explain common things first, and exceptional
things later

® Needs to provide a step-by-step approach

® Here’s what has proven to be useful:

® Tutorials (Walkthroughs) for typical cases of increasing
complexity (e.g. 5, 20 and 60 minute tutorial)

® FAQs to illustrate exceptional cases in a problem -
solution fashion

® Note that tutorials and FAQs should not contain too
much rationale for what they explain — rather, refer to
other documentation for that. Make it practical!

www.voelter.de - 50 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures & A

Examples of what you need to address

® How do I set up the environment (IDE, Repository, Build)?

How do | acquire and release resources, who manages
the lifecycle of certain artifacts?

What other protocols do | need to follow (e.g. locking)

In which chunks, and where, do | put my application logic?
What are the constraints wrt. to concurrency

How do | interact with the platform and environment?

Which aspects of the underlying programming languages or
frameworks are disallowed?

Important conventions and idioms, including certain
Important naming conventions

® Where and how do | write my unit tests?

VOIt?!'/

N

-51 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie www.voelter.de

Documenting Software Architectures A

® Documenting Software Architectures
® (Structured) Glossaries
® Patterns and the Pattern Form
® Pattern Languages
® Tutorials and FAQs
® Diagramming and Modeling
® Channels
® What about Code?
® Specifics for Product Lines & Platforms

® |ayout and Typography
® Diagramming Guidelines
® Summary

ingenieurbiro fur softwaretechnologie www.voelter.de - 52 - ©2007 Markus Vélter

Documenting Software Architectures | o

Models

® Definition I: (www.answers.com/topic/model)
A schematic description of a system, theory, or
phenomenon that accounts for its known or inferred
properties and may be used for further study of its
characteristics

® Definition Il: (www.ichnet.org/glossary.htm)
A representation of a set of components of a process,
system, or subject area, generally developed for
understanding, analysis, improvement, and/or

LI S

® Definition I11: (ecosurvey.gmu.edu/glossary.htm)
an abstraction or simplification of reality

ingenieurbiro fur softwaretechnologie www.voelter.de - 53 - ©2007 Markus Vélter

Documenting Software Architectures | o

Diagrams

® Definition I: (en.wikipedia.org/wiki/Diagram)
A diagram is a simplified and structured visual
representation of concepts, ideas, constructions, relations,
statistical data, anatomy etc used in all aspects of human
activities to visualize and clarify the topic.

® Definition I1: (careers.ngfl.gov.uk/help/definitions/14 2 image.html)
Diagram means a graphical or symbolic representation of
something, usually showing the relationship between
several items.

® Definition 1l11: (www.evgschool.org/Columbus%20vocabulary.htm)
A diagram is a drawing, sketch, plan, or chart that helps
to make something easier to understand

www.voelter.de -54 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures A

Models vs. Diagrams

® Diagrams are mainly used to “intuitively communicate”
something to humans

® Models are mainly used to “formally specify” something
to tools

® Hence, models need to be correct and complete wrt. to
the aspect, viewpoint or concern they describe.

® They need to be based on a well-defined language
® Diagrams can be used to represent models.

® Models, however, can also be represented in other ways
(e.g. with textual notations)

ingenieurbiro fur softwaretechnologie www.voelter.de - 55 - ©2007 Markus Vélter

Documenting Software Architectures A

Examples of Architectural Diagrams

® This diagram shows the layers in a . §
. - - H - Core Domain ' :
typical distributed system Domain Classes (Enties, | g
architecture A e S |
® The visual layers are meant oo |

- . Technical - Transactions

to actually _|Ilustrate a strict Platform) - Detrbuton

layers architecture Middieware - Hardware Access

Programming Language

Operating System

® Transformation architecture of a
cascaded MDSD application

astructure

® |t is built by recursively applying [o
the atomic building block shown Domain 1 Model Domain 2 Model
|n the top rlght corner Functional Domain 1 Functional Domain 2

MDSD Infrastructure MDSD Infrastructure
Input Models

Basic Technical
MDSD Infrastructure

Code for Target Platform

www.voelter.de - 56 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures | o

Examples of Architectural Diagrams 11

) XJOJE)I openArchitectureWare
® Model Transformation e
archltect_u re in the tool odd | ,r b L ed
openArchitectureware |] ...
Model |
® The boxes are hierarchical n rans |
structures of the tool v
ode (L (Obiect Graph)
® The arrows represent data " Gods] e
Generator i
flow Lt

® |ayers of a product-line architecture

® If you visually draw layers, make el
sure this is actually what you want ° cbd
to communicate (i.e. there really

ps
cbd-lib

- . . common

Is a layering in the system you

describe) OAW
EMF

© 2007 Markus Volter

www.voelter.de -57 -

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures §

Examples of Architectural Diagrams VI

® This one shows several aspects: components, layers,
client/server, dependencies, invocations, exchanged data

Client Server
c
g,
S 2 T "mmmmmmmmmemeee- » Remote
o o R —— e Object
e
< 7 7 A
h 4 i :
]
Client i invoke ! invoke
] H] H
Proxy : operation : operation
c ! |
C—> —_ v : :
T 2 \ 4 \ 4 :
S § (invocation data)
>S— | [eseeeeeolTE Toooooos EEEEEE A--------- >
c Requestor < | 1 Invoker
: (reéuitdata)
T T
i \ 4 :]
: :
forward T Marshaller Marshaller oA
]
5 message i T A i message
S > ' ! i !
c g v : |
%‘J’) (invocation messages)
a9 Client Request [-====-============"7 Soooooooomeemees » Server Request
2z Handler o] decocococcococo—- Handler
nd (result messages)

© 2007 Markus Volter

ingenieurbiro fur softwaretechnologie www.voelter.de

Documenting Software Architectures [ESESEsE

Examples of Architectural Diagrams 111

® A three-tier enterprise system. Useful diagram?

Presentation Core Application

HTML-
Client

Web- Application-
Server Server
Customer
e Customer BL
WF
Account
Account BL
HTTPS N

Fonds
o g)j Fonds BL
Desktop .
e Services

Backend

Host

Customer
TX

Account

X

Core
Data

ingenieurbtro fir softwaretechnologie www.voelter.de

- 59 -

© 2007

Markus Volter

Examples of Architectural Diagrams 1V

Documenting Software Architectures [ESESEsE

® The AUTOSAR Architecture. Are the layers really there?

AUTOSAR
Software
Component

Application
Software

Component

Actuator
Software
Component

Sensor
Software
Component

Interface

ECU
Firmware

AUTOSAR
Interface

s

Standardized
Interface

AUTOSAR
Interface

]!

AUTOSAR
Interface

s

AUTOSAR
Software

11

Application
Software
Component

AUTOSAR
Interface

Standardized
ALUTOSAR

Interface

Standardized

Interface

Standardized
Interface

Standardized
Imterface

ECU-Hardware

Standardized
Interface

AUTOSAR AUTOSAR
Interface Interface
ECU
Abstraction
Standardized
Interface
Complex
Device
Drivers

ingenieurbtro fir softwaretechnologie

www.voelter.de

© 2007

Markus Volter

Documenting Software Architectures A

Examples of Architectural Diagrams V

® Some other Architecture. Useful diagram?

(it is certainly very nice ©)

——IntraWeb Studio Architecture

Web Server

~—IWS Server (Repository)—,

y

/ IIS Web Server

FireBird Database

Web Server

ingenieurbtro fir softwaretechnologie

www.voelter.de - 61 -

© 2007 Markus Volter

Documenting Software Architectures g :

Examples of Architectural Diagrams VI

® One more... Useful? (It is certainly ugly!)

% Discover Compute Publish Cnllaborate£ 2

| Fortals, User Interfaces, Tools

VOFlot SkyQueny T Topeat OASIS
bls Aladin i conWOT

interfaces to data

‘ Registry Layer Data Services Compute Services
HTTF Services SOAR Services Grid Services
stateless, registerad & sel-describing & persistent, authenticated
@ | Semantics (LICD) l + wisualization crazzmatech
=
.]
oAl ADS = n image data mining &
o g ; saurce %
2 || [otdtn | Virtual Data iz
Digital Library > : | Wiorkflow (pipelines)
Other registries
v ML DCMETS rTr | Authentication & Authorization
Existing Data Centers My SPACE starage sernvices Grid Middleware

| | SRE, Globus, 0G5A
Databases, Persistency, Replication SUAT, Db
Disks, Tapes, CPUs, Fiber

www.voelter.de © 2007 Markus Volter

ingenieurbiro fur softwaretechnologie

Documenting Software Architectures [EESES

Examples of Architectural Diagrams VI

® And you don’t need a fancy tool, you can use a flipchart
(assuming your handwriting is readable!)

© 2007 Markus Volter

ingenieurbiro fur softwaretechnologie www.voelter.de

Documenting Software Architectures | o

The use of Diagrams

® Diagrams are used to communicate to people.

® They often use nice, intuitive symbols, they are
(typically) not based on a well-defined (modeling)
language.

® Often, the meaning is not really clear

® you need explaining text or somebody talking to you as
they draw the diagram

® However, diagrams are very very useful in documenting
architectures, as long as

® You explain what the diagram means

® And you are consistent wrt. the notation among the set
of diagrams you use

® ... you might even use a standardized modeling language

www.voelter.de - 64 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures | o

A bit more formal: FMC

® \What is FMC? (http://www.fmc-modeling.org)

FMC is the acronym for Fundamental Modeling
Concepts, a consistent and coherent way to think and
talk about dynamic systems.

It enables people to communicate the concepts and
structures of complex informational systems in an efficient
way among the different types of stakeholders.

® Developed by the FMC Consortium (SAP, Hasso Plattner
Institut)

www.voelter.de - 65 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures A

Example FMC Model

® The Travel Organization

reads and writes various Customers Interested people

data. % % $l - | ¥
® The travel agency’s 56 gettioket 5(]> 51”;::“?:23- é)

Reservation system does

the same. e s

-~ r

\\ Travel agency

Re ser- Cu stomer Travel
vatmns data information
-~

® Customers use a : :
request/response scheme to ravel organization J
place orders and get tickets

® The Reservation system
and the Info help desk only
read travel information.

ingenieurbiro fur softwaretechnologie www.voelter.de - 66 - ©2007 Markus Vélter

Documenting Software Architectures A

FMC Notation Overview

® Basic Elements Common Structures

active systerm A 4—(S) read access
| X

component

agent, human agent
A %(s) write aocess

oassive systern
O cormponent (focation): A
storage, channe!

Al

read / write access
(modifying access)

2

uhidirectional
A2 cormrication
chanhne!

Fccess tyope

bidirectional
A2 corrication
channe!

>
—(O
@ A2 request / response

Al

Al e
cornLinication

chanhne!

(detaited and
ahbreviation)

Al

Al A2 shared storage

o

® They also have Petri Nets for dynamic structures, and ER
Diagrams for structured data

® They have Visio Stencils (which look really good)!

www.voelter.de - 67 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures

Example of an Architectural Models

® A three-viewpoint model for a component-based
enterprise system (using UML and XML)

Type Madel
<<gntity>>
<<component>s> [rotstTessssssssssssssesssses = PEI‘St;I'I
AddressManager person
name: String
! firstMarme: String
:
v 0.n
addrass <<interface>> <<valuetypes>>
Store AddressStora Address
<<componeant>> mmmmmm—— =
CustomerManager addOrUpdateContact| p: Person) : void sireel: String
addAddress(p: Person, a: Address) : void Zip: String
getdddresses| p: Person) : Address]] City: String
Composition Model System Model
<configurations= <syslems=
=gonfiguration name="addressSuff"> =gyslem name="production"=
=deployment name="am" type="AddresshManager"> <node name="server” lype="spring” configuration="addressSwuf"/>
=wire name="personDAD" target="personDAO" = =node name="client” type="eclipse" configuration="customerStuff'/=
=fdeployment= <gyslem=
<deployment name="personDAD" type="PersonDACO"/> <gystem name="tes"=
=/configuration= =node name="test" type="spring" configuration="test"/>
=configuration name="customerStuff"= =5ystem:=
=geployment name="cm" type="CustomerManager”= =fzystems=
=wire name="addressStore” target="-addressStuff.am"/>
=fdeployment=
</configuration=
<configuration name="test" includes="addressStuff, customerStuff"/=
<{configurations=

ingenieurbtro fir softwaretechnologie

www.voelter.de

- 68 -

© 2007 Markus Volter

Documenting Software Architectures [ESESEsE

Viewpoints

® When building models, it is essential to define several
viewpoints of the system

® In the previous example, we used the following three
structural viewpoints:
® Type Model: Components, Interfaces, Data Types
® Composition Model: Instances, “Wirings”
® System Model: Nodes, Channels, Deployments

® Often, additional viewpoints are needed:
® Persistence
® Security
® Forms, Layout, Pageflow
® Timing, QoS in General
® Packaging and Deployment
® Diagnostics and Monitoring

ivé@

ingenieurbiro fur softwaretechnologie www.voelter.de - 69 - ©2007 Markus Vélter

Documenting Software Architectures A

Viewpoints Il — the 4+1 Model

® Originally conceived by Philippe Kruchten

® Core Views used to describe the architecture

® |Logical View: Functional requirements (e.g. UML
diagrams, structural and behavioral)

® Process View: Non-Functional (concurrency,
performance, scalability)

® Development View: file layout, project structure,
versioning, packaging

® Physical View: topology, communication, deployment
® +1: Scenarios (Use Cases)

® Not too much used in practice...

ingenieurbiro fur softwaretechnologie www.voelter.de -70 - ©2007 Markus Vélter

Documenting Software Architectures A

Viewpoints 111 — connection to modeling

® |f you want to use viewpoints in conjunction with
modeling, each viewpoints needs it own modeling

language (or language partition)

® You need to come up with a meta model suitable for
expressing that viewpoint, and with a suitable concrete

syntax.

® The meta models (and hence, languages, and viewpoints)
need to depend on each other in a suitable way.

|
1 1
System Model(s) JJ ------ » Composition Model(s) _Jf ——————— » Type/Data Model

www.voelter.de -71 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures [EESES

Modeling Languages (DSLs)

® Here is a structured glossary of the necessary concepts:

Meta Meta
Model
) A
describes . i
relevant <<|nstainceof>>
concepts of i specified i
. P T —— Abstract based on Static
Domain Meta Model Syntax [€TTTTTTTTTT Semantics [€”
: 3 R

Concrete
-----------------------) Syntax 1—0 DSL

X o
E Subdomain

i specified based on |
P §TTTTTTTT T <<synonyms>>
gets meaning from . i
Formal | gelsmeaningtrom »| Semantics Modeling
Model Language
; respects

© 2007 Markus Volter

ingenieurbiro fur softwaretechnologie www.voelter.de

Documenting Software Architectures A

Architectural Metamodels: Type Viewpoint

® Components provide interfaces
® And components use interfaces (provided by others)

® An interface has a number of operations (these are
defined as you’d expect)

Component - »| Interface |.' Operation |. *' Parameter
providedInterface
name name name name
I._*> Component
required Interface target lreturnTyp e
Interface | Requirement
Type <
name type
name
exception * T
P h 4
Exception

ingenieurbtro fir softwaretechnologie

www.voelter.de

-73 -

© 2007 Markus Volter

Documenting Software Architectures A

Architectural Metamodels: Type Viewpoint Il (Data)

® Types are either complex or primitive
® Complex Types have attributes typed to be primitive
® A complex type is either an Entity or a DTO
® Entities can have References to other entities
Type
name
A'IS
Complex) Attribute > Primitive
Type attribute type Type
name
Entity *
Reference T
ref src
name
isBidirectional Entity Data
targetMultiplicity Transfer
sourceMultiplicity Tge:’ Object
= .o
ingenieurbUro fir softwaretechnologie www.voelter.de - 74 - @200y hanies Yilier

Documenting Software Architectures §

Architectural Metamodels: Composition Viewpoint

® A Configuration consists of a number of Component
Instances connected by Wires

*
Component : »| Interface
providedInterface
name name
I.—*) Component |
7'y required Interface target
type Interface | Requirement
name
cireq Component Stuff
Composition Stuff
Configuration |‘ *5 Component |. *5 Wire |._........
instance Instance '
name name . N\
name context Wire inv:
| the type of the target
: target instance must provide
the Interface pointed
to by the Wire’s cireq’s
context Componentinstance inv:
target
foreach of type's Component-
InterfaceRequirements
there must be a Wire of the same
name

www.voelter.de -75 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures 5

Architectural Metamodels: System Viewpoint

® A System consists of a number of Nodes, each hosting

Containers
® A Container is a runtime environment for Component
Instances
Configuration . *5 Component . * 5 Wire
instance Instance
name name
name |
<
Composition Stuff T*
System Stuff
*
System Node Container
*>— >—>
name name name

ingenieurbiro fur softwaretechnologie www.voelter.de -76 - ©2007 Markus Vélter

Documenting Software Architectures | o

Why modeling (as opposed to diagramming)?

® If I actually formally specify my architecture, | want to
benefit from that additional “overhead”

® Hence, you want to generate as much of the architecture-
related code, for example

® Implementation skeletons to fill in business logic
® Build Files (e.g. ant based)

® Adapters to all kinds of technical infrastructure
(remember: the programming model shall be free of such

stuff)
® Infrastructure configuration files
® Deployment skripts

® This leads us to model-driven software development,
which is another topic...

© 2007 Markus Volter

www.voelter.de =7l =

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures [ESESEsE

The role of UML

® UML is not specifically tailored for software architecture
modeling, but rather for software modeling in general
® You can use UML for diagramming, as well as for
modeling — you might need a specific profile for the
latter.

® The question is, though, which UML diagrams are suitable
for architecture descriptions

® We use green for modeling, red for diagramming

® Class Diagrams
® Useful for architecture meta models
® And for structured glossaries P

® ... and using a profile for every other structural T 7
aspect, in principle... but the graphical symbols €] o]O
are very limited. Hence custom diagrams or

/t\hings like FMC are used.

.Vé[t?!'/

ingenieurbiro fur softwaretechnologie www.voelter.de =78 = ©2007 Markus Vélter

Documenting Software Architectures & A

The role of UML 11

Cc1

® Composite Structure Diagrams

® Extremely useful for modeling hierarchical
structures of components, instances, as
well as component connections

® My favourite kind of diagram in UML ©

:C4

ez —F — —

c3

p2

® Use Case Diagrams __
® (More or less) useful for describing g L—")

Al e

usage scenarios and requirements towards
the architecture =

® Seguence Diagram

® Very useful for illustrating the interactions |
among architectural components JIERTS

® Note the sequence diagrams are good]

for scenarios, not for closed, complete
behavioral specification

ivé@

ingenieurbiro fur softwaretechnologie www.voelter.de -79 - ©2007 Markus Vélter

Documenting Software Architectures | o

The role of UML |11

® State Diagrams ®— = l
® Very useful illustrating state changes of 2
components, if their behavior is state-based © .7
® Very useful for defining protocols between an

components, and for formally specifying
state-based behavior

® Activity Diagrams oo
® Useful for describing activities, their ll l/ o
allocation to components and data flow 4
® They can be used to formally specify ol | I

behaviour, but | don’t do this very often

ingenieurbiro fur softwaretechnologie www.voelter.de - 80 - ©2007 Markus Vélter

Documenting Software Architectures | o

The role of UML 1V

® Implementation Diagrams
(Component & Deployment)

ZCOmponents:= =;:artifact:==D

® Moderately useful for modeling the T

=<thanifest==

T

packaging of components into
deployment artifacts and runtime
processes and executables, and

® Moderately useful for describing system
(hardware) infrastructure and the
allocation of processes and components
to them

—

N1

ingenieurbiro fur softwaretechnologie www.voelter.de -81 - ©2007 Markus Vélter

Documenting Software Architectures [ESESEsE

The role of UML V: Summary

® The UML can do everything ... in principle.

® Tool support is of varying quality, but it is getting better.

® This is especially true for profile support and tool
customization!

® Here is how I like to use (or not use) UML in the context of
architecture

® | use it for architecture meta models
® | define domain specific architecture DSLs and work with

oA larmm~nrtAam~A~ e FAavin~rAl A A AL~ A~
Luieosc iadaliyuaycs 10Ul 1ulilial riouciitiy
® | really like composite structure diagrams
® | use sequence diagrams to illustrate interactions

® | use informal (Visio-based) notations for illustrations

ingenieurbiro fur softwaretechnologie www.voelter.de -82 - ©2007 Markus Vélter

Documenting Software Architectures & A

Architecture Description Languages (ADLSs)

® ADLs are predefined and formal modeling languages
specifically designed to describe architectures (as
opposed to software in general as in UML).

® Typically, an ADL is defined by either a university, a
research department or an industry consortium for a
specific domain

® Their practical use is limited
® http://www.sei.cmu.edu/architecture/adl.html

® ADLs are mostly used in the following domains:
® Embedded systems
® Realtime systems
® Safety critical systems

® Since ADL models are formal, various aspects of a system
can be simulated or proven using them.

ingenieurbiro fur softwaretechnologie www.voelter.de - 83 - ©2007 Markus Vélter

Documenting Software Architectures & A

Architecture Description Languages (ADLs) 11

® Considering the MDSD and DSL stuff we discussed before,
an ADL can be seen as a DSL for describing (certain
aspects of) (certain kinds of) architectures.

® Since architecture is a wide field, there’s no (useful)
general purpose ADL — all usable ones are restricted to a
specific technical domain (embedded realtime systems,
automotive systems, ...)

® Often, ADLs describe components, connectors, data
types, threads as well as characteristics of the protocols
between those artifacts to enable analyses.

® These days many ADLs provide a UML profile so it can be
Integrated with the UML.

® In most environments they don’t play an important

role (although they maybe should...)

ivé@

ingenieurbiro fur softwaretechnologie www.voelter.de -84 - ©2007 Markus Vélter

Documenting Software Architectures | o

Example ADL: AADL

® AADL stands for Architecture Analysis & Design Language
(historically: Avionics Architecture Description Language)
® Domain-specific to Embedded Realtime Systems

® |t consists of component types and component
Implementations. The following component types exist:

® Memory

® Device ® Components have different ports:
data ports, event ports

® Processor

® Bus ® Connectors connect ports from

® Data different components

® Subprogram ® Notations:

® Thread ® Textual

® thread group e Graphical

® Process
- :

® System UML Profile

ingenieurbiro fur softwaretechnologie www.voelter.de -85 - ©2007 Markus Vélter

Documenting Software Architectures §

Example ADL: AADL 11, Examples

® Communicating threads ® Data Types
Period => 20ms Period => 40ms data implementation Lat _Long.Generic
Sensor_A Data_Fusion subcomponents
0, P inpA) Degs : data Integer:

outp B Mins : data Integer;

{ taunch_alrm 1/ / ; Secs : data Integer;
S end Lat_Long.Generic;

Period == 40ms
Deadline == 30ms

prngt Autopilot System

Nav_Autopilot_System
“Flaunch A é /

>launch B

; Elevator
fsssssssmssscassssassnnnsssd T_AP_Compute
[Engine <
e , T GPS Reader
AADL Examples taken et
from http://aadl.enst.fr/ ! _AP_Params

e — ——— —

with permission from
Irfan Hamid. Thanks!

www.voelter.de - 86 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures § £

Do-it-yourself vs. Standard

Tool Support 0 +
Task-Specificness (Modeling Efficiency) + -
Adaptability (your architecture changes — what + 0
do you do?)

Suitable for Generation (meta model + 0

complexity and comrehensibility)

Learn-your-domain (defining a meta model + -
helps you understand your own domain)
Learning overhead (learn the language in - 0]
order to use it)
Communicate with outsiders (... who might - +
not want to learn your language)
= .
ingenieurbUro fir softwaretechnologie www.voelter.de ©2007 Markus Volter

Documenting Software Architectures A

® Documenting Software Architectures
® (Structured) Glossaries
® Patterns and the Pattern Form
® Pattern Languages
® Tutorials and FAQs
® Diagramming and Modeling
® Channels
® What about Code?
® Specifics for Product Lines & Platforms

® |ayout and Typography
® Diagramming Guidelines
® Summary

ingenieurbiro fur softwaretechnologie www.voelter.de - 88 - ©2007 Markus Vélter

Documenting Software Architectures 5

Printable Material

® To be read in one piece to teach concepts
® Readability and Formatting is important
® These days mainly implemented as PDFs

® Suitable for

® Conceptual Architecture (Patterns, Pattern Languages,
Glossaries, Meta models, DSLS)

® Programming Model Tutorials

www.voelter.de -89 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures 5

Online References

® Used for looking up details

® Readability and Formatting is not so important,
searchability and indexing more important

® These days mainly implemented as HTML or Wikis

® Suitable for
® Programming Model APIs and FAQs

® Glossaries

www.voelter.de - 90 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures A

® It is useful if the architecture/platform team sets up an
architecture blog to keep application developers up-to-
date with recent developments.

® This is useful for
® Updates wrt. to the evolution of the platform

® Tips & Tricks on how to use the architecture
® Success stories and other news

www.voelter.de -91 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures A

Flash Demo/Video/ZAnimation

® Here you typically screen-capture some activity related
to your architecture and record it for replay.

® Explaining Text is either recorded (audio) or added later
In keys/bubbles.

® This is useful for
® Programming Model Tutorials

® ... especially if a lot of pointing and clicking, or other “tool
use” is required

© 2007 Markus Volter

ingenieurbtro fir softwaretechnologie www.voelter.de - 92 -

Documenting Software Architectures | o

Podcasts & Video

® Podcasts are audio files published via an RSS feed in
regular episodes (“audio-blog”)

® This is useful for
® General discussions about concepts
® News and stories in general

® Complex technical concepts can be explained in

audio only 'software

: engineering

® See se-radio.net, the podcast for developers radio
® Make sure it’s always at least two people | he podcast

for Developers
htt e dise-radic, et

talking otherwise it will be boring quickly

® Make sure things are repeated or clarifying guestions
are asked

® Video iIs useful for

® General discussions about concepts — since you can film
two guys on the flipcharts

www.voelter.de - 93 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures | o

The Back Channel!

® Be sure to encourage feedback of the users of your
architecture. Accept feedback and criticism, and improve
your documentation accordingly!

® Create tutorials, FAQs and glossaries as Wikis, so that
users can contribute, enhance and comment
(I am not sure this is useful for the more conceptual stuff)

® |f you use podcasts or videos, Iinvite users to “appear on
the show”

® Exchange architects and developers, to make sure
architects eat their own dog food, and developers
understand how complex it is to integrate all the(ir)
requirements into the architecture

ingenieurbiro fur softwaretechnologie www.voelter.de -94 - ©2007 Markus Vélter

Documenting Software Architectures A

® Documenting Software Architectures
® (Structured) Glossaries
® Patterns and the Pattern Form
® Pattern Languages
® Tutorials and FAQs
® Diagramming and Modeling
® Channels
® What about Code?
® Specifics for Product Lines & Platforms

® |ayout and Typography
® Diagramming Guidelines
® Summary

ingenieurbiro fur softwaretechnologie www.voelter.de - 95 - ©2007 Markus Vélter

Documenting Software Architectures | o

What about Code?

® |t is useful to document important APIs in the code and
use tools such as JavaDoc or DoxyGen to generate online
APl documentation.

® However, code cannot replace tutorials, glossaries,
rationales, FAQs, or any of the other kinds introduced
before — code does not tell a story!

® Of course, tutorials and FAQs contain code to show how to
use the programming model

® It is useful to refer to code from any of the other
artifacts if people want more details.

® Do not document things elsewhere that are obvious and
understandable from the code.

ingenieurbiro fur softwaretechnologie www.voelter.de - 96 - ©2007 Markus Vélter

Documenting Software Architectures A

® Documenting Software Architectures
® (Structured) Glossaries
® Patterns and the Pattern Form
® Pattern Languages
® Tutorials and FAQs
® Diagramming and Modeling
® Channels
® What about Code?
® Specifics for Product Lines & Platforms

® |ayout and Typography
® Diagramming Guidelines
® Summary

ingenieurbiro fur softwaretechnologie www.voelter.de - 97 - ©2007 Markus Vélter

Documenting Software Architectures 5

Product Lines & Platforms

® |n addition to the best practices already introduced, you
must document the variation points in the product line.

® A variation point is a location in the product line where
product specifics can be “plugged in”.

® A variation point can support customization (build) or
configuration (selecting):

Guidance, Complexity,
 Eficiency Flexibility P>

Routine Creative

Configuration Construction

Configuration Feature-Model Graph-Like

Parameters Based Languages
Configuration

Property Files

Wizard Tabular
1zards Configurations
. ingenieurbUro flir softwaretechnologie www.voelter.de -98 - ©2007 Markus Volter

Documenting Software Architectures 5

Customization vs. Configuration

® Customization ® Based on this sample
Example Metamodel metamodel,
_ you can build a wide
ase -
name: Sting variety of models:
T : a) b)
| Data 0..n '_Attn_bUte <<entity>> <<entity>> | <<dependentOb>>
T type: String Customer Party on Address
Entity T>| DependentObject | name: e ome: e ;Lysitrfhnf
id: long -n street: String
- : .
Configuration s b Stack

Counter

s 1 N lARTAE N I VNS D ./0\.

Optimization

Dynamic Size, ElementType: int, Fixed Dynamic

Counter, Threadsafe l ./O\.

Static Size (20), value ElementType Speed Memory Additional
ElementType: String [open] Usage Features

Dynamic Size, Speed-Optimized, -/<l>\-

Bounds Check int float String
ivd@

www.voelter.de - 99 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures | o

Documenting Variability using Feature Modeling

® You have to document which variation points exist and how
they relate/constrain each other

® A feature model describes the variability of a product line
without considering the implementation of the variation point
(or feature)

® Subfeatures can have different relationships, including
Mandatory Optional Alternative N of M

Fixed Stack Size Additional
Features

value I . . Thread | | Bounds Type
Optimization Fixed Dynamic Safety Check Check

® A feature can represent some kind of component or an
aspect.

www.voelter.de - 100 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures | o

Product Lines & Platforms: What to document

® For each variation point, you need to document

® Does the variation point support configuration or
customization (frameworks)

® What is the mechanism for selecting/building a variant,
Incl. the binding time (compile-time, runtime, ...)

® A rationale for the variation points — tracing back to
the requirements

® An example of customizing/configuring the variation
point (basically a kind of mini-tutorial or FAQ)

® Feature models (together with explaining text) are a
good way of providing an overview over the variability in a
product line.

www.voelter.de -101 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures A

® Documenting Software Architectures
® (Structured) Glossaries
® Patterns and the Pattern Form
® Pattern Languages
® Tutorials and FAQs
® Diagramming and Modeling
® Channels
® What about Code?
® Specifics for Product Lines & Platforms

® Layout and Typography
® Diagramming Guidelines
® Summary

ingenieurbiiro fiir softwaretechnologie www.voelter.de - 102 - ©2007 Markus Vélter

Documenting Software Architectures | o

Page Layout & Typography

® Typography influences the reader when reading the
document

® You’'ll read faster if the page geometry is suitable and
you’ve chosen suitable fonts

® You should use document templates
® that contain only stylistic aspects, not 25 sections to fill in
® They are prepared by a small number of people
® Hence, good layout will become pervasive

® And always use change marks for revisions of the
documents — otherwise readers will not read anything
beyond version 1

www.voelter.de - 103 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures [EESES

Page Layout & Typography 11

® 50%0 Page contents
® seems to be too little

® pbut is appropriate for the
readers’ fields of view

® Typically a good decision
for documents

® 2 — 2.5 Alphabets per Line
® Long lines are hard to follow
® Short lines require too many “cariage returns”
® Might result in several columns in a document

ﬂb C Cl@fglliikll’llll opqrs tu V\‘-FX}TZ ﬂl) Cd&fghiikll’llll opqgrs tu V\VI{}TZ

© 2007 Markus Volter

ingenieurbiro fur softwaretechnologie www.voelter.de

Documenting Software Architectures 5

Page Layout & Typography 111

® 1209 Line abcdefgh

Spacing

Kimmnoxyz—}100%

11 20%

® 2 Fonts

® Use Serif Font for the text (guides the eye)
® Use Sans Serif for Headlines
® ... and maybe Monospaced for Code

Beispiel

Fir die Uberschrift wurde hier die
serifenlose Schrift Frutiger gewihlt,
Im Haupttext kommt die Serifen-

Schrift Garamond zum Einsatz.

Beispiel

Fir die Uberschnft wurde hier die
sertfenlose Schnft Helvetica gewiéhlt. Im
Haupttext kommt die Senfen-Schrift
Times New Roman zuum Einsatz.

ingenieurbiro fur softwaretechnologie

www.voelter.de

© 2007 Markus Volter

Documenting Software Architectures 5

Page Layout & Typography 1V

® Use Variations Carefully
® CAPITALS require 12% more reading time!
® |talics and Bold is more suitable
® Do not use underlines — ugly!

BTla.Ee [#bolz_lﬁe SHAPE

® Max 3 levels of structure
® Chapters, Sections, Subsections
® Things like 4.1.2.3.4.5 are not useful

® Use graphical gimmicks (lines, symbols), but use them
sparsely

www.voelter.de - 106 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures | o

Page Layout & Typography V

® Enough Whitespace around illustrations
® Make sure illustrations are not jammed in between text
® Use a different (Sans Serif) font for captions

® Spelling Is important!
® ... correct grammar and readable wording is important, too!
® Short, simple sentences are better.
® Consider the document literature! Write a book!

® Use Active Voice!
® Talk to the reader: it is easier and more engaging to read!

® | ine Width for lllustrations

® Make sure the line width of illustrations is compatible with
the weight of the font in the running text

® Otherwise the illustration will disrupt the layout of the page

www.voelter.de - 107 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures

Page Layout & Typography VI (Line Width for Illustr.)

VERTIC AL PEOTOTYPE. It is important that you do this before you dive into phase
3t Automation

Automation: The third phase aims at automating some of the steps defined m the
first, and refined in the second phase, making the architecture useful for larger
projects and teams. First, wou will typically want to GEMERATE GLUE CODE to
automate the TECHNOLOGY MAPPING. Also, you often notice that even the
PROGEAMMIN G MODEL involves some tedious repetitive itmple mentation steps that
could be expressed more briefly with & DSL-BASED PROGRAMMING MODEL.
Finally, MODPEL-BASED ARCHITECTURE VERIFICATION helps ensure that the
architecture is used "cotrectly” even in large teatms.

The following illustration shows the pattetns and theit dependencies. It uses well-
known UML dependency and inheritance notation.

Phase 1: Elabordte

-+ Independznt

Brehitecture
! makocnios
Ew |
H
Programming [, ™| Techndogy
Modh Mapping
x x
| nmee
omanze |
: | vertieal
L mores Pretctype Mosk Plattomn
Phaze 3:
DSLbased aubmans futomte
Pragramrming
Mad:l

drchitecturs [* 7
Metamnodkl Glue Code

‘ Generation

Model-Based
Architecturs
Validation

Good:

Known Uses

All MDED projects that I am ot was involved in have used this spproach, this
includes a C-hased component model for embedded real time systems, web
applications and components for mobile devices

The documentation of the opendrchitectureWare generdor [0AW] shows an
extensive practical example of using more than one model as generator input.

Summary

It non-trivial scenatios, A MODEL PER CONCERYM is sheolutely necessary to keep
(large) models managahle. Make sure ¥ou use a tool whete this approach can be
implemented painlessly, before youuse the generator tool on larger projects

Pattern Overview - Pt.2

The following illustration shows where in an MDSD infrastructure the respective
CCC-handling approach will take effect. For example, A0 TEMPLATES handle the
cross-cubling coneemns in the templates, while the generator tool has to support it
by providing the ACP support for template files

TEMPLATE-F

.
T Platform
4
[) x
i i runs on
Application Code
Model Generator
L"‘em:raledi Non-Gen
2 . e

PATTERN-BASED AOP

A MODEL PER CONCERN
—Fomvcm GENERATION

primary location, where locaitons that must be

Key: . CCC are handied . “supportive”™
----- B Dependency (as in UML) — DataFlow
O Pattemn AntetactTool

This section provides a summary of the consequences in the form of a chart. The
more grey in the box, the better. The rationale for the length of the bars is derived
from the consequences sections of the respective paterns.

ingenieurb r softwaretechnologie

www.voelter.de

Markus Volter

Examples

Documenting Software Architectures

Content-Deployment

Itn Projekt unterscheiden wir zwischen zwed Ve rfahren, ﬁnderungen am Content des
Portals worsunehmen. Redaktionelle Anderungen werden won den Redakteuren des
Portals durchgefihst. Strukturelle Ande rungen am Content erfordern
Programmierung und Tests und werden nur vom Projekt-Team vorgenommen.

. ' Deployment -
&Expoﬁ Deploymert
-t L]

Transfer-Bereaich Test-Server

Transfer Weh-Server

Redaktionelle Anderungen

1. Ein Redakteur ewstellt newe Dokuwnente in CMS oder dndert bestehende
Drokutnerte.

2. Ein Chefredakteur gibt die Andenmgen frei und publiziert die neuen Dokumente.
Drer neue Content wird wumittelbar itn Portal sichthar

Strukturelle Anderungen

1. Ein Programimierer dndert die J3Ps der entsprechenden Termplates.

2. Nach Abschluss won Programemierunz und Wodul-Test werden die ’T'emplates
vom CME in einen speziellen Transfer-Bereich exportiert.

3. Von dost werden die Templates auf den Test-Server Ubertrazen. Hier findet der
Systern-Test statt.

4. DMe Schritte 1 bis 3 werden bei Bedarf wiedetholt bis der Systemtest erfolgreich
wetlinft.

5. Ein Administrator spielt die Terplates des Test-Servers auf dem Web-Server der
Produktionsumgzebung ein und startet den Web-Server neu.

/__/\’\-\

Who should read this paper?

This paper is intended to be read by software architects (as well as consultants,
coaches and developers), who wotk in medium 1o large sized project teams. For
the stereotypical three-person-project maty of the patterns will probably be
considered overkill. Also, the patterns described below are probably most usefulin
projects that build platforms, large, long-lived systems or in the context of
product-line architectures.

Introduction

Wy write a paper on software architecture” There are several teasons. The most
important is that I think the craft of software architecture in current industrial
practice is not what it should be.

Before I start bashing current practice, I wart to state what this paper is actually
about. [think, there is a difference between the functional architecture of a system,
and the technical architecture. The functional architecture is aligned with the
domain. For example, it is abowt understanding processes, responsibilities,
vatighilities; in one word it's showt what the system should do. Technical
architecture on the other hand is abowt how the functional architecture is
implemented: do we have components? Are we distributed? How do we scale?
What sbout systems management? How do we realize the required Qo37? How are
processes rendered? Do we use a relational of a non-relational DB? [n this paper,
focus primarily on technical architecture. Specifically, I want to show, how we can
cothe up with a technical architecture that makes the development of the functional
atchitecture (i.e. the realization of the use cases for the system) as pain-free as
possible.

Why software architecture is important

Software architecture has beer, 15, and will be an important discipline in software
development. At some point, you have to come up with a consistent metaphor for
how your system is structured and behaves. There are different opinions on when
you have to define your architecture (at the beginning of a project, or on the fly),
who should do that (one or more architects, the development team as a whole),
how defailed it should be defined (just a rough spec or detailed prescriptions) and
i what way to specify it (powerpoints, word docs, code snippets, metamodels).

Also, in some citcles, the word architectute itself has accumulated so much
negative connotation, that it is not used at all: people use terms such as “strategic
design” instead.

Howevet, I think it is agreed that a non-trivial system has to stick to certain
consitency tules intemally in order to communicate its internal structure to (hew)

ingenieurbiro r softwaretechnologie www.voelter.de

© 2007 Markus Volter

Documenting Software Architectures A

® Documenting Software Architectures
® (Structured) Glossaries
® Patterns and the Pattern Form
® Pattern Languages
® Tutorials and FAQs
® Diagramming and Modeling
® Channels
® What about Code?
® Specifics for Product Lines & Platforms

® |ayout and Typography
® Diagramming Guidelines
® Summary

ingenieurbiiro fiir softwaretechnologie www.voelter.de - 110 - ©2007 Markus Vélter

Documenting Software Architectures A

Diagramming Guidelines

® Limited Real Estate
® Diagram should be viewable on a screen
® printable on a sheet of paper (Letter, DIN-A4)
® 7 + 2 boxes/entities

® Hierarchical Decomposition (with Drill-Down diagram)

® Make sure all elements in a specific diagram are the
same level in the hierarchy

SomePlace: Generator

end1l end21 end22
SomePlace: SomeOtherPlace: end11
itohi ; link1. link14
Generator transmissionLinel SwitchingStation |-|-11: Transformer'm—3| 220KV: Bus } n 1 R
transmissionLinel

link12

20KV: Bus end21

SomeOtherPlace: SwitchingStation

link11 link214
| G11: GenerationElement | B21-220KV: Bus
link22

Drl ” Down T21: Transformer

J Good |::|
..F end22

www.voelter.de -111 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures | o

Diagramming Guidelines 11

® Always explain diagrams, the picture itself is not
enough

® Gjive it a half-sentence title

® Explain in prose what the diagram shows (or use the
diagram to illustrate conceptes explained in the running
text)

® |In the explanation don’t explain every detail shown in
the diagram, but help people “find their way” around the
diagram

e iF 'l If\Nlﬂf\m & N\ F ' Vel aVay sl \'- \ Y.V e I A f:l"\ ﬂl"\Nl lf\NI\

~~ I\I\I
UVIUC a UIClUlalll I\Uy \gUIICIdIIy vveli—uciliiicu ialiyuayc)

® A diagram is only useful if readers can know what a
graphical element means (boxes and lines do need
explanation!)

® Hence, either provide a key, or use a well-known
language for the diagram

n
r'

www.voelter.de -112 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures i

Diagramming Guidelines 111

® Clearly defined “message”
® A diagram should have a well-defined purpose,

® Hence, it should typically only illustrate one concern,

aspect, viewpoint, abstraction level or layer in a hierarchy,
relationship kind, ...

® ... unless it’s purpose is to explicitly illustrate the

relationships of some of these concerns, viewpoints or
aspects

® Readable Left-to-Right or Top-to-Bottom

® (most) People naturally scan a diagram from left to
right, or from top to bottom

® Layout your diagram so it can be read in these orders

® Especially important if there’s some kind of signal flow,
time progression or increasing level of detail

ingenieurbtro fir softwaretechnologie

www.voelter.de -113 - © 2007 Markus Volter

Documenting Software Architectures A

Diagramming Guidelines 1V

] <<subsystem>>
® Don’t add too much text to diagrams AttitudeController
. replicated = true, sil=4,

® Rather, add these details to separate cycleTime=100ms, state=persistent,
. . errorStrategy=restart
views, property lists, or render them
. currentAttitude: Attitude [1]
as graphical elements attitudeForecast: Attitudel..n]

attitudeExtremes: Attitude[1..]
currentVelocityVector: Velocity[1]
velocityForecast: Velocity[1..n]

® If possible, run the same kind of
relationship in the same direction x Bad

® E.g. inheritance vertical, associations
horizontal, dependencies diagonal

-usedlibraries Component owner ports | Port . T
o " -interface
- 1 0. -min it 1
System Library -miEe : int
| ! - |
- i JlE cCompanent RequiredPort ProvidedPort
-delayinis © int
v T
NbdelRoot
-projectiame String TestComponent StateMachineDrivenServiceComponent . OperationEventMapping
-toctPackage © String -mappings
0.

X Bad W/ Good
ivé@

ingenieurbiiro fiir softwaretechnologie www.voelter.de - 114 - ©2007 Markus Vélter

Documenting Software Architectures

Diagramming Guidelines V

ConfigurationParameter

® Graphical Proximity has

Componant _owrer -ports Port Interface
»

meaning Ty
® Cohesion o Pk
® Grouping

ServiceComponent PeriodicComponent
_delayinhis © int G I

TestC it hi ivenServiceC

-mappings
0.3
OperationEventMapping

ConfigurationParameter

-configPafameters
[
Comporent
Sowner
1
o.#
-poits
|SeruiceCompDnem | PeriodicComponent ey -irterface Interface
i - 1
_clelayints ; int ﬁ:‘x- I"ilvflt
T

ivenServiceC

‘Tpmr‘
[
L

1 ProvidedPort

RequiredPort
-mappinas

0.

OperationEventMapping

www.voelter.de -115 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures 5

Diagramming Guidelines VI

® Make it generally nice -

® As few lines as possible | | |
(Join/fork lines) =

® Join lines if possible
® Line Width, Fill Color

® Use a drawing tool, JGood
not a modeling tool!

=

estC p it StateM: il i viceC:

Campanent

1
o
pans -irterface Interf
- Pavt
Service Component PeriodicComponent 1
— -min : int
-delayinhds © int _ma ; int

TestComponent StateMachinelrivenServiceComponent
ProvidedPart

www.voelter.de -116 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures '". I

Diagramming Guidelines Vi1

7 1 AUTOSAR lication Actuator Sensor Application
® Don’t imply stuff you |sw| B ‘e e Ml A TosAR BEERR
omponent Component Component Component Component

don’t mean to say N T Al
i |

® Layers are a good

can d I d ate v — Z 5““:‘;'[""“" Stnnfrmzeu AUTEISAR awﬁm
Interface Interface Interface

ECU
Abstraction

® Use few colors e (e

® Every color should have
a defined meaning

Complex
Device

Standardized
Interface

® |t is part of the language’s ECU-Hardware

Vv Good ? X Bad

Is this a layered architecture?

concrete syntax

ingenieurbiiro fiir softwaretechnologie www.voelter.de -117 - ©2007 Markus Vélter

Documenting Software Architectures A

Diagramming Guidelines VIl1I

® And finally ... don’t force diagrams.

® Use diagrams for what they are good for!
® Relationships between things
® Processing steps (with in/out parameters)
® Timelines
® Signal Flow
® Causality

® There are other ways of rendering things:
® Tables/Matrices
® Textual Notations

www.voelter.de -118 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

Documenting Software Architectures A

® Documenting Software Architectures
® (Structured) Glossaries
® Patterns and the Pattern Form
® Pattern Languages
® Tutorials and FAQs
® Diagramming and Modeling
® Channels
® What about Code?
® Specifics for Product Lines & Platforms

® |ayout and Typography
® Diagramming Guidelines
® Summary

ingenieurbiiro fiir softwaretechnologie www.voelter.de - 119 - ©2007 Markus Vélter

Documenting Software Architectures | o

® Software Architecture Documentation is important if you
want to build a long-standing architecture.

® There are more aspects to this than just a UML model
(which can play a role, but is not sufficient)

® You should use other channels, if applicable.

® Make sure that whatever channel you use, it iIs executed
well, so that your audience likes to read/listen to/view Iit.

® In many ways, documenting software architectures can

 THANKS!

www.voelter.de - 120 - © 2007 Markus Volter

ingenieurbtro fir softwaretechnologie

