
Documenting Software Architectures

Software Architecture
Documentation in the Real WorldDocumentation in the Real World

OOPSLA 2007 Tutorial

Markus Völter
voelter@acm.org
www voelter de

Copyright is held by the author/owner(s).
OOPSLA 2007, October 21–25, 2007,

Montréal, Québec, Canada.
ACM 07/0010

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 1 -

www.voelter.de

- 1 -

ACM 07/0010.

Documenting Software Architectures

About me

Markus Völter• Independent Consultant Markus Völter
voelter@acm.org
www.voelter.de

Independent Consultant

• Based out of Goeppingen,
Germanyy

• Focus on
• Model-Driven Software

Development
• Software Architecture
• P d t Li E i i

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 2 -

• Product Line Engineering

Documenting Software Architectures

C O N T E N T S

• What is Software Architecture• What is Software Architecture

• Documenting Software Architectures
• (Structured) Glossaries
• Patterns and the Pattern Form
• Pattern Languages• Pattern Languages
• Tutorials and FAQs
• Diagramming and Modelingg g g
• Channels
• What about Code?
• Specifics for Product Lines & Platforms

• Layout and Typography

• Diagramming Guidelines

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 3 -

• Summary

Documenting Software Architectures

C O N T E N T S

• What is Software Architecture• What is Software Architecture

• Documenting Software Architectures
• (Structured) Glossaries
• Patterns and the Pattern Form
• Pattern Languages• Pattern Languages
• Tutorials and FAQs
• Diagramming and Modelingg g g
• Channels
• What about Code?
• Specifics for Product Lines & Platforms

• Layout and Typography

• Diagramming Guidelines

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 4 -

• Summary

Documenting Software Architectures

What is Software Architecture

• Wikipedia:
The software architecture of a program or computing
system is the structure or structures of the system which system is the structure or structures of the system, which
comprise software elements, the externally visible
properties of those elements, and the relationships
b t th between them.

• Eoin Woods:
Software architecture is the set of design decisions which,
if made incorrectly, may cause your project to be
cancelled.cancelled.

• Hayes-Roth:
The architecture of a complex software system is its "style The architecture of a complex software system is its style
and method of design and construction".

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 5 -

Documenting Software Architectures

What is Software Architecture II

• Boehm, et al., 1995:
A software system architecture comprises
• A collection of software and system components • A collection of software and system components,

connections, and constraints.
• A collection of system stakeholders' need statements.
• A rationale which demonstrates that the components,

connections, and constraints define a system that, if
implemented would satisfy the collection of system implemented, would satisfy the collection of system
stakeholders' need statements.

• Other: • Other:
Architecture is everything that is expensive to change
later.

• Mine:
Everything that needs to be consistent throughout a

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 6 -

y g g
software system

Documenting Software Architectures

Architecture/System Categories – Focus

• Small, ad-hoc systems typically developed by small
teams

• Large systems, that are developed by larger teams,
typically long-lived, strategic

• Product Lines & Platforms, i.e. base architectures on
top of which a family of systems is built often by several
teams, strategic

• We will primarily focus on large systems & product p y g y p
lines – since for small ad-hoc systems architecture
documentation is often not essential

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 7 -

Documenting Software Architectures

Aspects of Software Architecture

• This diagram outlines a number of terms and concepts
we will use in the rest of this presentation.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 8 -

Documenting Software Architectures

Application vs. Conceptual Architecture

• Any non-trivial, well-architected system typically consists
of many instances of a limited set of concepts.
• Components & Connectors, Pipes & Filters, Layers, etc.Components & Connectors, Pipes & Filters, Layers, etc.
• Architectural Patterns & Styles are good starting points

• We call these limited set of concepts and their • We call these limited set of concepts and their
relationships the conceptual architecture

• The concrete instantiation of these concepts used to build The concrete instantiation of these concepts used to build
a specific application is called the application
architecture

• A well-defined conceptual architecture is essential for
large systems and product lines – to make sure the
system(s) is/aresystem(s) is/are
• internally consistent
• understandable
• l bl

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 9 -

• evolvable

Documenting Software Architectures

Application vs. Conceptual Architecture II: Examples

• Application Architecture:

We want to build an enterprise system that contains p y
various subsystems such as customer management,
billing and catalogs. In addition to managing the data
using a database, forms and the like, we also have to g , ,
manage the associated long-running business
processes.

• Conceptual Architecture:

Core building blocks are components interfaces data Core building blocks are components, interfaces, data
types, business processes and communication
channels. Communication is synchronous and local.
Communication to/from processes is asynchronous and
remote. Components are deployed/hosted in some kind
of container that takes care of the technical concerns.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 10 -

Documenting Software Architectures

Conceptual Architecture vs. Technology Decisions

• A conceptual architecture should be as independent of
specific technology decisions as possible (POJOs)
• Technologies include OS, DOC or Messaging Middleware, Technologies include OS, DOC or Messaging Middleware,

drivers, UI frameworks
• We do not aim to abstract away languages or paradigms

• The mapping to a specific technology (or several
technologies) should be specified in a separate step

• The mapping should be guided by non-functional and
operational requirements that are specified as part of
the conceptual architecturethe conceptual architecture

• This approach is essential to make sure the technological
aspects are well isolated:aspects are well isolated:
• to be able to exchange some of the technologies
• to simplify application development by isolating it as

far as possible from the details of the technologies

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 11 -

far as possible from the details of the technologies

Documenting Software Architectures

Conceptual Architecture vs. Technology Decisions: Ex.

• Components are implemented as stateless session
beans with local interfaces only.

• Processes are implemented as message driven beans;
messaging is implemented via a JMS implementation.

• Data structures and process state are persisted into a
relational database using JPA-based persistence.

• We use JBoss as the J2EE container to host the
application components. pp p

• Oracle is used as the database.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 12 -

Documenting Software Architectures

Conceptual Architecture vs. Programming Model

• The conceptual architecture and its concrete technological
realization can be quite complex – in order to satisfy all
the (non-functional) requirementsthe (non-functional) requirements

• Application developers have to be given a well-defined
programming model that makes application programming model that makes application
development based on the architecture as straight forward
as possible
• “Make typical cases simple, and exceptional cases

possible”

• The programming model should hide as much of the
technology as possible – and make the conceptual
architecture accessiblearchitecture accessible
• It can be seen as the “architecture API”

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 13 -

Documenting Software Architectures

Conceptual Architecture vs. Programming Model: Example

• How do I write a component?

• How do I specify a process?How do I specify a process?

• How do I instantiate a data object?

• How do I use channels for communication?

• How do I send events to a process?• How do I send events to a process?
• How do I pass data along?

• What are the services the container will provide for me?

• Which features of the Java programming language can I p g g g g
not use?

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 14 -

Documenting Software Architectures

Conceptual Architecture vs. Programming Model: Example II

• A component:
public @component class AddressManager

implements IAddressStore {// provides AddressStore

private IPersonDAO personDAO;

public @resource void setPersonDAO(IPersonDAO d) {
this.personDAO = d; // setter for dao

} // interface

• A process comp’t: public void addOrUpdateContact(Person p) {
... // from IAddressStore

}

public void addAddress(Person p, Address a) {

public @process class PaymentProcess
implements IPaymentProcessTrigger { p (p,) {

... // from IAddressStore
}

public Address[] getAddresses(Person p) {
... // from IAddressStore

}

private ICustomerManager custMgt;

public @resource void setCustomerManager(
ICustomerManager mgr) {

this.custMgr = mgr;}
}

this.custMgr mgr;
}

public @trigger void paymentMade(int procID) {
PaymentProcessInstance i = loadProcess(procID);
if (amountCorrect()) {

// d t th t t// advance to another state…
}

}

public @trigger void paymentTimeout(int procID) {
PaymentProcessInstance i = loadProcess(procID);

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 15 -

... send reminder using the custMgr ...
}

}

Documenting Software Architectures

Architectural Process

• An architecture (conceptual and application) evolves
over time as we build a system (or over several systems)
• There may be a more or less appropriate initial idea• There may be a more or less appropriate initial idea…
• … maybe based on architectural styles & patterns …
• … but it will always evolve over timebut t a ays e o e o e t e

• However, at any given time there is the one-and-only
correct architecturecorrect architecture
• The notion of what this one-and-only correct architecture

is changes over time, but at any given time it is well-
d fi ddefined

• So, it is essential that applications are (in the process of
becoming) consistent with that architecture at any
point in time to keep the system consistent
• Ideally you want to “enforce” the architecture via tools

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 16 -

• Ideally you want to enforce the architecture via tools…

Documenting Software Architectures

What needs to be documented?

• Conceptual level:
• The conceptual architecture
• St k h ld d th i d• Stakeholders and their needs
• Rationales why the conceptual architecture is as it is
• The programming modelThe programming model
• The technology mapping

• Application Level:
• The application architecture
• St k h ld d th i d• Stakeholders and their needs
• Rationales why the application architecture is as it is

• We will focus mainly on the conceptual level

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 17 -

Documenting Software Architectures

C O N T E N T S

• What is Software Architecture• What is Software Architecture

• Documenting Software Architectures
• (Structured) Glossaries
• Patterns and the Pattern Form
• Pattern Languages• Pattern Languages
• Tutorials and FAQs
• Diagramming and Modelingg g g
• Channels
• What about Code?
• Specifics for Product Lines & Platforms

• Layout and Typography

• Diagramming Guidelines

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 18 -

• Summary

Documenting Software Architectures

Documentation Fundamentals for all Artifacts

• For each artifact, define and state the target audience –
and make sure the content is relevant to that audience

• Use a suitable medium/channel (see below)

• Document only as little as possible• Document only as little as possible

• Avoid duplication! Document every aspect in one place
l d li k (t j t f !) t t only – and use links (not just references!) to connect

related topics

• Just as with code, put documentation into the Version
Control System (and not on some strange Web
Collaboration Platform) Collaboration Platform)
• That’s true for the development of the docs
• There might be a different publishing channel

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 19 -

Documenting Software Architectures

Documentation Fundamentals for all Artifacts II

• Always document top down
• provide progressively more details only for those

readers who want to actually know themreaders who want to actually know them
• Make sure concepts and the big picture is

understandable without rummaging through all the
details!

• Try to structure an architecture (or at least its y (
documentation) into layers, or levels, or rings
• First cover only the basic layer
• Th dd d l t th i t• Then add more and more layers to the picture
• This makes things easier to comprehend

• Visualize! … see later.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 20 -

Documenting Software Architectures

C O N T E N T S

• What is Software Architecture• What is Software Architecture

• Documenting Software Architectures
• (Structured) Glossaries
• Patterns and the Pattern Form
• Pattern Languages• Pattern Languages
• Tutorials and FAQs
• Diagramming and Modelingg g g
• Channels
• What about Code?
• Specifics for Product Lines & Platforms

• Layout and Typography

• Diagramming Guidelines

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 21 -

• Summary

Documenting Software Architectures

Glossaries

• A glossary lists the relevant architectural concepts
and their meaning and relationships

• It is useful to introduce the basic ideas and familiarize
readers with the terms used in the architecture

• To make the glossary less abstract, make sure an
example is provided for each of the introduced terms

• It can be used for the conceptual architecture and the
application architecture – but it is more important for pp p
the conceptual architecture

• Target Audience: Everybody technicalTarget Audience: Everybody technical

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 22 -

Documenting Software Architectures

Glossary Example

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 23 -

Documenting Software Architectures

Structured Glossaries

• Represents the core concepts as a diagram, highlighting
the relationships between the concepts

• UML Class Diagrams are very well suited for this kind of
description

• They are an addition to normal glossaries, not a
replacement, since they don’t explain concepts – they
just show their relationships

• For modelers: these are not the same as meta models, ,
since they are less formal, less detailed, and generally not
“implementable”

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 24 -

Documenting Software Architectures

Structured Glossaries Example

Data Type
is of type

Simple Type

Complex Type

InterfaceOperationParameter
has many has many

provides uses
bComplex Type

referencesDTO Component

p
any number

of

any number
of

Process
triggers

Entity

triggers

invokes

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 25 -

Documenting Software Architectures

C O N T E N T S

• What is Software Architecture• What is Software Architecture

• Documenting Software Architectures
• (Structured) Glossaries
• Patterns and the Pattern Form
• Pattern Languages• Pattern Languages
• Tutorials and FAQs
• Diagramming and Modelingg g g
• Channels
• What about Code?
• Specifics for Product Lines & Platforms

• Layout and Typography

• Diagramming Guidelines

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 26 -

• Summary

Documenting Software Architectures

Referencing Patterns

• If you’re describing a certain software structure, and that
structure has already been documented as a pattern, then
it makes sense to reference that pattern – your readers it makes sense to reference that pattern your readers
might know it!

• There’s a huge body of patterns in the literature on • There’s a huge body of patterns in the literature, on
topics such as
• Distributed (Object) Systems [POSA2, POSA4]Distributed (Object) Systems [POSA2, POSA4]
• Remoting Infrastructures [Remoting Patterns]
• Resource Management [POSA3]
• Patterns of Enterprise Application Architecture [PoEAA]
• Enterprise Integration Patterns [EIP], Integration Patterns

[IP][IP]

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 27 -

Documenting Software Architectures

Architectural Patterns

• Architectural patterns can be used to describe well-
working architectural styles and blueprints.

• Many have been described in the POSA series books, for
example, specifically in [POSA1].

• Examples include
• Blackboard
• Pipes and Filters
• Microkernel
• C t & C t• Components & Connectors

• Many of the same architectures have also been
documented as architectural styles by the SEI. These
can be references, too, of course.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 28 -

Documenting Software Architectures

Architectural Patterns and Styles; Overview

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 29 -

Documenting Software Architectures

The Pipes and Filters Pattern

• Thumbnail:• Thumbnail:
• The Pipes and Filters pattern provides a structure for systems that

process a stream of data.
• Each processing step is encapsulated in a filter component • Each processing step is encapsulated in a filter component.
• Data is passed through pipes between adjacent filters.
• Recombining filters allows you to build families of related systems.

• Known Uses:
• Compilers (different stages)Compilers (different stages)
• UNIX shells
• CMS Pipelines
• Image Processing (ALMA)

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 30 -

• Image Processing (ALMA)

Documenting Software Architectures

Architectural Patterns / The Pipes and Filters Pattern II

• Conseq ences• Consequences:

+No intermediate files necessary, but possible
+Flexibility by filter exchange or recombination+Flexibility by filter exchange or recombination
+Reuse of filter components
+Rapid prototyping of pipelines
+Possibility of improved efficiency by parallel processing

– Shared state may be expensive and complicated
– Possible data transformation overhead
– Error Handling

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 31 -

Documenting Software Architectures

Architectural Patterns as Fix Points

• Architectural Patterns serve as fix points in the design
space of an architecture.
• You understand the requirements• You understand the requirements
• You design an initial architecture
• You find it resembles a certain architectural patternou d ese b es a ce a a c ec u a pa e
• You analyze the differences. Are they essential?
• You then look at the patterns consequences to see if they

 t blare acceptable.
• Then you may want to iterate… until you maybe hit

another pattern in the architectural design space.p g p

• When using MDSD, architectural patterns can be used as a
b i f hi l d l (b l)basis for architectureal metamodels (see below)
• The solution structure of an architectural pattern can be

described as a metamodel.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 32 -

described as a metamodel.

Documenting Software Architectures

Writing your own Patterns

• If you come up with certain recurring best practices in
your domain (technical or functional) you may want to
write these down as patternswrite these down as patterns.

• The pattern forms (there are various forms) all have in
common that they require the author to structure the common that they require the author to structure the
content very strictly.
• This forces the author to think hard about stuff such as

applicability, forces or consequences
• For readers, well-structured content becomes easier to

comprehendcomprehend

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 33 -

Documenting Software Architectures

Using the Pattern Form

• Even if something is not recurring and hence is not a
pattern…

• Writing things up in pattern form improves the
effectiveness of communication, provides a means to
break down complex structures and generally improves break down complex structures and generally improves
writing style (and author proficiency).

• Once you’re accustomed to the patterns form, you will
use it implicitly when writing any kind of technical
documentation, i.e. ,
• Start by setting the context,
• Explain when and for who the following stuff is interesting
• Describe problem and solution in increasing levels of detail
• And then elaborate on the consequences.
• Finally you’ll point to related material

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 34 -

• Finally, you ll point to related material

Documenting Software Architectures

C O N T E N T S

• What is Software Architecture• What is Software Architecture

• Documenting Software Architectures
• (Structured) Glossaries
• Patterns and the Pattern Form
• Pattern Languages• Pattern Languages
• Tutorials and FAQs
• Diagramming and Modelingg g g
• Channels
• What about Code?
• Specifics for Product Lines & Platforms

• Layout and Typography

• Diagramming Guidelines

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 35 -

• Summary

Documenting Software Architectures

The challenge of documenting complex architectures

• It is not enough to simply collect descriptive data
about an architecture
• e g a big UML model or a collection of diagrams or APIs• e.g. a big UML model or a collection of diagrams or APIs

• rather, communicating an architecture requires a well-
d fi d did ti h hdefined, didactic approach, where
• You start with a motivation of what the general problem

is (what is it that the architecture should achieve)is (what is it that the architecture should achieve)
• Then you provide an overview over the solution strategy
• … and progressively provide more and more details …
• Until you’ve covered all cases incl. border cases

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 36 -

Documenting Software Architectures

Inner Structures of complex Systems

• P tt L ll ti / f tt • Pattern Languages are collections/sequences of patterns
that describe a “whole”,
• The overall structure of the system is too complicated to e o e a st uctu e o t e syste s too co p cated to

be described in one step – thus the language.
• Sometimes there are alternative sequences through the

pattern language describing various alternatives of the pattern language describing various alternatives of the
“whole”

• Group patterns into chapters to implement the
layers/levels/rings mentioned before

• A pattern language thus describes how to build such a p g g
complex system of a certain type

• There are various examples of such pattern languages There are various examples of such pattern languages,
• Many cover middleware technology [Server Component

Patterns, Remoting Patterns] , and

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 37 -

• They are published in various forms

Documenting Software Architectures

From Patterns to Pattern Languages

• The pattern is the undividable entity of
knowledge/documentation

• Pattern Languages are built by having subsequent
patterns solve problems that arise from using a patterns solve problems that arise from using a
previous pattern.

C
tx

R
es

 C
tx

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 38 -

Documenting Software Architectures

Example: Remoting

• Describes the internal architecture of
remoting middleware such as CORBA,
WebServices or NET RemotingWebServices or .NET Remoting

• It can be seen as a pattern language that
describes the internal details of Brokerdescribes the internal details of Broker
architectures in industrial practice.

Process A

Client
ry

Process B

Remote
Object

Requestor

hi
ne

 B
ou

nd
ar

Invoker

1) submit request

2) marshal request 3) forward

5) invoker operation

M
ac

h

Marshaller

2) marshal request 3) forward

Marshaller

4) unmarshal

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 39 -

Documenting Software Architectures

Example: Remoting II

• A structured glossary (per chapter!) shows the
conceptual relationship between the patterns

INTERFACE DESCRIPTION

sc
rib

es

ac
e o

f describ
inte

CLIENT PROXY
MARSHALLER

de
s

int
erf

ac
cribes

terface of
Remote Object

di
sp

at
ch

es
oc

at
io

n
to

use
s f

or

arsh
allin

g

uests
uses for

de-marsha
requ

uses to build

up reques

INVOKER

di
in

voma
reque halling

quests

es o
u

REQUESTOR

dst

REMOTING
ERROR

raisesraises

di
sp

at
ch

es
re

qu
es

ts
 to

CLIENT REQUEST

uses to

send

request

SERVER REQUEST

raisesrai
se

s

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 40 -

CLIENT REQUEST
HANDLER

SERVER REQUEST
HANDLER

communicates
with

Documenting Software Architectures

Example: Remoting III: Server Request Handler

• Context: You are providing remote objects in a server
application, and invokers are used for message dispatching

• Problem:
• The request message has to be received from the network;
• Managing communication channels efficiently and effectively is Managing communication channels efficiently and effectively is

essential
• Network communication needs to be coordinated and optimized

• Solution: Server request handler deals with all communication
issues of a server application:
• Receives messages from the network• Receives messages from the network
• Combines the message fragments to complete messages
• Dispatches the messages to the correct invoker
• Manages all the required resources (connections, threads, …)

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 41 -

Documenting Software Architectures

Example: Remoting IV: Server Request Handler 2

• Each pattern in the language is illustrated with a diagram that
shows the relationships and interactions with other building
blocks of the overall system.

Client Process Server Process

y

InvokerInvokerInvoker

Server RequestB
ou

nd
ar

yClient
Proxy
Client
ProxyRequestor

Server Request
Handler

M
ac

hi
ne

OS APIs
connection

pool

thread pool
Client Request

Handler OS APIs pool

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 42 -

Documenting Software Architectures

Example: Remoting V

• Here is another view showing the interactions, grouped
into layers

ServerClient

Client Remote
Object

invocation

pl
ic

at
io

n
La

ye
r

Object
result

Client
Proxy

invoke
operation

invoke
operation

A
pp L

n

Requestor Invoker

invocation data

result data

In
vo

ca
tio

n
La

ye
r

result data

Marshaller Marshallerforward
message

forward
message

g/ ay
er

Client Request
Handler

Server Request
Handler

invocation messages

result messages

M
es

sa
gi

n
R

eq
ue

st
 L

a

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 43 -

Documenting Software Architectures

Example: Remoting VI

• Interesting interactions are illustrated with sequence
diagrams (typically a couple of diagrams per chapter)

Server
Request
Handler

m:Message Invoker Marshaller i:Invocation
Data

Remote
Object

<<receive>>

<<create>>

<<create>>

invoke(m)

i := unmarshal(m)

invokeMethod(i)

someMethod(x)

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 44 -

Documenting Software Architectures

Example: Remoting – Technology Projection; .NET Example

• This view maps the patterns (general concepts) to a
specific example (in this case, .NET remoting)

REMOTE

Client Server

ClientA
pp

.
La

ye
r Remote

Object

INTERFACE
DESCRIPTION

REMOTE
OBJECT

Client

Transparent
Proxy

A L
n

Server
App

DISCOVERY
CLIENT PROXY

REQUESTER

Real Proxy

In
vo

ca
tio

La
ye

r

Sink Sink

Dispatcher
Sink INVOKER

LIFECYCLE
MANAGER

REQUESTER

INVOCATION
INTERCEPTOR

INVOCATION
CONTEXT

Formatter
Sink

in
g/

La
ye

r

Ch l Si k Ch l Si k

Formatter
Sink

CONTEXT

MARSHALLER

PROTOCOL
PLUGINS

.NET Runtime .NET Runtime
invocation msg

M
es

sa
gi

R
eq

ue
st

 L Channel Sink Channel Sink

result msg

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 45 -

CLIENT
REQUEST
HANDLER

SERVER
REQUEST
HANDLER

Documenting Software Architectures

Example: Remoting - Identification

• This additional layer/level/ring explains how remote
objects are identified – note how we refer to the
patterns from the lower layers

REQUESTORClient
SERVER

APPLICATION
INVOKER

patterns from the lower layers.

us
esok
s

up
bj

ec
ts

 in
APPLICATION

gi
st

er
s

ec
ts

 in

on
st

ru
ct

s

 a
ssigns use

ABSOLUTE OBJECT
REFERENCE

OBJECT ID
is part of

u

LOOKUP

lo
o

ob
j

re
g

ob
je co

ses

maps properti

identifies

lyidentifie
s

Remote Object

erties to

s
uniquely i

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 46 -

Documenting Software Architectures

Example: Remoting - Lifecycle

• This layer explains the different lifecycle patterns and
the associated (de-)activation strategies

Client

insta

inst

SERVER APPLICATION

inst

LIFECYCLE MANAGER

CLIENT DEPENDENT

antiates

tantiates

tantiates

STATIC INSTANCE PER-REQUEST INSTANCE
CLIENT-DEPENDENT

INSTANCE

ze
s

ze
s r

s

op
tim

iz

implies

op
tim

iz equiresop
tim

ize
s

LAZY ACQUISITION POOLING LEASING

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 47 -

PASSIVATION
may usemay use

Documenting Software Architectures

Example: Extension Layers

• Extending the communication
framework with out-of-band
data or cross-cutting O

• Extending the internal
infrastructure

Client

s

data or cross-cutting
functionality

R t Obj t

monitors

QOS OBSERVER

m
on

ito
rs

INVOKER

mon
ito

rs

im
plem

e

INVOCATION
INTERCEPTOR

crea
us

provides
hooks for

uses

uses

provides

hooks fo
r

CLIENT
PROXY

uses

uses

Remote Object Remote Object

grou
ps

 and

org
an

ize
s sets

 o
f

m
an

ag
es

life
cy

cl
e

fo
r

LOCAL OBJECT

REQUEST HANDLER

appears like
m

ented as

LOCATION
FORWARDER

provides location

transparency for

transpor

ates/
es

an
sp

or
ts

INVOCATION CONTEXT

INVOKERREQUESTOR

uses

uses

o LIFECYCLE MANAGER
CONFIGURATION

GROUP

op
tim

iz
es

re
so

ur
ce

co
ns

um
pt

io
n

ABSOLUTE OBJECT
REFERENCE

up
da

te
s

cl
ie

nt
's

ortstra
n

communicates w ith SERVER REQUEST
HANDLER

CLIENT REQUEST
HANDLER

pluged intopluged into

SERVER APPLICATION

p
PROTOCOL

PLUG-IN

o

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 48 -

Documenting Software Architectures

C O N T E N T S

• What is Software Architecture• What is Software Architecture

• Documenting Software Architectures
• (Structured) Glossaries
• Patterns and the Pattern Form
• Pattern Languages• Pattern Languages
• Tutorials and FAQs
• Diagramming and Modelingg g g
• Channels
• What about Code?
• Specifics for Product Lines & Platforms

• Layout and Typography

• Diagramming Guidelines

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 49 -

• Summary

Documenting Software Architectures

Tutorials & FAQs

• When documenting the programming model, the
respective documentation
• Needs to be problem Æ solution based• Needs to be problem Æ solution-based
• Needs to explain common things first, and exceptional

things later
• Needs to provide a step-by-step approach

• Here’s what has proven to be useful:Here s what has proven to be useful:
• Tutorials (Walkthroughs) for typical cases of increasing

complexity (e.g. 5, 20 and 60 minute tutorial)
• FAQs to illustrate exceptional cases in a problem Æ

solution fashion

• Note that tutorials and FAQs should not contain too
much rationale for what they explain – rather, refer to
other documentation for that Make it practical!

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 50 -

other documentation for that. Make it practical!

Documenting Software Architectures

Examples of what you need to address

• How do I set up the environment (IDE Repository Build)?• How do I set up the environment (IDE, Repository, Build)?

• How do I acquire and release resources, who manages
the lifecycle of certain artifacts?the lifecycle of certain artifacts?

• What other protocols do I need to follow (e.g. locking)

• In which chunks, and where, do I put my application logic?

• What are the constraints wrt. to concurrencyWhat are the constraints wrt. to concurrency

• How do I interact with the platform and environment?

• Which aspects of the underlying programming languages or
frameworks are disallowed?

• Important conventions and idioms, including certain
important naming conventions

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 51 -

• Where and how do I write my unit tests?

Documenting Software Architectures

C O N T E N T S

• What is Software Architecture• What is Software Architecture

• Documenting Software Architectures
• (Structured) Glossaries
• Patterns and the Pattern Form
• Pattern Languages• Pattern Languages
• Tutorials and FAQs
• Diagramming and Modelingg g g
• Channels
• What about Code?
• Specifics for Product Lines & Platforms

• Layout and Typography

• Diagramming Guidelines

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 52 -

• Summary

Documenting Software Architectures

Models

• Definition I: (www.answers.com/topic/model)

A schematic description of a system, theory, or
phenomenon that accounts for its known or inferred phenomenon that accounts for its known or inferred
properties and may be used for further study of its
characteristics

• Definition II: (www.ichnet.org/glossary.htm)

A representation of a set of components of a process,
system, or subject area, generally developed for
understanding, analysis, improvement, and/or
replacement of the processreplacement of the process

• Definition III: (ecosurvey.gmu.edu/glossary.htm)

an abstraction or simplification of realityan abstraction or simplification of reality

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 53 -

Documenting Software Architectures

Diagrams

• Definition I: (en.wikipedia.org/wiki/Diagram)

A diagram is a simplified and structured visual
representation of concepts ideas constructions relations representation of concepts, ideas, constructions, relations,
statistical data, anatomy etc used in all aspects of human
activities to visualize and clarify the topic.

• Definition II: (careers.ngfl.gov.uk/help/definitions/14_2_image.html)

Diagram means a graphical or symbolic representation of
something, usually showing the relationship between
several items.

• Definition III: (www.evgschool.org/Columbus%20vocabulary.htm)

A diagram is a drawing, sketch, plan, or chart that helps
to make something easier to understandto make something easier to understand

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 54 -

Documenting Software Architectures

Models vs. Diagrams

• Diagrams are mainly used to “intuitively communicate”
something to humans

• Models are mainly used to “formally specify” something
to tools

• Hence, models need to be correct and complete wrt. to
the aspect, viewpoint or concern they describe.
• They need to be based on a well-defined language

• Diagrams can be used to represent models.ag a s ca be used to ep ese t ode s

• Models, however, can also be represented in other ways
(e g with textual notations)(e.g. with textual notations)

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 55 -

Documenting Software Architectures

Examples of Architectural Diagrams

• This diagram shows the layers in a
typical distributed system
architecture

Domain
Platform

- Core Domain
 Classes (Entities,
 Value Types, ...)
- Business Rules

Generated Applications

architecture
• The visual layers are meant

to actually illustrate a strict Technical
Platform/

- Persistence
- Transactions
- Distribution
- Scheduling

- Business Services
- ...

layers architecture Middleware

Programming Language

 Scheduling
- Hardware Access
- ...

• Transformation architecture of a
cascaded MDSD application

Operating System

MDSD
Infrastructure

Input Models

...pp
• It is built by recursively applying

the atomic building block shown
in the top right corner

Infrastructure

Output Models

Functional Domain 1

Domain 1 Model

Functional Domain 2

Domain 2 Model

...

in the top right corner

Basic Technical
MDSD Infrastructure

Input Models

Functional Domain 1
MDSD Infrastructure

Functional Domain 2
MDSD Infrastructure

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 56 -

MDSD Infrastructure

Code for Target Platform

Documenting Software Architectures

Examples of Architectural Diagrams II
openArchitectureWareModel

• Model Transformation
architecture in the tool
openArchitectureWare

p
(UML)

Model
(XMI)

Parser
Model

(Object Graph)

export (may be repeated)

openArchitectureWare
• The boxes are hierarchical

structures of the tool

Model
Trans-
former

Modified ModelGenerated

• The arrows represent data
flow

Modified Model
(Object Graph)

Generated
Code

Code
Generator

• Layers of a product-line architecture
• If you visually draw layers, makey y y ,

sure this is actually what you want
to communicate (i.e. there really
is a layering in the system you is a layering in the system you
describe)

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 57 -

Documenting Software Architectures

Examples of Architectural Diagrams VII

• This one shows several aspects: components, layers,
client/server, dependencies, invocations, exchanged data

ServerClient

Client Remote
Obj t

invocation

lic
at

io
n

ay
er

Object
result

Client
Proxy

invoke
operation

invoke
operation

A
pp

l La

Requestor Invoker

invocation data

lt d t

o y

In
vo

ca
tio

n
La

ye
r

result data

Marshaller Marshallerforward
message

forward
message

g/ ye
r

Client Request
Handler

Server Request
Handler

invocation messages

result messages

M
es

sa
gi

ng
R

eq
ue

st
 L

ay

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 58 -

Documenting Software Architectures

Examples of Architectural Diagrams III

• A three-tier enterprise system. Useful diagram?

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 59 -

Documenting Software Architectures

Examples of Architectural Diagrams IV

• The AUTOSAR Architecture. Are the layers really there?

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 60 -

Documenting Software Architectures

Examples of Architectural Diagrams V

• Some other Architecture. Useful diagram?
(it is certainly very nice ☺)

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 61 -

Documenting Software Architectures

Examples of Architectural Diagrams VI

• One more… Useful? (It is certainly ugly!)

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 62 -

Documenting Software Architectures

Examples of Architectural Diagrams VII

• And you don’t need a fancy tool, you can use a flipchart
(assuming your handwriting is readable!)

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 63 -

Documenting Software Architectures

The use of Diagrams

• Diagrams are used to communicate to people.

• They often use nice, intuitive symbols they are They often use nice, intuitive symbols, they are
(typically) not based on a well-defined (modeling)
language.

• Often, the meaning is not really clear
• you need explaining text or somebody talking to you as

they draw the diagram

• However, diagrams are very very useful in documenting , g y y g
architectures, as long as
• You explain what the diagram means
• A d i h i h • And you are consistent wrt. the notation among the set

of diagrams you use
• … you might even use a standardized modeling language

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 64 -

y g g g g

Documenting Software Architectures

A bit more formal: FMC

• What is FMC? (http://www.fmc-modeling.org)

FMC is the acronym for Fundamental Modeling
Concepts, a consistent and coherent way to think and
talk about dynamic systems.

It bl l t i t th t d It enables people to communicate the concepts and
structures of complex informational systems in an efficient
way among the different types of stakeholders.

• Developed by the FMC Consortium (SAP, Hasso Plattner
Institut)Institut)

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 65 -

Documenting Software Architectures

Example FMC Model

• The Travel Organization
reads and writes various
data.data.

• The travel agency’s
Reservation system does Reservation system does
the same.

• The Reservation system • The Reservation system
and the Info help desk only
read travel information.

• Customers use a
request/response scheme to
l d d kplace orders and get tickets

• …

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 66 -

Documenting Software Architectures

FMC Notation Overview

• Basic Elements Common Structures

• They also have Petri Nets for dynamic structures and ER • They also have Petri Nets for dynamic structures, and ER
Diagrams for structured data

• They have Visio Stencils (which look really good)!

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 67 -

• They have Visio Stencils (which look really good)!

Documenting Software Architectures

Example of an Architectural Models

• A three-viewpoint model for a component-based
enterprise system (using UML and XML)

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 68 -

Documenting Software Architectures

Viewpoints

• When building models, it is essential to define several
viewpoints of the system

• In the previous example, we used the following three
structural viewpoints:
• Type Model: Components, Interfaces, Data Types
• Composition Model: Instances, “Wirings”
• System Model: Nodes Channels Deployments• System Model: Nodes, Channels, Deployments

• Often, additional viewpoints are needed:
• Persistence
• Security
• Forms Layout Pageflow• Forms, Layout, Pageflow
• Timing, QoS in General
• Packaging and Deployment

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 69 -

g g p y
• Diagnostics and Monitoring

Documenting Software Architectures

Viewpoints II – the 4+1 Model

• Originally conceived by Philippe Kruchten

• Core Views used to describe the architectureCore Views used to describe the architecture
• Logical View: Functional requirements (e.g. UML

diagrams, structural and behavioral)
• Process View: Non-Functional (concurrency,

performance, scalability)
• Development View: file layout, project structure, Development View: file layout, project structure,

versioning, packaging
• Physical View: topology, communication, deployment

• +1: Scenarios (Use Cases)

• N h d i i• Not too much used in practice…

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 70 -

Documenting Software Architectures

Viewpoints III – connection to modeling

• If you want to use viewpoints in conjunction with
modeling, each viewpoints needs it own modeling
language (or language partition)language (or language partition)

• You need to come up with a meta model suitable for
expressing that viewpoint and with a suitable concrete expressing that viewpoint, and with a suitable concrete
syntax.

• The meta models (and hence, languages, and viewpoints)
need to depend on each other in a suitable way.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 71 -

Documenting Software Architectures

Modeling Languages (DSLs)

• Here is a structured glossary of the necessary concepts:

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 72 -

Documenting Software Architectures

Architectural Metamodels: Type Viewpoint

• Components provide interfaces
• And components use interfaces (provided by others)

f h b f i (h• An interface has a number of operations (these are
defined as you’d expect)

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 73 -

Documenting Software Architectures

Architectural Metamodels: Type Viewpoint II (Data)

• Types are either complex or primitive
• Complex Types have attributes typed to be primitive
• A complex type is either an Entity or a DTO
• Entities can have References to other entities

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 74 -

Documenting Software Architectures

Architectural Metamodels: Composition Viewpoint

• A Configuration consists of a number of Component
Instances connected by Wires

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 75 -

Documenting Software Architectures

Architectural Metamodels: System Viewpoint

• A System consists of a number of Nodes, each hosting
Containers

• A Container is a runtime environment for Component
Instances

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 76 -

Documenting Software Architectures

Why modeling (as opposed to diagramming)?

• If I actually formally specify my architecture, I want to
benefit from that additional “overhead”

• Hence, you want to generate as much of the architecture-
related code, for example

l i k l f ll b l• Implementation skeletons to fill in business logic
• Build Files (e.g. ant based)
• Adapters to all kinds of technical infrastructure • Adapters to all kinds of technical infrastructure

(remember: the programming model shall be free of such
stuff)

• I f fi i fil • Infrastructure configuration files
• Deployment skripts

• This leads us to model-driven software development,
which is another topic…

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 77 -

Documenting Software Architectures

The role of UML

• UML is not specifically tailored for software architecture
modeling, but rather for software modeling in general
• You can use UML for diagramming as well as for • You can use UML for diagramming, as well as for

modeling – you might need a specific profile for the
latter.

• The question is, though, which UML diagrams are suitable
for architecture descriptions
• We use green for modeling, red for diagramming

• Class DiagramsClass Diagrams
• Useful for architecture meta models
• And for structured glossaries
• … and using a profile for every other structural

aspect, in principle… but the graphical symbols
are very limited Hence custom diagrams or

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 78 -

are very limited. Hence custom diagrams or
things like FMC are used.

Documenting Software Architectures

The role of UML II

• Composite Structure Diagrams
• Extremely useful for modeling hierarchical

structures of components instances as structures of components, instances, as
well as component connections

• My favourite kind of diagram in UML ☺

• Use Case Diagrams
• (More or less) useful for describing (More or less) useful for describing

usage scenarios and requirements towards
the architecture

• Sequence Diagram
• Very useful for illustrating the interactions

among architectural components
• Note the sequence diagrams are good

for scenarios, not for closed, complete

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 79 -

for scenarios, not for closed, complete
behavioral specification

Documenting Software Architectures

The role of UML III

• State Diagrams
• Very useful illustrating state changes of

components if their behavior is state basedcomponents, if their behavior is state-based
• Very useful for defining protocols between

components, and for formally specifying
state-based behavior

• Activity Diagramsy g
• Useful for describing activities, their

allocation to components and data flow
• Th b d t f ll if• They can be used to formally specify

behaviour, but I don’t do this very often

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 80 -

Documenting Software Architectures

The role of UML IV

• Implementation Diagrams
(Component & Deployment)
• Moderately useful for modeling the• Moderately useful for modeling the

packaging of components into
deployment artifacts and runtime

d bl dprocesses and executables, and
• Moderately useful for describing system

(hardware) infrastructure and the ()
allocation of processes and components
to them

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 81 -

Documenting Software Architectures

The role of UML V: Summary

• The UML can do everything … in principle.

• Tool support is of varying quality but it is getting betterTool support is of varying quality, but it is getting better.
• This is especially true for profile support and tool

customization!

• Here is how I like to use (or not use) UML in the context of
architecture
• I use it for architecture meta models
• I define domain specific architecture DSLs and work with

these languages for formal modelingthese languages for formal modeling
• I really like composite structure diagrams
• I use sequence diagrams to illustrate interactionsq g
• I use informal (Visio-based) notations for illustrations

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 82 -

Documenting Software Architectures

Architecture Description Languages (ADLs)

• ADL d fi d d f l d li l • ADLs are predefined and formal modeling languages
specifically designed to describe architectures (as
opposed to software in general as in UML).pp g)

• Typically, an ADL is defined by either a university, a
research department or an industry consortium for a research department or an industry consortium for a
specific domain
• Their practical use is limited
• http://www.sei.cmu.edu/architecture/adl.html

• ADLs are mostly used in the following domains:y g
• Embedded systems
• Realtime systems
• Safety critical systems

• Since ADL models are formal, various aspects of a system

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 83 -

can be simulated or proven using them.

Documenting Software Architectures

Architecture Description Languages (ADLs) II

• C id i th MDSD d DSL t ff di d b f • Considering the MDSD and DSL stuff we discussed before,
an ADL can be seen as a DSL for describing (certain
aspects of) (certain kinds of) architectures.p) ()

• Since architecture is a wide field, there’s no (useful)
general purpose ADL – all usable ones are restricted to a general purpose ADL all usable ones are restricted to a
specific technical domain (embedded realtime systems,
automotive systems, …)

• Often, ADLs describe components, connectors, data
types, threads as well as characteristics of the protocols
b t th tif t t bl lbetween those artifacts to enable analyses.

• These days many ADLs provide a UML profile so it can be
integrated with the UML.

• In most environments they don’t play an important

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 84 -

ost e o e ts t ey do t p ay a po ta t
role (although they maybe should…)

Documenting Software Architectures

Example ADL: AADL

• AADL t d f A hit t A l i & D i L • AADL stands for Architecture Analysis & Design Language
(historically: Avionics Architecture Description Language)
• Domain-specific to Embedded Realtime SystemsDomain specific to Embedded Realtime Systems

• It consists of component types and component
implementations The following component types exist:implementations. The following component types exist:
• Memory
• Device • Components have different ports:

data ports event ports• Processor
• Bus
• D

data ports, event ports

• Connectors connect ports from
diff t t• Data

• Subprogram
• Thread

different components

• Notations:• Thread
• thread group
• Process

• Textual
• Graphical
• UML P fil

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 85 -

• System • UML Profile

Documenting Software Architectures

Example ADL: AADL II, Examples

• C i ti th d• Communicating threads • Data Types

• Autopilot System

AADL Examples taken
from http://aadl.enst.fr/

with permission from
Irfan Hamid. Thanks!

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 86 -

Documenting Software Architectures

Do-it-yourself vs. Standard

Comparison Criterion DIY
(DSL)

Standard
(UML,ADL)

Tool S ppo t 0 +Tool Support 0 +

Task-Specificness (Modeling Efficiency) + -

Adaptability (your architecture changes – what
do you do?)

+ 0

Suitable for Generation (meta model
complexity and comrehensibility)

+ 0

Learn-your-domain (defining a meta model
helps you understand your own domain)

+ -

Learning overhead (learn the language in - 0Learning overhead (learn the language in
order to use it)

0

Communicate with outsiders (… who might
not want to learn your language)

- +

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 87 -

not want to learn your language)

Documenting Software Architectures

C O N T E N T S

• What is Software Architecture• What is Software Architecture

• Documenting Software Architectures
• (Structured) Glossaries
• Patterns and the Pattern Form
• Pattern Languages• Pattern Languages
• Tutorials and FAQs
• Diagramming and Modelingg g g
• Channels
• What about Code?
• Specifics for Product Lines & Platforms

• Layout and Typography

• Diagramming Guidelines

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 88 -

• Summary

Documenting Software Architectures

Printable Material

• To be read in one piece to teach concepts

• Readability and Formatting is importantReadability and Formatting is important

• These days mainly implemented as PDFs

• Suitable for
• Conceptual Architecture (Patterns, Pattern Languages,

Glossaries, Meta models, DSLs)
• Programming Model Tutorials

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 89 -

Documenting Software Architectures

Online References

• Used for looking up details

• Readability and Formatting is not so important Readability and Formatting is not so important,
searchability and indexing more important

• These days mainly implemented as HTML or Wikis• These days mainly implemented as HTML or Wikis

• Suitable for
• Programming Model APIs and FAQs
• Glossaries

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 90 -

Documenting Software Architectures

Blogs

• It is useful if the architecture/platform team sets up an
architecture blog to keep application developers up-to-
date with recent developments date with recent developments.

• This is useful for
d h l f h l f• Updates wrt. to the evolution of the platform

• Tips & Tricks on how to use the architecture
• Success stories and other news • Success stories and other news

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 91 -

Documenting Software Architectures

Flash Demo/Video/Animation

• Here you typically screen-capture some activity related
to your architecture and record it for replay.

• Explaining Text is either recorded (audio) or added later
in keys/bubbles.

• This is useful for
• Programming Model Tutorials
• … especially if a lot of pointing and clicking, or other “tool

use” is required

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 92 -

Documenting Software Architectures

Podcasts & Video

• Podcasts are audio files published via an RSS feed in
regular episodes (“audio-blog”)

• This is useful for
• General discussions about concepts
• News and stories in general• News and stories in general

• Complex technical concepts can be explained in
audio onlyaudio only
• See se-radio.net, the podcast for developers
• Make sure it’s always at least two people

talking otherwise it will be boring quicklytalking otherwise it will be boring quickly
• Make sure things are repeated or clarifying questions

are asked

• Video is useful for
• General discussions about concepts – since you can film

h fl h

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 93 -

two guys on the flipcharts

Documenting Software Architectures

The Back Channel!

• Be sure to encourage feedback of the users of your
architecture. Accept feedback and criticism, and improve
your documentation accordingly!y g y

• Create tutorials, FAQs and glossaries as Wikis, so that
users can contribute, enhance and comment
(I am not sure this is useful for the more conceptual stuff)

• If you use podcasts or videos, invite users to “appear on
th h ”the show”

• Exchange architects and developers, to make sure
architects eat their own dog food and developers architects eat their own dog food, and developers
understand how complex it is to integrate all the(ir)
requirements into the architecture

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 94 -

Documenting Software Architectures

C O N T E N T S

• What is Software Architecture• What is Software Architecture

• Documenting Software Architectures
• (Structured) Glossaries
• Patterns and the Pattern Form
• Pattern Languages• Pattern Languages
• Tutorials and FAQs
• Diagramming and Modelingg g g
• Channels
• What about Code?
• Specifics for Product Lines & Platforms

• Layout and Typography

• Diagramming Guidelines

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 95 -

• Summary

Documenting Software Architectures

What about Code?

• It is useful to document important APIs in the code and
use tools such as JavaDoc or DoxyGen to generate online
API documentationAPI documentation.

• However, code cannot replace tutorials, glossaries,
rationales FAQs or any of the other kinds introduced rationales, FAQs, or any of the other kinds introduced
before – code does not tell a story!
• Of course, tutorials and FAQs contain code to show how to , Q

use the programming model

• It is useful to refer to code from any of the other It is useful to refer to code from any of the other
artifacts if people want more details.

• Do not document things elsewhere that are obvious and • Do not document things elsewhere that are obvious and
understandable from the code.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 96 -

Documenting Software Architectures

C O N T E N T S

• What is Software Architecture• What is Software Architecture

• Documenting Software Architectures
• (Structured) Glossaries
• Patterns and the Pattern Form
• Pattern Languages• Pattern Languages
• Tutorials and FAQs
• Diagramming and Modelingg g g
• Channels
• What about Code?
• Specifics for Product Lines & Platforms

• Layout and Typography

• Diagramming Guidelines

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 97 -

• Summary

Documenting Software Architectures

Product Lines & Platforms

• In addition to the best practices already introduced, you
must document the variation points in the product line.

• A variation point is a location in the product line where
product specifics can be “plugged in”.

• A variation point can support customization (build) or
configuration (selecting):

R ti C ti

Guidance,
Efficiency

Complexity,
Flexibility

Routine
Configuration

Creative
Construction

Feature-Model
Based

Graph-Like
L

Manual
P i

Configuration
Parameters

Framworks

Wizards

Property Files

Based
Configuration

Languages

Tabular
Configurations

ProgrammingParameters

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 98 -

Wizards Configurations

Documenting Software Architectures

Customization vs. Configuration

• Customization
Example Metamodel

• Based on this sample
metamodel,
you can build a wide you can build a wide
variety of models:

• Configuration
Example Feature Models

StackSize
Example Feature Models

Dynamic Size, ElementType: int,
Counter, Threadsafe

Optimization

Counter

Fixed Dynamic

Static Size (20),
ElementType: String

Dynamic Size, Speed-Optimized,

ElementType
[open] Speed Memory

Usage
Additional
Features

Thread Bounds Type

value

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 99 -

Bounds Check int Stringfloat Thread
Safety

Bounds
Check

Type
Check

Documenting Software Architectures

Documenting Variability using Feature Modeling

• You have to document which variation points exist and how
they relate/constrain each other

• A feature model describes the variability of a product line
without considering the implementation of the variation point
(or feature)(or feature)

• Subfeatures can have different relationships, including
M d t O ti l Alt ti N f MMandatory Optional Alternative N of M

• A feature can represent some kind of component or an
aspect.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 100 -

Documenting Software Architectures

Product Lines & Platforms: What to document

• For each variation point, you need to document
• Does the variation point support configuration or

customization (frameworks)customization (frameworks)
• What is the mechanism for selecting/building a variant,

incl. the binding time (compile-time, runtime, …)
• A rationale for the variation points – tracing back to

the requirements
• An example of customizing/configuring the variation • An example of customizing/configuring the variation

point (basically a kind of mini-tutorial or FAQ)

• Feat e models (togethe ith e plaining te t) a e a • Feature models (together with explaining text) are a
good way of providing an overview over the variability in a
product line.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 101 -

Documenting Software Architectures

C O N T E N T S

• What is Software Architecture• What is Software Architecture

• Documenting Software Architectures
• (Structured) Glossaries
• Patterns and the Pattern Form
• Pattern Languages• Pattern Languages
• Tutorials and FAQs
• Diagramming and Modelingg g g
• Channels
• What about Code?
• Specifics for Product Lines & Platforms

• Layout and Typography

• Diagramming Guidelines

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 102 -

• Summary

Documenting Software Architectures

Page Layout & Typography

• Typography influences the reader when reading the
document

• You’ll read faster if the page geometry is suitable and
you’ve chosen suitable fonts

• You should use document templates
• that contain only stylistic aspects, not 25 sections to fill in
• They are prepared by a small number of people
• Hence, good layout will become pervasive

• And always use change marks for revisions of the
documents – otherwise readers will not read anything
b d i 1beyond version 1

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 103 -

Documenting Software Architectures

Page Layout & Typography II

• 50% Page contents
• seems to be too little
• b t i i t f th• but is appropriate for the

readers’ fields of view
• Typically a good decisionyp y g

for documents

• 2 – 2.5 Alphabets per Line
• Long lines are hard to follow• Long lines are hard to follow
• Short lines require too many “cariage returns”
• Might result in several columns in a document

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 104 -

Documenting Software Architectures

Page Layout & Typography III

• 120% Line
Spacing

• 2 Fonts
• Use Serif Font for the text (guides the eye)
• Use Sans Serif for Headlines
• … and maybe Monospaced for Code

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 105 -

Documenting Software Architectures

Page Layout & Typography IV

• Use Variations Carefully
• CAPITALS require 12% more reading time!
• It li d B ld i it bl• Italics and Bold is more suitable
• Do not use underlines – ugly!

• M 3 l l f • Max 3 levels of structure
• Chapters, Sections, Subsections
• Things like 4 1 2 3 4 5 are not useful• Things like 4.1.2.3.4.5 are not useful

• Use graphical gimmicks (lines, symbols), but use them
sparsely

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 106 -

sparsely

Documenting Software Architectures

Page Layout & Typography V

• Enough Whitespace around illustrations
• Make sure illustrations are not jammed in between text
• U diff t (S S if) f t f ti• Use a different (Sans Serif) font for captions

• Spelling is important!
• … correct grammar and readable wording is important, too!
• Short, simple sentences are better.
• C id th d t lit t ! W it b k!• Consider the document literature! Write a book!

• Use Active Voice!
• Talk to the reader: it is easier and more engaging to read!

• Line Width for Illustrations
• Make sure the line width of illustrations is compatible with

the weight of the font in the running text
• Oth i th ill t ti ill di t th l t f th

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 107 -

• Otherwise the illustration will disrupt the layout of the page

Documenting Software Architectures

Page Layout & Typography VI (Line Width for Illustr.)

Bad: Good:

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 108 -

Documenting Software Architectures

Examples

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 109 -

Documenting Software Architectures

C O N T E N T S

• What is Software Architecture• What is Software Architecture

• Documenting Software Architectures
• (Structured) Glossaries
• Patterns and the Pattern Form
• Pattern Languages• Pattern Languages
• Tutorials and FAQs
• Diagramming and Modelingg g g
• Channels
• What about Code?
• Specifics for Product Lines & Platforms

• Layout and Typography

• Diagramming Guidelines

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 110 -

• Summary

Documenting Software Architectures

Diagramming Guidelines

• Limited Real Estate
• Diagram should be viewable on a screen
• i t bl h t f (L tt DIN A4)• printable on a sheet of paper (Letter, DIN-A4)
• 7 ± 2 boxes/entities

• Hierarchical Decomposition (with Drill-Down diagram)
• Make sure all elements in a specific diagram are the

same level in the hierarchysame level in the hierarchy

SomePlace:
Generator

SomeOtherPlace:
SwitchingStation

end11 end21 end22

transmissionLine1

SomePlace: Generator

T11: Transformer 220KV: Buslink13
end11

link14

transmissionLine1

G11: GenerationElement

20KV: Bus

link11

link12

SomeOtherPlace: SwitchingStation

end21

B21-220KV: Bus

link21

B22 10KV B

T21: Transformer

link22

link23

Drill Down

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 111 -

B22-10KV: Bus

link24

end22

Documenting Software Architectures

Diagramming Guidelines II

• Always explain diagrams, the picture itself is not
enough
• Give it a half sentence title• Give it a half-sentence title
• Explain in prose what the diagram shows (or use the

diagram to illustrate conceptes explained in the running
text)

• In the explanation don’t explain every detail shown in
the diagram but help people “find their way” around the the diagram, but help people find their way around the
diagram

• Provide a diagram key (generally: well defined language)• Provide a diagram key (generally: well-defined language)
• A diagram is only useful if readers can know what a

graphical element means (boxes and lines do need
explanation!)

• Hence, either provide a key, or use a well-known
language for the diagram

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 112 -

language for the diagram

Documenting Software Architectures

Diagramming Guidelines III

• Clearly defined “message”
• A diagram should have a well-defined purpose,
• H it h ld t i ll l ill t t • Hence, it should typically only illustrate one concern,

aspect, viewpoint, abstraction level or layer in a hierarchy,
relationship kind, …

• … unless it’s purpose is to explicitly illustrate the
relationships of some of these concerns, viewpoints or
aspectsaspects

• Readable Left-to-Right or Top-to-Bottom
• (t) P l t ll di f l ft t • (most) People naturally scan a diagram from left to

right, or from top to bottom
• Layout your diagram so it can be read in these ordersy y g
• Especially important if there’s some kind of signal flow,

time progression or increasing level of detail

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 113 -

Documenting Software Architectures

Diagramming Guidelines IV

• Don’t add too much text to diagrams
• Rather, add these details to separate

views property lists or render themviews, property lists, or render them
as graphical elements

• If ibl th ki d f • If possible, run the same kind of
relationship in the same direction
• E.g. inheritance vertical, associations g ,

horizontal, dependencies diagonal

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 114 -

Bad

Documenting Software Architectures

Diagramming Guidelines V

• Graphical Proximity has
meaning
• Cohesion• Cohesion
• Grouping

BadBad

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 115 -

Documenting Software Architectures

Diagramming Guidelines VI

• Make it generally nice
• As few lines as possible

(join/fork lines)(join/fork lines)
• Join lines if possible
• Line Width, Fill Color,
• Use a drawing tool,

not a modeling tool!

Bad

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 116 -

Documenting Software Architectures

Diagramming Guidelines VII

• Don’t imply stuff you
don’t mean to say
• Layers are a good • Layers are a good

candidate…

• U f l• Use few colors
• Every color should have

a defined meaningg
• It is part of the language’s

concrete syntax
B d? Bad?

Is this a layered architecture?

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 117 -

Documenting Software Architectures

Diagramming Guidelines VIII

• And finally … don’t force diagrams.

• Use diagrams for what they are good for!Use diagrams for what they are good for!
• Relationships between things
• Processing steps (with in/out parameters)
• Timelines
• Signal Flow
• C lit• Causality

• There are other ways of rendering things:
• Tables/Matrices
• Textual Notations

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 118 -

Documenting Software Architectures

C O N T E N T S

• What is Software Architecture• What is Software Architecture

• Documenting Software Architectures
• (Structured) Glossaries
• Patterns and the Pattern Form
• Pattern Languages• Pattern Languages
• Tutorials and FAQs
• Diagramming and Modelingg g g
• Channels
• What about Code?
• Specifics for Product Lines & Platforms

• Layout and Typography

• Diagramming Guidelines

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 119 -

• Summary

Documenting Software Architectures

Summary

• Software Architecture Documentation is important if you
want to build a long-standing architecture.

• There are more aspects to this than just a UML model
(which can play a role, but is not sufficient)

• You should use other channels, if applicable.

• M k th t h t h l it i t d • Make sure that whatever channel you use, it is executed
well, so that your audience likes to read/listen to/view it.

• In many ways, documenting software architectures can
even be fun!

THANKS!
i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2007 Markus Völter- 120 -

