
1

Product Line Implementation: Variabiliy in Code and Models

Writing Adaptable Software:
Mechanisms for Implementing p g
Variabilities in Code and Models

OOPSLA 2007 Tutorial

Markus Voelter

© 2005-7 Markus Völter- 1 -

a us oe te
voelter@acm.org

http://www.voelter.de
This work is supported by

Copyright is held by the author/owner(s).
OOPSLA 2007, October 21–25, 2007,

Montréal, Québec, Canada.
ACM 07/0010.

Product Line Implementation: Variabiliy in Code and Models

About me

Markus Völter
voelter@acm.org
www.voelter.de

• Independent Consultant

• Based out of Göppingen,
Germany

© 2005-7 Markus Völter- 2 -

• Focus on
• Model-Driven Software

Development
• Software Architecture
• Product Lines

2

Product Line Implementation: Variabiliy in Code and Models

C O N T E N T S

• PLE Concepts

• Classical PLE
Implementation
• Source time
• C il ti

• MDD-AO Implementation
• Intro to Case Study
• The Various (Meta-)Models
• Libraries
• An Example House
• Orthogonal Variability• Compile time

• Deployment/Configuration time
• Link time
• Run time

• MDD-AO-PLE
• What is MDD
• What is AO
• What is MDD AO PLE

Orthogonal Variability
• Transformation and Template AO
• AO Modeling
• Code Level Aspects
• Negative Variability
• Testing
• Enforcing Conventions
• Product Line Evolution

© 2005-7 Markus Völter- 3 -

• What is MDD-AO-PLE
• More Terms and Concepts

• Summary

Product Line Implementation: Variabiliy in Code and Models

C O N T E N T S

• PLE Concepts

• Classical PLE
Implementation
• Source time
• C il ti

• MDD-AO Implementation
• Intro to Case Study
• The Various (Meta-)Models
• Libraries
• An Example House
• Orthogonal Variability• Compile time

• Deployment/Configuration time
• Link time
• Run time

• MDD-AO-PLE
• What is MDD
• What is AO
• What is MDD AO PLE

Orthogonal Variability
• Transformation and Template AO
• AO Modeling
• Code Level Aspects
• Negative Variability
• Testing
• Enforcing Conventions
• Product Line Evolution

© 2005-7 Markus Völter- 4 -

• What is MDD-AO-PLE
• More Terms and Concepts

• Summary

3

Product Line Implementation: Variabiliy in Code and Models

Software System Families

•Typically, MDD makes most sense in the context of
software system families because developing
modeling environments, generators, translators,
etc can be a lot of work and it pays only if reusedetc. can be a lot of work and it pays only if reused.

•What is a software system familiy?

We consider a set of programs to constitute a
family whenever it is worthwhile to study programs
from the set by first studying the common
properties of the set and then determining the

© 2005-7 Markus Völter- 5 -

properties of the set and then determining the
special properties of the individual family
members.

Definition by Parnas

Product Line Implementation: Variabiliy in Code and Models

Variability Analysis

• Variability analysis discovers the variable and fixed parts of
a product in a domain. Parts can be
• Structural or behavioral
• Functional or non-functional (technical)

d l d l• Modularized or aspectual

• To define variable parts, we need to have a commonality
base: a base platform, a common architecture

• There are two kinds of variability:
• positive variability: add something (optional)
• negative variability: removes something (essential)

© 2005-7 Markus Völter- 6 -

• negative variability: removes something (essential)

• Another classification: structural vs. non-structural var.

4

Product Line Implementation: Variabiliy in Code and Models

Structural vs. Non-Structural Variability

• Structural Variations
Example Metamodel

• Based on this sample
metamodel,
you can build a wide
variety of models:

• Non-Structural Variations
Example Feature Models

Stack

Counter

Size

© 2005-7 Markus Völter- 7 -

Dynamic Size, ElementType: int,
Counter, Threadsafe

Static Size (20),
ElementType: String

Dynamic Size, Speed-Optimized,
Bounds Check

ElementType
[open]

int Stringfloat

Optimization

Speed Memory
Usage

Additional
Features

Thread
Safety

Bounds
Check

Type
Check

Fixed Dynamic

value

Product Line Implementation: Variabiliy in Code and Models

Routine Configuration vs. Creative Contruction

Routine
Configuration

Creative
Construction

Feature-Model Graph-Like Manual

Guidance,
Efficiency

Complexity,
Flexibility

Configuration
P t

• This slide (adopted from K. Czarnecki) is important for the
selection of DSLs in the context of MDSD in general:

h f “ h f

Framworks

Wizards

Property Files

Based
Configuration

Languages

Tabular
Configurations

ProgrammingParameters

© 2005-7 Markus Völter- 8 -

• The more you can move your DSL „form“ to the configuration
side, the simpler it typically gets.

5

Product Line Implementation: Variabiliy in Code and Models

Negative vs. Positive Variability

• N ti V i bilit () t k ti l t f • Negative Variability (a) takes optional parts away from
an „overall whole“
• Challenge: the „overall whole“ can become really big an

unmanageable

• Positive Variability (b) adds optional parts to a minimal
core.
• Challenge: How to specify where and how to join the

© 2005-7 Markus Völter- 9 -

• Challenge: How to specify where and how to join the
optional parts to the minimal core

Product Line Implementation: Variabiliy in Code and Models

Typical Binding Times & Techniques

• For each of the variable features you need to define when
you‘ll bind the feature

• source time: manual programming, generators

• Compile time: function overloading, precompiler, template
evaluation, static aspect weaving

• deployment/configuration time: component deployment
(impl. for an interface), environment variables

• link time: DLLs, class loading

© 2005-7 Markus Völter- 10 -

• run time: virtual functions, inheritance & polymorphism,
factory-based instance creation, delegation, meta
programming, data driven (tables, interpreters)

6

Product Line Implementation: Variabiliy in Code and Models

Binding Time Tradeoffs

© 2005-7 Markus Völter- 11 -

Product Line Implementation: Variabiliy in Code and Models

C O N T E N T S

• PLE Concepts

• Classical PLE
Implementation
• Source time
• C il ti

• MDD-AO Implementation
• Intro to Case Study
• The Various (Meta-)Models
• Libraries
• An Example House
• Orthogonal Variability• Compile time

• Deployment/Configuration time
• Link time
• Run time

• MDD-AO-PLE
• What is MDD
• What is AO
• What is MDD AO PLE

Orthogonal Variability
• Transformation and Template AO
• AO Modeling
• Code Level Aspects
• Negative Variability
• Testing
• Enforcing Conventions
• Product Line Evolution

© 2005-7 Markus Völter- 12 -

• What is MDD-AO-PLE
• More Terms and Concepts

• Summary

7

Product Line Implementation: Variabiliy in Code and Models

Manual Programming

• Handling variabilities by manually programming is the
simplest way of handling variabilities.

• However, it is obviously very inflexible, since, whenever
something changes you have to go back to the code and something changes you have to go back to the code and
change it manually.

• Actually, there’s no variability in the code.

• We won’t elaborate this any further.

© 2005-7 Markus Völter- 13 -

Product Line Implementation: Variabiliy in Code and Models

C O N T E N T S

• PLE Concepts

• Classical PLE
Implementation
• Source time
• C il ti

• MDD-AO Implementation
• Intro to Case Study
• The Various (Meta-)Models
• Libraries
• An Example House
• Orthogonal Variability• Compile time

• Deployment/Configuration time
• Link time
• Run time

• MDD-AO-PLE
• What is MDD
• What is AO
• What is MDD AO PLE

Orthogonal Variability
• Transformation and Template AO
• AO Modeling
• Code Level Aspects
• Negative Variability
• Testing
• Enforcing Conventions
• Product Line Evolution

© 2005-7 Markus Völter- 14 -

• What is MDD-AO-PLE
• More Terms and Concepts

• Summary

8

Product Line Implementation: Variabiliy in Code and Models

Function/Method Overloading

• Assume the following piece of code:
public class Calculator {

public int add(int x, int y) {
return x+y;

}
bli d bl dd(d bl d bl) {public double add(double x, double y) {
return x+y;

}
}

// somewhere else..
Calculator c = new Calculator();
int res = c.add(3,5); // calls the first one
double res2 = c.add(3.1415, 1.142); // calls the second one

© 2005-7 Markus Völter- 15 -

• Here we use compile-time overloading, not
polymorphism!

Product Line Implementation: Variabiliy in Code and Models

Preprocessors: C/C++ Examples

• The following statement replaces the statement itself
with the content of the file specified as part of the
statement:
#include „iostream.h“

• The next statement is a conditional statement that
includes the part between the #if and the #endif.

#if defined (ACE_HAS_TLI)
static ssize_t t_snd_n (ACE_HANDLE handle,

const void *buf, size_t len, int flags,
const ACE_Time_Value *timeout = 0,
size_t *bytes_transferred = 0);

/ /

© 2005-7 Markus Völter- 16 -

• The ACE_HAS_TLI can be considered a boolean variable
that can be defined or undefined.

#endif /* ACE_HAS_TLI */

#define ACE_HAS_TLI // defines ACE_HAS_TLI, sets it true

9

Product Line Implementation: Variabiliy in Code and Models

Simple Macros: C/C++ Examples (II)

• A typical case is to make sure include files are only
included once per compilation unit.

#if !defined(ComponentHelloWorldIncluded)
#define ComponentHelloWorldIncluded

#i l d \ ll ld\ ll ld h#include "components\HelloWorld\HelloWorldSI.h„
#include "components\HelloWorld\HelloWorldRI.h„
#include "container\Diagnosable.h"

class HelloWorld: public LifecycleInterface, public ComponentBase,
public HelloWorldSI,public HelloWorldRI,public Diagnosable {

private:

public:

HelloWorld();
~HelloWorld();

t ti i t PARAMETER NOT DEFINED

© 2005-7 Markus Völter- 17 -

static int PARAMETER_NOT_DEFINED;
static int DP_inputvoltage;
static int DP_clientcount;

int getDiagnosticParameter(int name);

};

#endif

Product Line Implementation: Variabiliy in Code and Models

Simple Macros: C/C++ Examples (III)

• Macros can also be used to define constants (although
specifically C++ provides better (and typesafe) means to
achieve this):
#define MAX_ARRAY_SIZE 200

• Processing is done via strict text pattern matching.
Wherever the preprocessor finds the pattern, it replaces it.
It has no clue about language semantics.

• Some more complex expressions involving
parameters can also by preprocessed:

#define AUTHORNAME MarkusVoelter

© 2005-7 Markus Völter- 18 -

parameters can also by preprocessed:

#define MAX(x,y) (x<y ? y : x)
#define square(x) x*x

10

Product Line Implementation: Variabiliy in Code and Models

Simple Macros: Summary

• Macros are a useful means to achieve simple text
replacement.

• In the context of programming languages, the problem
is that macros are not syntax- or semantic-aware (and is that macros are not syntax or semantic aware (and
not type safe).

• As with almost anything, it can be abused by being used
too heavily or by constructing formally legal, but nearly
incomprehensible macro definitions.

• However, it is a proven tool and has been used

© 2005-7 Markus Völter- 19 -

successfully in many systems.

Product Line Implementation: Variabiliy in Code and Models

Template Parameters (in C++)

• Unlike the generics implementation in Java, the templates
in C++ are completely static – this is why this is a
source time mechanism.

• For every instantiated template (i.e. Template parameter) For every instantiated template (i.e. Template parameter)
a completely new variant of the respective generic class
is created.

• Consequently, this approach is quite efficient – but
potentially produces large images.

© 2005-7 Markus Völter- 20 -

11

Product Line Implementation: Variabiliy in Code and Models

Template Metaprogramming (in C++)

• Also called compile-time metaprogramming, because
metaprograms „run“ while the program is compiled

• Uses the features of C++ template instantiation

• Programming style is functional and operates on types

• Note that some awkward constructs are required,
• because C++ templates were not originally intended for

this purpose
• and many generally unknown and non-trivial features of

the standard are used.

© 2005-7 Markus Völter- 21 -

• Error reporting is usually clumsy

Product Line Implementation: Variabiliy in Code and Models

Static Aspect Weaving

• AOP can be used for various reasons
• „fixing“ broken code
• Separate cross-cutting (often technical) concerns
• Handling variants

• Depending on the features we want in our system, we add
additional pieces of (AspectJ) source code.
• In our example, we can optionally add error handling
• done by adapting/extending the build path of the

respective project

• It h t ti ll it‘ b t d l l

© 2005-7 Markus Völter- 22 -

• It happens statically, it‘s woven on byte code level
• Can also be done at deployment time…

• Using advices, you can attach additional behaviour to
existing code.

12

Product Line Implementation: Variabiliy in Code and Models

Static Aspect Weaving: Example

• We use a small service framework to illustrate the
technique. Here is an introductory test case:

public void testSimpleAdding() {
ServiceEngine engine = new ServiceEngine();
engine.registerService(new CalculationService(), e g e. eg ste Se ce(e Ca cu at o Se ce(),

CalculationServiceContext.class);
CalculationServiceContext ctx1 = new CalculationServiceContext(1,2);
engine.addTask(ctx1);
CalculationServiceContext ctx2 = new CalculationServiceContext(3,4);
engine.addTask(ctx2);
engine.run();
assertEquals(3, ctx1.getResult());
assertEquals(7, ctx2.getResult());

}

© 2005-7 Markus Völter- 23 -

Product Line Implementation: Variabiliy in Code and Models

Static Aspect Weaving: Example II

• One variant adds error logging to the service engine
framework. Here is a test case; adding negative numbers is
illegal, we expect an error in the log.

public void testSimpleAdding() {
ServiceEngine engine = new ServiceEngine();

engine.registerService(new CalculationService(),
CalculationServiceContext.class);
CalculationServiceContext ctx = new CalculationServiceContext(1,-2);
engine.addTask(ctx);
engine.run();
assertEquals(-1, ctx.getResult());
assertNotNull(engine.logFor(ctx));

}

© 2005-7 Markus Völter- 24 -

• The logFor(…) operation is new, as is the functionality
to create a log in case the result is negative.

13

Product Line Implementation: Variabiliy in Code and Models

Static Aspect Weaving: Example III

• Here‘s the aspect that implements that variant:
public aspect ErrorLogging {

private Map<IServiceContext, Error> ServiceEngine.log = …

public Error ServiceEngine.logFor(IServiceContext ctx) {
return log get(ctx);return log.get(ctx);

}

public void ServiceEngine.log(IServiceContext ctx, Error err) {
log.put(ctx, err);

}

pointcut serviceExec(ServiceEngine e, IServiceContext c, IService s) :
execution(* ServiceEngine.executeService(IServiceContext, IService)) &&
args(c,s) && target(e);

Status around(ServiceEngine e, IServiceContext c, IService s) :
serviceExecution(ServiceEngine IServiceContext IService)

© 2005-7 Markus Völter- 25 -

serviceExecution(ServiceEngine, IServiceContext, IService)
&& args(c,s) && target(e) {

Status s = proceed(engine,ctx,srv);
if (s != Status.ok)

engine.log(ctx, new Error(s, "no further information"));
return s;

}
}

Product Line Implementation: Variabiliy in Code and Models

C O N T E N T S

• PLE Concepts

• Classical PLE
Implementation
• Source time
• C il ti

• MDD-AO Implementation
• Intro to Case Study
• The Various (Meta-)Models
• Libraries
• An Example House
• Orthogonal Variability• Compile time

• Deployment/Configuration time
• Link time
• Run time

• MDD-AO-PLE
• What is MDD
• What is AO
• What is MDD AO PLE

Orthogonal Variability
• Transformation and Template AO
• AO Modeling
• Code Level Aspects
• Negative Variability
• Testing
• Enforcing Conventions
• Product Line Evolution

© 2005-7 Markus Völter- 26 -

• What is MDD-AO-PLE
• More Terms and Concepts

• Summary

14

Product Line Implementation: Variabiliy in Code and Models

Component Deployment

• Consider a J2EE application server. When deplying EJBs you
can
• Pass in configuration parameters
• „wire“ the dependencies to other components
• Configure security and transactions,
• … and generally address QoS issues by deploying on

different hardware

© 2005-7 Markus Völter- 27 -

Product Line Implementation: Variabiliy in Code and Models

Component Deployment; Interceptors

• In general, whenever you can add interceptors to a
system, this allows you to add/configure certain cross-
cutting concerns:

• Typically, this consists of generating proxies [GoF] for yp y, g g p []
application components

• that can hook-in interceptors [POSA2].

• Use a factory to instantiate the proxies if necessary.

• Consider you face the following situation:
I1

© 2005-7 Markus Völter- 28 -

Client Some
Component

I1

15

Product Line Implementation: Variabiliy in Code and Models

Component Deployment; Interceptors II

• You can replace this setup by the following:

Factory

createscreates

InterceptorInterceptor

Some
Component

Proxy

I1

Some
Component

I1

Client

Interceptor

I-Int

delegates
to

© 2005-7 Markus Völter- 29 -

• From a client’s perspective, nothing has changed, the
client still uses the interface I1. However, the client
actually talks to a proxy that handles CCC, and then
forwards to the real object.

Product Line Implementation: Variabiliy in Code and Models

Component Deployment; Interceptors III

• Make sure that the join points are method calls; then the
following interceptor interface can be used:
public interface Interceptor {
public void beforeInvoke(Object target,

String methodName,

• The factory determines which interceptors will be
used for a given object based on some kind of

g ,
Object[] params);

public void afterInvoke(Object target,
String methodName,
Object[] params,
Object retValue);

}

© 2005-7 Markus Völter- 30 -

used for a given object based on some kind of
configuration (file).

16

Product Line Implementation: Variabiliy in Code and Models

Component Deployment; Interceptors IV

• The following is the basic structure of the proxy:
public class SomeComponentProxy implements I1 {
private SomeComponent delegate;
private Interceptor interceptor; // can also be a list

// of interceptors
bli i i (i 1 i 2) {public String someOperation(String p1, int p2) {
Object target = delegate;
String opName = “someOperation”;
Object[] params = {p1, p2};
interceptor.beforeInvoke(target, opName, params);
String res = delegate.someOperation(p1, p2);
interceptor.afterInvoke(target, opName, params, ret);
return res;

}
// more operations of I1

}

© 2005-7 Markus Völter- 31 -

Product Line Implementation: Variabiliy in Code and Models

Component Deployment; Interceptors V

• Example. In the EJB scenario introduced above, the
generated proxy would be the bean implementation class
from the perspective of the application server, the real
bean implementation would be an “implementation detail”
of this classof this class.

Remote
Interface

Home
Interface

Session
Bean

Container
Invoker

Lifecycle
Manager

controls lifecycle

uses

© 2005-7 Markus Völter- 32 -

forwards
invocations

A Bean

Bean Impl
Class

forwards
invocations

Bean Impl
Proxy

17

Product Line Implementation: Variabiliy in Code and Models

C O N T E N T S

• PLE Concepts

• Classical PLE
Implementation
• Source time
• C il ti

• MDD-AO Implementation
• Intro to Case Study
• The Various (Meta-)Models
• Libraries
• An Example House
• Orthogonal Variability• Compile time

• Deployment/Configuration time
• Link time
• Run time

• MDD-AO-PLE
• What is MDD
• What is AO
• What is MDD AO PLE

Orthogonal Variability
• Transformation and Template AO
• AO Modeling
• Code Level Aspects
• Negative Variability
• Testing
• Enforcing Conventions
• Product Line Evolution

© 2005-7 Markus Völter- 33 -

• What is MDD-AO-PLE
• More Terms and Concepts

• Summary

Product Line Implementation: Variabiliy in Code and Models

DLL loading and Classloading

• In static languages such as C/C++, you can load
different DLLs that define the same entry points.

• In Java you can use class loading ... Although the
variability mechanism in fact will be a runtime solution variability mechanism in fact will be a runtime solution
using polymorphism

© 2005-7 Markus Völter- 34 -

18

Product Line Implementation: Variabiliy in Code and Models

C O N T E N T S

• PLE Concepts

• Classical PLE
Implementation
• Source time
• C il ti

• MDD-AO Implementation
• Intro to Case Study
• The Various (Meta-)Models
• Libraries
• An Example House
• Orthogonal Variability• Compile time

• Deployment/Configuration time
• Link time
• Run time

• MDD-AO-PLE
• What is MDD
• What is AO
• What is MDD AO PLE

Orthogonal Variability
• Transformation and Template AO
• AO Modeling
• Code Level Aspects
• Negative Variability
• Testing
• Enforcing Conventions
• Product Line Evolution

© 2005-7 Markus Völter- 35 -

• What is MDD-AO-PLE
• More Terms and Concepts

• Summary

Product Line Implementation: Variabiliy in Code and Models

Polymorhpism

• This is well known. The method that is invoked depends on
the runtime (dynamic) type of the object on which you
invoke the operation.
• A factory is often used in conjuction
• R l t d t th t t & b id tt• Related to the strategy & bridge patterns

© 2005-7 Markus Völter- 36 -

19

Product Line Implementation: Variabiliy in Code and Models

Polymorhpism II

• A simple test case:
public class PricingTest extends TestCase {

private List<Product> products;

protected void setUp() throws Exception {
products = new ArrayList<Product>();products new ArrayList<Product>();
products.add(new Product()); products.add(new Product());
products.add(new Product()); products.add(new Product());
products.add(new Product());

}

public void testLinearPricing() {
Customer normalCustomer = new Customer(false);
int totalPrice = Factory.getPricingStrategy(normalCustomer).

calculatePrice(products);
assertEquals(500, totalPrice);

}

© 2005-7 Markus Völter- 37 -

public void testRebatePricing() {
Customer valuedCustomer = new Customer(true);
int totalPrice = Factory.getPricingStrategy(valuedCustomer).

calculatePrice(products);
assertEquals(300, totalPrice);

}

}

Product Line Implementation: Variabiliy in Code and Models

Polymorhpism III

• Strategy Implementation and the Factory:
public abstract class PricingStrategy {
public abstract int calculatePrice(List products);

}

public class LinearPricing extends PricingStrategy {
public int calculatePrice(List products) {
return products.size() * 100;

}
}

public class RebatePricing extends PricingStrategy {
public int calculatePrice(List products) {
int count = products.size();
if (count > 3) count = 3;
return count * 100;

}
}

© 2005-7 Markus Völter- 38 -

}

public class Factory {
public static PricingStrategy getPricingStrategy(Customer c) {
if (c.isValued()) return new RebatePricing();
else return new LinearPricing();

}
}

20

Product Line Implementation: Variabiliy in Code and Models

Metaprogramming

In as much as a computational process can be constructed
to reason about an external world in virtue of
comprising an ingredient process (interpreter) formally
manipulating representations of that world manipulating representations of that world,

so, too, a computational process could be made to reason
about itself in virtue of comprising an ingredient process
(interpreter) formally manipulating representations of ist
own operations and structures.

Smith The Reflection Hypothesis

© 2005-7 Markus Völter- 39 -

Smith, The Reflection Hypothesis

Product Line Implementation: Variabiliy in Code and Models

Metaprogramming in OO Languages

• There are several terms in use:
• Introspection/Reflection: read/modify the program
• Reification: change the semantics of existing code

Of h Obj l d• Often, the term Meta Object Protocol is used

• Example Languages:
• CLOS: Reification, Reflection, Introspection, MOP, Lisp in

Lisp
• Smalltalk: Reflection, Dictionary, (Smalltalk := nil)...
• Java: Introspection, teilweise Reflection, java.lang.Class,

© 2005-7 Markus Völter- 40 -

java.reflect
• Self: Reification, Reflection, Introspection
• Ruby: Reflection, Introspection

21

Product Line Implementation: Variabiliy in Code and Models

Metaprogramming in OO Languages II

• I assume you all know Java Reflection … and it‘s also not
very interesting (since it‘s not very powerful).

• Considering the current hype about dynamic languages
such as Ruby and the fact that these languagessuch as Ruby, and the fact, that these languages
• integrate with Java nicely (JRuby)
• And that Java (at least, the VM) may even get native

support for more dynamic languages (invokedynamic
keyword)

• … I will show an Example in Ruby
• It shows how to handle structural variability using

© 2005-7 Markus Völter- 41 -

• It shows how to handle structural variability using
metaprogramming

Product Line Implementation: Variabiliy in Code and Models

Metaprogramming in OO Languages III

• Here is an entity class definition:
class Person < Entity
properties :name, :firstname
has_one :adr => Address
has_many :addresses => Address
d

• And here is a test case:

end

class SimpleTests < Test::Unit::TestCase

def test_people
p = Person.new(:name => "Voelter", :firstname => "Markus")
assert_equal p.name, "Voelter"
assert equal p.firstname, "Markus“

© 2005-7 Markus Völter- 42 -

• Where do the native Ruby properties name and
firstname come from, and how come they can be
intialized via the => syntax?

_ q p ,
…

22

Product Line Implementation: Variabiliy in Code and Models

Metaprogramming in OO Languages IV

• Here is the class
definition of Entity:

class Entity < WithProperties
end

class WithProperties

def self.properties(*attrNames)
define_method(:initialize) do | values |
attrNames.each do | attrName |
instance_variable_set(
("@"+attrName.to_s).to_sym,
values[attrName to sym])

• … and the
WithProperties
class Î

• The properties key-
word in really static
method that is exe-
cuted during class

values[attrName.to_sym])
end

end
attrNames.each do | attrName |
getter = %Q{

def #{attrName.to_s}
@#{attrName.to_s}

end
}

self.module_eval(getter)
setter = %Q{

()

© 2005-7 Markus Völter- 43 -

cuted during class
definition.

• It in turn creates the
initializer and the
setters and getters

def #{attrName.to_s}= (value)
@#{attrName.to_s} = value

end
}

self.module_eval(setter)
end

end

end

Product Line Implementation: Variabiliy in Code and Models

C O N T E N T S

• PLE Concepts

• Classical PLE
Implementation
• Source time
• C il ti

• MDD-AO Implementation
• Intro to Case Study
• The Various (Meta-)Models
• Libraries
• An Example House
• Orthogonal Variability• Compile time

• Deployment/Configuration time
• Link time
• Run time

• MDD-AO-PLE
• What is MDD
• What is AO
• What is MDD AO PLE

Orthogonal Variability
• Transformation and Template AO
• AO Modeling
• Code Level Aspects
• Negative Variability
• Testing
• Enforcing Conventions
• Product Line Evolution

© 2005-7 Markus Völter- 44 -

• What is MDD-AO-PLE
• More Terms and Concepts

• Summary

23

Product Line Implementation: Variabiliy in Code and Models

What is MDSD?

• Domain Driven Development is about making software
development more domain-related as opposed to
computing related. It is also about making software
development in a certain domain more efficient.

Domain Concepts Domain Concepts

mental work
of developers

© 2005-7 Markus Völter- 45 -

Software Technology
Concepts

Software Technology
Concepts

Product Line Implementation: Variabiliy in Code and Models

What is MDSD? II

• Model-Driven Software Development is about making
models first class development artefacts as opposed
to “just pictures”.

• Various aspects of a system are not programmed
manually; rather they are specified using a suitable manually; rather they are specified using a suitable
modeling language.

• The language for expressing these models is specific to
the domain for which the models are relevant. The
modeling languages used to describe such models are
called domain-specific languages (DSL).

• Models have to be translated into executable code for
 ifi l f

© 2005-7 Markus Völter- 46 -

a specific platform.

• Such a translation is implemented using model
transformations.

• An approach based on model interpretation is also
possible, but seldomly used – I will ignore this here!

24

Product Line Implementation: Variabiliy in Code and Models

How does MDSD work?

• Developer develops model(s)
based on certain
metamodel(s).

• Using code generation

ModelModelModel

T f ti

Metamodel

te
dg g

templates, the model is
transformed to executable
code.

• Optionally, the generated
code is merged with
manually written code.

Transformer Tranformation
Rules

Model

Code

Metamodel

op
tio

na
l,

 c
an

 b
e

re
pe

at

© 2005-7 Markus Völter- 47 -

• One or more model-to-
model transformation steps
may precede code generation.

Transformer
Code

Generation
Templates

Generated
Code

Manually
Written
Code

optional

Product Line Implementation: Variabiliy in Code and Models

Models & Meta Models

• A model is an abstraction of a real world system or
concept.
• It only contains the aspect of the real world artifact that is

relevant to what should be achieved with the model.
• A model is therefore less detailed than the real world A model is therefore less detailed than the real world

artifact.

• MDD models are precise and processable.
• Complete regarding the abstraction level or viewpoint.
• The concepts used for building the model are actually

formally defined.
• The way to do this is to make every model conform to a

© 2005-7 Markus Völter- 48 -

y y
meta model.

• The meta model defines the “terms” and the grammar
we can use to build the model.
• Models are instances of their respective meta models.

25

Product Line Implementation: Variabiliy in Code and Models

Meta Meta Models

• A meta model also has a meta model
• after all, a meta model is a model that plays the role of

the meta model for some other model.

• The meta model’s meta • The meta model s meta
model is called the meta
meta model.

• A meta meta model
typically looks
more or less like
that Æ

© 2005-7 Markus Völter- 49 -

Product Line Implementation: Variabiliy in Code and Models

Meta Levels

• This diagram illustrates the various meta levels using
UML as well as a custom meta model

• Caveat: Note that absolute meta levels (as shown here)
can be a problem and lead to strange statements – better can be a problem and lead to strange statements – better
avoid them and consider this really only an example

© 2005-7 Markus Völter- 50 -

26

Product Line Implementation: Variabiliy in Code and Models

Domain Specific Language

• A Domain Specific Language (DSL) is a formalism to
build models. It encompasses
• the meta model of the models to be built
• some textual or graphical (or other)

concrete syntax that is used to concrete syntax that is used to
represent (“draw”) the models.

• In the context of product
line engineering DSLs are
used to bind variabilities.
• Consequently, feature

diagrams are a special kind

© 2005-7 Markus Völter- 51 -

g p
of DSL, one that can be used
to express configurative
variability.

Product Line Implementation: Variabiliy in Code and Models

What is MDSD? III

bounded area of
knowlege/interestpartial

subdomains

composable

Metametamodel
target

software
architecture

software
architecture

several

design
expertise

Model

Domain
Specific

Language

Metamodel

graphical

Domain

Ontology

semantics

precise/
executable

multiple viewpointtransform

compile

interpret

multi-step

single-step

no
roundtrip

knowledge

© 2005-7 Markus Völter- 52 -

Metamodel
textual

• Related Approaches (Specializations):
MDA, SF, DSM, GP, …

27

Product Line Implementation: Variabiliy in Code and Models

C O N T E N T S

• PLE Concepts

• Classical PLE
Implementation
• Source time
• C il ti

• MDD-AO Implementation
• Intro to Case Study
• The Various (Meta-)Models
• Libraries
• An Example House
• Orthogonal Variability• Compile time

• Deployment/Configuration time
• Link time
• Run time

• MDD-AO-PLE
• What is MDD
• What is AO
• What is MDD AO PLE

Orthogonal Variability
• Transformation and Template AO
• AO Modeling
• Code Level Aspects
• Negative Variability
• Testing
• Enforcing Conventions
• Product Line Evolution

© 2005-7 Markus Völter- 53 -

• What is MDD-AO-PLE
• More Terms and Concepts

• Summary

Product Line Implementation: Variabiliy in Code and Models

What is AOSD?

• AOSD is about localizing cross-cutting concerns into
well-defined modules called aspects.

• Various approaches to AOSD are possible, including
language extension (AspectJ) and g g (p)
framework/infrastructure-based approaches (such as
Spring AOP, JBOSS AOP or AspectWerkz).

• A core characteristic of each AOSD tool is its join point
model, i.e. the means by which the base code and the
aspect code can be joined.

• Static and Dynamic join points can be supported

© 2005-7 Markus Völter- 54 -

• The granularity of the join point model varies.

• Introductions/Inter-Type declarations are often, but
not always possible

28

Product Line Implementation: Variabiliy in Code and Models

How does AOSD work?

• Developer develops
program code

• Developer develops
(or reuses) aspect

Aspect
Aspect

Aspect
AspectNormal OO

Program Aspect

(or reuses) aspect
code

• Developers specifies the
weaving rules (defines
pointcuts)

• Aspect Weaver weaves

Weaving
Specification

Aspect Weaver

© 2005-7 Markus Völter- 55 -

p
program and aspects
together and produces
the „aspectized“ program
• This may happen statically

or dynamically

Woven Program

Product Line Implementation: Variabiliy in Code and Models

C O N T E N T S

• PLE Concepts

• Classical PLE
Implementation
• Source time
• C il ti

• MDD-AO Implementation
• Intro to Case Study
• The Various (Meta-)Models
• Libraries
• An Example House
• Orthogonal Variability• Compile time

• Deployment/Configuration time
• Link time
• Run time

• MDD-AO-PLE
• What is MDD
• What is AO
• What is MDD AO PLE

Orthogonal Variability
• Transformation and Template AO
• AO Modeling
• Code Level Aspects
• Negative Variability
• Testing
• Enforcing Conventions
• Product Line Evolution

© 2005-7 Markus Völter- 56 -

• What is MDD-AO-PLE
• More Terms and Concepts

• Summary

29

Product Line Implementation: Variabiliy in Code and Models

• As mentioned above, the core challenge of product line
implementation, is the implementation of the product
variability.

• Models are more abstract and hence less detailed than code

What is MDD-AO-PLE

• Thus, the variability is inherently less scattered, making

© 2005-7 Markus Völter- 57 -

variability management on model level simpler!

Product Line Implementation: Variabiliy in Code and Models

• AO is used in several ways:
• On model level, we use it for weaving models and meta

models
• In the transformation, we weave variants into

transformations and generators

What is MDD-AO-PLE II

• And on code level, we use it to directly implement fine-
grained implementation variants.

• We provide more details on all of these aspects ☺ later, as
well as examples.

• Definition:
MDD-AO-PLE uses models to describe product lines.

i d f d d l l l f i

© 2005-7 Markus Völter- 58 -

Variants are defined on model-level. Transformations
generate running applications. AO techniques are used to
help define the variants in the models as well as in the
transformers and generators.

30

Product Line Implementation: Variabiliy in Code and Models

• Variability can be described more concisely since in
addition to the traditional mechanisms, variability is also
described on model level.

• The mapping from problem to solution domain can be

What is MDD-AO-PLE III

pp g p
formally described automated using model-to-model
transformations.

• Aspect-oriented techniques enable the explicit expression and
modularization of crosscutting variability on model,
code, and generator level.

• Fi i d t bilit i t d i t i i d

© 2005-7 Markus Völter- 59 -

• Fine grained traceability is supported since tracing is done
on model element level rather than on the level of
artifacts.

Product Line Implementation: Variabiliy in Code and Models

What is MDD-AO-PLE IV

Domain
Requirements

Problem Space Solution Space

ee
rin

g

Formal
Domain

MetaModel

Product
Requirements

Formal
Solution Space

MetaModel
M

D
om

ai
n

En
gi

ne
En

gi
ne

er
in

g

Core Assets

© 2005-7 Markus Völter- 60 -

Formal
Domain
Model

Formal
Solution Space

Model
M

A
pp

lic
at

io
n

E

... Product

31

Product Line Implementation: Variabiliy in Code and Models

C O N T E N T S

• PLE Concepts

• Classical PLE
Implementation
• Source time
• C il ti

• MDD-AO Implementation
• Intro to Case Study
• The Various (Meta-)Models
• Libraries
• An Example House
• Orthogonal Variability• Compile time

• Deployment/Configuration time
• Link time
• Run time

• MDD-AO-PLE
• What is MDD
• What is AO
• What is MDD AO PLE

Orthogonal Variability
• Transformation and Template AO
• AO Modeling
• Code Level Aspects
• Negative Variability
• Testing
• Enforcing Conventions
• Product Line Evolution

© 2005-7 Markus Völter- 61 -

• What is MDD-AO-PLE
• More Terms and Concepts

• Summary

Product Line Implementation: Variabiliy in Code and Models

• An architectural meta model defines formally the
concepts available for defining software architectures.

• This one defines
the component

Architecture Meta Models

p
definition viewpoint
of a component
architecture.

• Complete architecture
meta models typically
contain several viewpoints.

© 2005-7 Markus Völter- 62 -

• Architecture meta models are typically
defined as part of domain engineering

32

Product Line Implementation: Variabiliy in Code and Models

Architectural Models

• An architecture model is an instance of an architecture
meta model.

• They are defined during application engineering

© 2005-7 Markus Völter- 63 -

Product Line Implementation: Variabiliy in Code and Models

Application Domain Meta Model and Model

• Application Domain Meta Models are formalizations of
domain requirements. Often this meta model is a
feature model. It is created as part of domain
engineering.

© 2005-7 Markus Völter- 64 -

• An application domain model
is then an instance of that meta
model; it is created during
application engineering.

33

Product Line Implementation: Variabiliy in Code and Models

Software Domain Meta Model

• Software Domain Meta Models are formalizations
of the architecture of the to-be-built product line (i.e. they
are architecture meta models).

• Typically, this meta model is a NOT a feature model. Typically, this meta model is a NOT a feature model.

• It is created as part of domain engineering.

© 2005-7 Markus Völter- 65 -

Product Line Implementation: Variabiliy in Code and Models

Software Domain Meta Model and Model

• An software domain model is then an instance of that
meta model; it is created during application engineering.

© 2005-7 Markus Völter- 66 -

34

Product Line Implementation: Variabiliy in Code and Models

Variants and Models II

• It is especially useful to combine structural and non-
structural variations
– specifically, you may want to „configure“ structural models

with the help of feature models,
– we want to describe variants of structural models

(and use these variants as generator input)

• Examples:
• A party may have one or more addresses
• A party may store telecontacts or not
• In case of telephone numbers, you may want to store the

country code
• Addresses may have the state field (USA)

© 2005-7 Markus Völter- 67 -

• Addresses may have the state field (USA)

Product Line Implementation: Variabiliy in Code and Models

Variants and Models III

• Implementation using negative
variability:
You can assign model elements
of the structural model to
features in the feature model.

Party
NeedsState

Multiple
Addresses

Phone

I t ti l

• The respecticve model
elements are only there
if the associated feature
is selected,

• And it‘s removed, if the
feature is not there.

Persistence

XML JDOHibernate

International
Phone LocalPhone

<<entity>>
Party

name: String

<<dependentOb>>
Address

city: String
state: String
zip: String
street: String

address

1

address

0..n

no
t

© 2005-7 Markus Völter- 68 -

• Implementation using
positive variability:
model weaving (see later)

street: String

<<dependentOb>>
Phone

number: int
regionCode: int
countryCode: int

0..n

35

Product Line Implementation: Variabiliy in Code and Models

C O N T E N T S

• PLE Concepts

• Classical PLE
Implementation
• Source time
• C il ti

• MDD-AO Implementation
• Intro to Case Study
• The Various (Meta-)Models
• Libraries
• An Example House
• Orthogonal Variability• Compile time

• Deployment/Configuration time
• Link time
• Run time

• MDD-AO-PLE
• What is MDD
• What is AO
• What is MDD AO PLE

Orthogonal Variability
• Transformation and Template AO
• AO Modeling
• Code Level Aspects
• Negative Variability
• Testing
• Enforcing Conventions
• Product Line Evolution

© 2005-7 Markus Völter- 69 -

• What is MDD-AO-PLE
• More Terms and Concepts

• Summary

Product Line Implementation: Variabiliy in Code and Models

Intro to Case Study

• A home automation system called Smart Home.

• In homes you will find a wide range of electrical and electronic
devices
• lightsg
• thermostats
• electric blinds
• fire and smoke detection sensors
• white goods such as washing machines
• as well as entertainment equipment.

• Smart Home connects those devices and enables inhabitants
t it d t l th f UI

© 2005-7 Markus Völter- 70 -

to monitor and control them from a common UI.

• The home network also allows the devices to coordinate their
behavior in order to fulfill complex tasks without human
intervention.

36

Product Line Implementation: Variabiliy in Code and Models

Application Domain Modeling

• The domain expert (i.e. a
building architect) uses a
suitable modeling language
for building smart homes.

• Currently, we use a simple
tree editor for that
• It is based on Exeed, and

it is basically an EMF tree
view with customized icons
and labels

• Note that problem space modeling uses a creative

© 2005-7 Markus Völter- 71 -

construction DSL since describing a Smart Home is not just a
matter of “ticking boxes”.

• A more convenient editor will be provided later.

Product Line Implementation: Variabiliy in Code and Models

C O N T E N T S

• PLE Concepts

• Classical PLE
Implementation
• Source time
• C il ti

• MDD-AO Implementation
• Intro to Case Study
• The Various (Meta-)Models
• Libraries
• An Example House
• Orthogonal Variability• Compile time

• Deployment/Configuration time
• Link time
• Run time

• MDD-AO-PLE
• What is MDD
• What is AO
• What is MDD AO PLE

Orthogonal Variability
• Transformation and Template AO
• AO Modeling
• Code Level Aspects
• Negative Variability
• Testing
• Enforcing Conventions
• Product Line Evolution

© 2005-7 Markus Völter- 72 -

• What is MDD-AO-PLE
• More Terms and Concepts

• Summary

37

Product Line Implementation: Variabiliy in Code and Models

Application Domain Meta Model (PSMM)

© 2005-7 Markus Völter- 73 -

Product Line Implementation: Variabiliy in Code and Models

Models and Transformations Overview

© 2005-7 Markus Völter- 74 -

38

Product Line Implementation: Variabiliy in Code and Models

Software Domain Meta Model (CBDMM): Types Viewpoint

© 2005-7 Markus Völter- 75 -

Product Line Implementation: Variabiliy in Code and Models

Software Domain Meta Model (CBDMM): Configuration Vp.

© 2005-7 Markus Völter- 76 -

39

Product Line Implementation: Variabiliy in Code and Models

Low Level Software Domain Modeling

• As part of our OSGi based implementation, we use another
M2M transformation (and hence, another meta model).

• As far as the product line is concerned, that second model
transformation is an implementation detail of our
implementation technology.

• Other implementation technologies might choose to generate
code directly from the CBD models.

• Again, no concrete syntax is available for this level of
modeling.

© 2005-7 Markus Völter- 77 -

Product Line Implementation: Variabiliy in Code and Models

OSGI Meta Model (OSGIMM)

© 2005-7 Markus Völter- 78 -

40

Product Line Implementation: Variabiliy in Code and Models

C O N T E N T S

• PLE Concepts

• Classical PLE
Implementation
• Source time
• C il ti

• MDD-AO Implementation
• Intro to Case Study
• The Various (Meta-)Models
• Libraries
• An Example House
• Orthogonal Variability• Compile time

• Deployment/Configuration time
• Link time
• Run time

• MDD-AO-PLE
• What is MDD
• What is AO
• What is MDD AO PLE

Orthogonal Variability
• Transformation and Template AO
• AO Modeling
• Code Level Aspects
• Negative Variability
• Testing
• Enforcing Conventions
• Product Line Evolution

© 2005-7 Markus Völter- 79 -

• What is MDD-AO-PLE
• More Terms and Concepts

• Summary

Product Line Implementation: Variabiliy in Code and Models

• Library components are predefined building blocks to be used in
products. There are three “flavors”:

• Code-Only: the aspect of the PL that is covered by the library
component is not supported by generators,
• The production process for the product will simply

Library Components

• The production process for the product will simply
include/link/instantiate/deploy the component if it’s required as part
of a product.

• Example: an optional SNMP agent running on a system node

• Model-Only: PLA contains generators that can completely generate
the component implementation from a model.
• If the generator changes, the library component’s implementation is

automatically adapted (since it’s regenerated)

© 2005-7 Markus Völter- 80 -

automatically adapted (since it s regenerated).
• Example: A reusable business process component specified as a

component with an associated state machine

• Model/Code Mix: This is necessary if you can represent some
aspects of a component via a model, but cannot represent others.

41

Product Line Implementation: Variabiliy in Code and Models

Model/Code Mix: The different levels of code

• There are two kinds of source code in the system.

• CBD-level code is partly generated/partly hand-written.
• As the name implies, it does not depend on the concrete

implementation technology (such as OSGi)p gy ()
• Base classes (and other skeleton artifacts) are generated, the

manually written code is integrated in well-defined ways
• This is the way, manually written business logic is integrated.

• Implementation-level code is completely generated
• It is specific to the concrete implementation technology
• It wraps or uses the CBD-level code and adapts it to the

concrete implementation technology

© 2005-7 Markus Völter- 81 -

concrete implementation technology

• The generation process is separated into two phases, one
for each kind of source code.

Product Line Implementation: Variabiliy in Code and Models

The EconomyLib Library

• The EconomyLib library contains pre-built components,
interfaces and data types that are needed for building Smart
Homes of the Economy variety.

• Interfaces and data types are model-only, whereas
components are model/code mixed, because they contain
manually written code parts.

• Libraries such as the EconomyLib are CBD-level code. There
is absolutely nothing in there that is specific to the concrete
implementation technology.

• The library comes with a model file as well as a source code
di t

© 2005-7 Markus Völter- 82 -

directory.

• Note that this library depends on another library that defines
basic primitive types.

42

Product Line Implementation: Variabiliy in Code and Models

The EconomyLib Library: Part of the Model

• The LightSwitchCoordinator
orchestrates lights and switches

• The LightSwitchDriver proxies
a light switch
• The state knows whether the

switch is pressed or not

• The LightDriver proxies an
actual light
• Its state has an ID and it

knows whether it is burning

© 2005-7 Markus Völter- 83 -

• ILightSwitch is used to query a
switch whether it is pressed

• ILightDriver can be used to
turn a light on or off

Product Line Implementation: Variabiliy in Code and Models

The EconomyLib Library: Generating CBD-Level code

© 2005-7 Markus Völter- 84 -

43

Product Line Implementation: Variabiliy in Code and Models

The EconomyLib Library: Manually written code I

• This is the
component that
switches lights
based on the status
of the switches

package smarthome.eco…witchCoordinator;

public class LightSwitchCoordinatorImplementation
extends LightSwitchCoordinatorImplBase {

@Override
public void execute() {

C ll ti <Li htS it hSt t > t t

• It is a periodic
component, hence
it has only an
execute()
operation.

• Note how it uses

Collection<LightSwitchStatus> states =
switchesAll().isPressed();

for (LightSwitchStatus status : states) {
if (hasChanged(status.getId(), status.getPressed())) {

String changedLights = status.getToggledLights();
parseLightsToSwitch(changedLights);

}
}

}

private boolean hasChanged(String id, boolean pressed) {
// is the light switch in another position than
// last time around?

© 2005-7 Markus Völter- 85 -

the switchesAll()
operation to access
all the switches it is
connected to.

//
}

private void parseLightsToSwitch(String lights) {
// find out which lights this switch affects
// and switch these lights

}

}

Product Line Implementation: Variabiliy in Code and Models

The EconomyLib Library: Manually written code II

• This one represents a light.

• It is a service component,
it implements the
operations provided by the
default port’s interface

• You can also see how it
accesses configuration
parameters and its
internal state

package smarthome.ecolib.components.lightDriver;

public class LightDriverImplementation
extends LightDriverImplBase {

public String getId() {
return getConfigParamValueForId();

}

public boolean isOn() {
return state().getBurning();

}

© 2005-7 Markus Völter- 86 -

public void turnOff() {
state().setBurning(false);

}

public void turnOn() {
state().setBurning(true);

}

}

44

Product Line Implementation: Variabiliy in Code and Models

Application Domain to Software Domain Transformation

• We use an M2M transformation to map from the application
domain to the software domain.

• Here are some examples of what that transformation
has to do:
• Lighting:

- For each light in a room, instantiate a light driver component
- For each light switch, instantiate a light switch component
- For each room with lights, instantiate a light controller, that
manages lights and the connected switches

• Windows:
- For each window, instantiate a window sensor component

© 2005-7 Markus Völter- 87 -

• Note how the transformation only instantiates and connects
software components. The components themselves are pre-
built and are available in libraries.

Product Line Implementation: Variabiliy in Code and Models

C O N T E N T S

• PLE Concepts

• Classical PLE
Implementation
• Source time
• C il ti

• MDD-AO Implementation
• Intro to Case Study
• The Various (Meta-)Models
• Libraries
• An Example House
• Orthogonal Variability• Compile time

• Deployment/Configuration time
• Link time
• Run time

• MDD-AO-PLE
• What is MDD
• What is AO
• What is MDD AO PLE

Orthogonal Variability
• Transformation and Template AO
• AO Modeling
• Code Level Aspects
• Negative Variability
• Testing
• Enforcing Conventions
• Product Line Evolution

© 2005-7 Markus Völter- 88 -

• What is MDD-AO-PLE
• More Terms and Concepts

• Summary

45

Product Line Implementation: Variabiliy in Code and Models

Example House: The App Domain Model

© 2005-7 Markus Völter- 89 -

• A house with only one level, and two rooms, connected by
doors.

• The rooms have windows as well as lights and light
switches.

Product Line Implementation: Variabiliy in Code and Models

Example House: Models and Transformations

© 2005-7 Markus Völter- 90 -

46

Product Line Implementation: Variabiliy in Code and Models

Example House: The Transformed CBD Model

• For each of the lights
and switches we have
instances of driver
components (the
component types
are taken from the are taken from the
library)

• We also have a light
switch coordinator
component instance
for each floor that has
light switches.

• We use query based connectors to connect the coordinator with the

© 2005-7 Markus Völter- 91 -

q y
lights and the switches.
• The query dynamically finds all lights and switches for a given floor,

dynamically at runtime.

• We also have hierarchical configurations for the building and floors.

Product Line Implementation: Variabiliy in Code and Models

Example House: The Transformed OSGi Model

• Leaf configurations have been trans-
formed into bundles.

• Interfaces (from the Lib!) are now
Services in this model.

• Component instances have become OSGI-
level components of the appropriate type.
• Those use ServiceRefs with queries to

find the respective provided services
at runtime.

• Note how the mixin model
specifies the root packages

© 2005-7 Markus Völter- 92 -

specifies the root packages
for the bundles to enable
code generation.

47

Product Line Implementation: Variabiliy in Code and Models

Example House: Code Generation

© 2005-7 Markus Völter- 93 -

Product Line Implementation: Variabiliy in Code and Models

Example House: Generated Code

• We generate the OSGi bundle activators which
• Instantiate the components deployed in that bundle
• Register the services of those components
• Register generated service trackers for each of the component’s

service refs using an LDAP expression to dynamically find the service refs … using an LDAP expression to dynamically find the
provided services

• We generate a manifest file
• including the correct package exports and imports

• We generate an ant build file to assemble the bundle JARs
• JAR will contain OSGI-level code as well as the CBD level code
• The used libraries know their Eclipse project so we know from

© 2005-7 Markus Völter- 94 -

• The used libraries know their Eclipse project so we know from
where we need to grab the implementation source code

• We generate a batch file that runs the OSGi runtime
(Knopflerfish) with the correct configuration (xargs-file)

48

Product Line Implementation: Variabiliy in Code and Models

Example House: Running the System (UI)

• A console allows the inspection and change of component states.

• It also shows the actual connections of service refs

© 2005-7 Markus Völter- 95 -

Product Line Implementation: Variabiliy in Code and Models

C O N T E N T S

• PLE Concepts

• Classical PLE
Implementation
• Source time
• C il ti

• MDD-AO Implementation
• Intro to Case Study
• The Various (Meta-)Models
• Libraries
• An Example House
• Orthogonal Variability• Compile time

• Deployment/Configuration time
• Link time
• Run time

• MDD-AO-PLE
• What is MDD
• What is AO
• What is MDD AO PLE

Orthogonal Variability
• Transformation and Template AO
• AO Modeling
• Code Level Aspects
• Negative Variability
• Testing
• Enforcing Conventions
• Product Line Evolution

© 2005-7 Markus Völter- 96 -

• What is MDD-AO-PLE
• More Terms and Concepts

• Summary

49

Product Line Implementation: Variabiliy in Code and Models

Orthogonal Variability Management

• Configuration models are “instances” of Feature Models.
• There is no variability left in them
• They are basically a list of selected features
• (there are also partial configurations and properties…)

• Feature Model • Configuration Model

© 2005-7 Markus Völter- 97 -

• From the perspective of a backend (i.e. generator, compiler, etc)
only the configuration model is relevant!
• … as long as we expect that the configuration is valid wrt. to the

feature model and we have implemented the generator correctly.

Product Line Implementation: Variabiliy in Code and Models

Orthogonal Variability Management II

• oAW comes with a feature that allows domain architecture artifacts
to depend on whether certain features are selected.

• An API is available that allows to plug in various feature
modeling tools
• In the simplest case that API can be bound to a simple text file • In the simplest case, that API can be bound to a simple text file

that contains a list of selected features.
• Another binding is available to Pure Systems’ pure::variants tool

• That configuration model controls various aspects of the model
transformation and code generation process.
• It is read at the beginning of the workflow and is available globally.

• Currently, we use it for the
following optional features:

© 2005-7 Markus Völter- 98 -

following optional features:
• Tracing
• Reflective Data Structures
• Viewer (UI)
• Automatic Windows

50

Product Line Implementation: Variabiliy in Code and Models

Orthogonal Variability Management III

• The configuration is done via
a pure::variants variant
model (ps:vdm)

• pure::variants supports the interactive
l ti f f t hil l tiselection of features, while evaluating

constraints and feature relationships
to make sure only valid variants are
defined.

• If a constraint is violated, the model
is either automatically corrected, or
an error is shown.

© 2005-7 Markus Völter- 99 -

Product Line Implementation: Variabiliy in Code and Models

C O N T E N T S

• PLE Concepts

• Classical PLE
Implementation
• Source time
• C il ti

• MDD-AO Implementation
• Intro to Case Study
• The Various (Meta-)Models
• Libraries
• An Example House
• Orthogonal Variability• Compile time

• Deployment/Configuration time
• Link time
• Run time

• MDD-AO-PLE
• What is MDD
• What is AO
• What is MDD AO PLE

Orthogonal Variability
• Transformation and Template

AO
• AO Modeling
• Code Level Aspects
• Negative Variability
• Testing
• Enforcing Conventions
• Product Line Evolution

© 2005-7 Markus Völter- 100 -

• What is MDD-AO-PLE
• More Terms and Concepts • Summary

51

Product Line Implementation: Variabiliy in Code and Models

Optional Feature: Logging

• Tracing is simply about writing a stdout log of the methods
called on Service Components as the system runs.

• The runtime infrastructure (OSGI-level) supports the use of
interceptors for any component.

• Interceptors are available in libraries (just as the light switch
components and their interface and the primitive types)

• If the model configures interceptors for a given component,
the generated activator actually instantiates them, instantiates a
proxy for each component and adds the interceptors to that
proxy.

© 2005-7 Markus Völter- 101 -

• In short: if the feature debug.tracing is selected, the
transformation from PS to CBD level must make sure that the
appropriate interceptor is configured for the components.

Product Line Implementation: Variabiliy in Code and Models

Optional Feature: Logging [Thumbnail]

transformation

around ...

transformation aspect

transform

workflow

configuration model

© 2005-7 Markus Völter- 102 -

transform-
aspect

52

Product Line Implementation: Variabiliy in Code and Models

Optional Feature: Logging, Implementation

• The implementation uses AO for the model transformation
language. Here is the aspect:

import psmm;
import cbdmm;

extension ps2cbd;

extension org::openarchitectureware::util::stdlib::io;
extension org::openarchitectureware::util::stdlib::naming;

around ps2cbd::transformPs2Cbd(Building building):
let s = ctx.proceed(): (

building.createBuildingConfiguration().
deployedInterceptors.addAll(

{ utilitiesLib().interceptors.findByName("TracingInterceptor") }
) ->
s

);

© 2005-7 Markus Völter- 103 -

• We advice ps2cbd::transformPs2Cbd
• We then execute the original

definition (ctx.proceed())
• Then we add, to the top level config,

the Tracing Interceptor

Product Line Implementation: Variabiliy in Code and Models

Optional Feature: Logging, Implementation II

• Remember we only want to have these interceptors in the system
iff the feature debug.tracing is selected in the global
configuration model.

• That dependency is expressed in the workflow:

<component id="xtendComponent.ps2cbd" class="oaw.xtend.XtendComponent">
…

</component>

<feature exists="debug.tracing">
<component adviceTarget="xtendComponent.ps2cbd" class="oaw.xtend.XtendAdvice">

<!-- references tracing.ext, file that contains aspect on prev. slide -->
<extensionAdvices value="tracing"/>

</component>
</feature>

© 2005-7 Markus Völter- 104 -

• The stuff inside the <feature>…</feature> tag is only executed if
the respective feature is selected in the global configuration

• The XtendAdvice component type is an aspect component for
the Xtend component used for transforming models.

53

Product Line Implementation: Variabiliy in Code and Models

Optional Feature: Logging, Implementation III

<component id="xtendComponent.ps2cbd" class="oaw.xtend.XtendComponent">
…

</component>

<feature exists="debug.tracing">
<component adviceTarget="xtendComponent.ps2cbd" class="oaw.xtend.XtendAdvice">

<!-- references tracing.ext, file that contains aspect on prev. slide -->
<extensionAdvices value="tracing"/>

• An Advice component basically takes the sub-elements and adds
them to the component refenced by the adviceTarget attribute.

• In the case here, that target is the one that runs the PS to CBD
M2M transformation

</component>
</feature>

© 2005-7 Markus Völter- 105 -

• Using this mechanism, the configuration of aspect code (the
<extensionAdvices> element is non-invasive.

Product Line Implementation: Variabiliy in Code and Models

Optional Feature: Component State Viewer

• The viewer UI shown before is not
generated. It is a generic piece of
code that reflects on the data
structures that it is supposed to render.

• T k thi k th f ll i t dditi h t b d t • To make this work, the following two additions have to be made to
the generated system:

• The component state data structures must feature a generated
reflection layer

• Whenever a component is instantiated in the activator, its state
has to be registered with the viewer.

© 2005-7 Markus Völter- 106 -

• These things are implemented using generator aspects,
depending on the selection of the debug.viewer feature.

54

Product Line Implementation: Variabiliy in Code and Models

Optional Feature: Component State Viewer [Thumbnail]

generate (osgi)

workflow

template aspect

configuration model

template file

AROUND

generator-
aspect

template file template aspect

generate (cbd)

generator-
aspect

© 2005-7 Markus Völter- 107 -

AROUND

… x() ...

around ...

extend file

x(): ...

extend aspect

Product Line Implementation: Variabiliy in Code and Models

Optional Feature: State Viewer, Implementation

• Here are the respective feature-dependent aspects in the
workflow

• This one happens on CBD level because the data implementations
are independent of the runtime platform

• The second one influences the generation of the OSGI
activator, since that one has to publish the component states
once they are instantiated

© 2005-7 Markus Völter- 108 -

once they are instantiated.

55

Product Line Implementation: Variabiliy in Code and Models

«AROUND data::api::data::body FOR ComplexType»
«targetDef.proceed()»

Optional Feature: State Viewer, Implementation II

• reflectImpl.xpt adds around advice to a number of definitions in
the code generation templates:
• some are pure hooks, i.e. they are empty!

«EXPAND reflectionImplementation»
«ENDAROUND»

«AROUND data::api::data::imports FOR ComplexType»
«targetDef.proceed()»
import smarthome.common.platform.MemberMeta;
import smarthome.common.platform.ComplexTypeMeta;

«ENDAROUND»

«DEFINE reflectionImplementation FOR ComplexType»
private transient ComplexTypeMeta __meta = null;
public ComplexTypeMeta __metaObject() {

«DEFINE typeClass FOR ComplexType»
«FILE fileName()»

package «implClassPackage()»;
«EXPAND imports»
public class … {

© 2005-7 Markus Völter- 109 -

…
}
public void __metaSet(MemberMeta member, Object value) {

…
}
public Object __metaGet(MemberMeta member) {

…
}

«ENDDEFINE»

p {
«EXPAND body»

}
«ENDFILE»

«ENDDEFINE»

«DEFINE imports FOR ComplexType»«ENDDEFINE»

«DEFINE body FOR ComplexType»
…

«ENDDEFINE»

Product Line Implementation: Variabiliy in Code and Models

Optional Feature: State Viewer, Implementation III

• reflect.ext adds a newly implemented interface to an existing
extension function
around data::api::dataapiutils::implementedInterfaces(ComplexType this):

((Collection)ctx.proceed()).add("smarthome.common.platform.ReflectiveComplexType");

• That original function is called from a template in order to find
out which additional interfaces a data bean class needs to
implement:

public class «implClassName()»
«IF implementedInterfaces().size > 0»implements «ENDIF»

«FOREACH implementedInterfaces() AS e SEPARATOR ", "»«e»«ENDFOREACH» {
«EXPAND body»

}

© 2005-7 Markus Völter- 110 -

• The same mechanisms are used to “advice” the templates that
generate the OSGi level code for the activator.

56

Product Line Implementation: Variabiliy in Code and Models

C O N T E N T S

• PLE Concepts

• Classical PLE
Implementation
• Source time
• C il ti

• MDD-AO Implementation
• Intro to Case Study
• The Various (Meta-)Models
• Libraries
• An Example House
• Orthogonal Variability• Compile time

• Deployment/Configuration time
• Link time
• Run time

• MDD-AO-PLE
• What is MDD
• What is AO
• What is MDD AO PLE

Orthogonal Variability
• Transformation and Template AO
• AO Modeling
• Code Level Aspects
• Negative Variability
• Testing
• Enforcing Conventions
• Product Line Evolution

© 2005-7 Markus Völter- 111 -

• What is MDD-AO-PLE
• More Terms and Concepts

• Summary

Product Line Implementation: Variabiliy in Code and Models

Optional Feature: Automatic Windows [Thumbnail]

building model

configuration model

building aspect

read

weave

woven building model

© 2005-7 Markus Völter- 112 -

transform

transform-
aspect

57

Product Line Implementation: Variabiliy in Code and Models

Optional Feature: Automatic Windows

• Automatic windows are an optional feature on the PS level.
• If we have at least one thermometer in a room,
• We can automatically open the windows if the temperatures are

above 25°C average, and close them if we are below 20°C.
• We also need windows actuators for thatWe also need windows actuators for that

• We want this feature, if the global configuration model has the
environmentalControl.tempManagement.automaticWindows
feature selected.

• To implement it,
• We weave the necessary elements into the PS model
• Advice the PS to CBD transformation to consider these

© 2005-7 Markus Völter- 113 -

Advice the PS to CBD transformation to consider these
additional elements

• … and then (for debugging purposes) write the modified model
to an XMI file.

Product Line Implementation: Variabiliy in Code and Models

Optional Feature: Automatic Windows, Implementation

• Here is the aspect for the PS model:

• Here are the pointcut expressions used in the aspect model:

• ooms t ll th th t h i d

rooms(Building this):
floors.rooms.select(e|e.windows.size > 0) ;

windows(Building this):
rooms().windows;

thermoName(Thermometer this):
((Room)eContainer).name.toFirstLower()+"Thermometer";

© 2005-7 Markus Völter- 114 -

• rooms returns all the rooms that have windows

• windows returns the windows in these rooms

• thermoName calculates a sensible name for the thermo device

58

Product Line Implementation: Variabiliy in Code and Models

Optional Feature: Automatic Windows, Implementation II

• Here is the result of the example
house after weaving.
• The rooms now have a thermometer

with a suitable name
• The windows have an actuator

• The transformation must now be
enhanced to transform those new
devices into instances of software
components.

• Also we need some kind of driver
component that periodically checks

© 2005-7 Markus Völter- 115 -

the temperature of all thermometers,
calculates the average, and then opens or closes the windows.

• This whole additional transformation is located in a separate
aspect transformation file and is “adviced” into the original
transformation.

Product Line Implementation: Variabiliy in Code and Models

Optional Feature: Automatic Windows, Implementation III

• Here is the workflow fragment that configures all of this:
<feature exists="environmentalControl.tempManagement.automaticWindows">

<!-- the stuff that enhances the M2M transformation -->
<component adviceTarget="xtendComponent.ps2cbd"

class="org.openarchitectureware.xtend.XtendAdvice">
<extensionAdvice value="windowAutomation::extensionAdvices"/><extensionAdvice value windowAutomation::extensionAdvices />

</component>

<!-- this launches the model weaver that adds the aspect to the PS model -->
<cartridge file="org/openarchitectureware/util/xweave/wf-weave-expr"

baseModelSlot="psmodel"
aspectFile="platform:/resource/smarthome.ps.lib/src/windowAutomation/aspect.xmi"
expressionFile="windowAutomation::expressions"/>

<!-- and here we write the model for debugging purposes -->
<component class="org.eclipse.mwe.emf.Writer">

<useSingleGlobalResourceSet value="true"/>
<uri value="${dumpFileUriPrefix}/psWithWindowAutomation.xmi" />
l l l /

© 2005-7 Markus Völter- 116 -

<cloneSlotContents value="true"/>
<modelSlot value="psmodel" />

</component>

</feature>

59

Product Line Implementation: Variabiliy in Code and Models

Optional Feature: Burglar Alarm

• In the configuration feature model, you can
select whether your house should feature a
burglar alarm system; and if so, which
kinds of alarm devices it should have.

• Th i lib f b ilt t• There is a library of pre-built components
for these devices in the securehome library
project

• The ps2cbd transformation
• Instantiates a control panel component (turn on/off)
• Instantiates the burglar alarm detection agent
• … connects those two …

© 2005-7 Markus Völter- 117 -

• And then instantiates an instance of each of the alarm devices
selected in the feature model

• … and connects those to the agen.

Product Line Implementation: Variabiliy in Code and Models

Optional Feature: Burglar Alarm II

• Thumbnail:

• Here is (part of) the code:

transformation

configuration model

(p)

create System transformPs2Cbd(Building building):
…
hasFeature("burglarAlarm") ? (handleBurglarAlarm() -> this) : this;

handleBurglarAlarm(System this):
let conf = createBurglarConfig(): (

configurations.add(conf) ->
…
conf.connectors.add(connectSimToPanel(createSimulatorInstance(),

createControlPanelInstance())) ->
hasFeature("siren") ? conf.addAlarmDevice("AlarmSiren") : null ->
hasFeature("bell") ? conf addAlarmDevice("AlarmBell") : null ->

© 2005-7 Markus Völter- 118 -

• Note how we query the feature model from within the
transformation instead of using aspects to contribute the additional
behaviour to the transformation.

hasFeature(bell) ? conf.addAlarmDevice(AlarmBell) : null ->
hasFeature("light") ? conf.addAlarmDevice("AlarmLight") : null

);

60

Product Line Implementation: Variabiliy in Code and Models

Optional Feature: Burglar Alarm III

• It is also possible to access attributes of features (if the
feature modeling tool supports attributes).

• Here we set the volume level of the siren:
handleBurglarAlarm(System this):handleBurglarAlarm(System this):
…
isFeatureSelected("siren") ? (

let siren = conf.addAlarmDevice("AlarmSiren"):
siren.configParamValues.add(siren.createConfigParamForLevel())

) : null ->
…

);

private create ConfigParameterValue
createConfigParamForLevel(ComponentInstance instance):

setName("level") ->
setValue((String)getFeatureAttributeValue("siren", "level"));

© 2005-7 Markus Völter- 119 -

• The feature model needs to have
the level attribute, of course.

Product Line Implementation: Variabiliy in Code and Models

C O N T E N T S

• PLE Concepts

• Classical PLE
Implementation
• Source time
• C il ti

• MDD-AO Implementation
• Intro to Case Study
• The Various (Meta-)Models
• Libraries
• An Example House
• Orthogonal Variability• Compile time

• Deployment/Configuration time
• Link time
• Run time

• MDD-AO-PLE
• What is MDD
• What is AO
• What is MDD AO PLE

Orthogonal Variability
• Transformation and Template AO
• AO Modeling
• Code Level Aspects
• Negative Variability
• Testing
• Enforcing Conventions
• Product Line Evolution

© 2005-7 Markus Völter- 120 -

• What is MDD-AO-PLE
• More Terms and Concepts

• Summary

61

Product Line Implementation: Variabiliy in Code and Models

Code Level Aspects

• Sometimes the simplest way to implement variability is to aspects
on code level (AOP)

• Since we’re using Java as the implementation language, we’ll use
AspectJ as the implementation language for code level aspects

• The following challenges must be addressed:
• A certain aspect shall only be woven iff a certain feature is

selected in the global configuration model
• It might be necessary to define (in the models!) to which

joinpoints an aspect should be woven

• We assume that aspect functionality is hand-written, they are
il bl i lib i W di ti i h

© 2005-7 Markus Völter- 121 -

available in libraries. We distinguish
• Complete aspects: advice and pointcut handwritten, inclusion is

optional based on feature configuration
• Incomplete aspects: advice is handwritten, pointcut is generated

based on information in the models

Product Line Implementation: Variabiliy in Code and Models

Complete Aspects [Thumbnail]

configuration model
system model

A

… abstract ...

AspectJ aspect
generate

<<manual>>

© 2005-7 Markus Völter- 122 -

AspectJ aspect

<<generated>>

62

Product Line Implementation: Variabiliy in Code and Models

Complete Aspects

• Here is a sample aspect (trivialized authentication):
public abstract aspect AuthenticationAspect {

pointcut pc(): call (public * smarthome.ecolib.components..*(..));

before() : pc() {
// do some fancy authentication here

• The aspect contains all the relevant code (hence the pointcut is
extremely generic) and is completely handwritten

• The aspect is abstract to make sure it is not woven by default!

• If it should be woven (see later for how this is determined) a

// do some fancy authentication here
}

}

© 2005-7 Markus Völter- 123 -

concrete sub-aspect is automatically generated
• Which is then grabbed by the weaver and automatically woven

public aspect AuthenticationAspectImpl extends AuthenticationAspect {

}

Product Line Implementation: Variabiliy in Code and Models

Complete Aspects II

• As with interceptors, components and
other code-related architectural
elements, aspects are represented in
the library model
• provides awareness of the generated p g

build file, etc.
• Allows the use of model-level negative

variability (see below)

• Using a naming convention (enforced and checked by the recipe
framework) the manually written code is associated with the model

© 2005-7 Markus Völter- 124 -

63

Product Line Implementation: Variabiliy in Code and Models

Incomplete Aspects [Thumbnail]

configuration modelsystem model

A

model
pointcut

generate
before...

Incomplete
AspectBase

Java Class

pointcut

© 2005-7 Markus Völter- 125 -

Java Class

AspectJ aspect

<<generated>>
… pointcut ...

Product Line Implementation: Variabiliy in Code and Models

Incomplete Aspects

• Incomplete aspects need to define their pointcut in the model.

• Hence we need a joinpoint model for the CBD meta model:
• Currently we support operation executions on service

components as joinpoints (same location as the interceptors)
• The granularity for selection is either a complete component, or

components’ provided ports.

• Here is the meta model of
the joinpoint model:

• Note how easy it is to define
a joinpoint model if you use

© 2005-7 Markus Völter- 126 -

a joinpoint model if you use
your own domain-specific
meta model

64

Product Line Implementation: Variabiliy in Code and Models

Incomplete Aspects II

• Here is the model part
of a component-level
incomplete aspect.
• It specifies the com-

ponents to whose
methods it wants to
advice

• The advice is manually written; the implementation class has to
extend a predefined base class, and it needs to be abstract
(conventions checked by recipes)
• Developers implement a before or after method

© 2005-7 Markus Völter- 127 -

public abstract class WindowStatusPrinterAspect extends IncompleteCodeAspectBase {
protected void beforeMethodExecution(JoinPoint jp) {

// do sensible stuff here
}

}

Product Line Implementation: Variabiliy in Code and Models

Incomplete Aspects III

• Based on the pointcut information in the model, the generator
generates a sub-aspect that contains a suitable pointcut – this
aspect is then woven.
public aspect WindowStatusPrinterAspectImpl extends WindowStatusPrinterAspect {
pointcut pcWindowSensorDriver(smarth….WindowSensorDriverImplementation tgt): (

call (public * smartho IWindowSensor *()) ||call (public * smartho….IWindowSensor.*(..)) ||
call (public * sma….IWindowSensorCheatInterface.*(..))) && target(tgt);

before(smarthome.ec….WindowSensorDriverImplementation tgt) :
pcWindowSensorDriver(tgt) {

this.beforeMethodExecution(thisJoinPoint);
}

after(sm….WindowSensorDriverImplementation tgt) :
pcWindowSensorDriver(tgt) {

this.afterMethodExecution(thisJoinPoint);
}

© 2005-7 Markus Völter- 128 -

• Note how the pointcut is restricted to the operations of the
interfaces of the provided port, as implemented by the
respective component implementation class.

// more stuff..
}

65

Product Line Implementation: Variabiliy in Code and Models

C O N T E N T S

• PLE Concepts

• Classical PLE
Implementation
• Source time
• C il ti

• MDD-AO Implementation
• Intro to Case Study
• The Various (Meta-)Models
• Libraries
• An Example House
• Orthogonal Variability• Compile time

• Deployment/Configuration time
• Link time
• Run time

• MDD-AO-PLE
• What is MDD
• What is AO
• What is MDD AO PLE

Orthogonal Variability
• Transformation and Template AO
• AO Modeling
• Code Level Aspects
• Negative Variability
• Testing
• Enforcing Conventions
• Product Line Evolution

© 2005-7 Markus Völter- 129 -

• What is MDD-AO-PLE
• More Terms and Concepts

• Summary

Product Line Implementation: Variabiliy in Code and Models

Negative Variability

• In negative variability, elements of a structural model are
associated with features in a configuration model. If that
feature is not selected, the respective elements of the structural
models are removed.
• The oAW XVar tool does that

• The dependencies between the structural model and the
configuration model are externalized into a dependency
model.
• This makes sure the meta model of the structural model need not

be changed in order to make it “configurable”

© 2005-7 Markus Völter- 130 -

66

Product Line Implementation: Variabiliy in Code and Models

Negative Variability for Aspects

• We use negative variability to remove the aspect definitions
(see previous topic) from the library model if a specific feature is
not selected.

• Since the aspect model elements are removed from the model, no
t b l t d d h t i aspect-subclasses are generated, and hence, no aspect is

woven.

• Here is the dependency
model:
• Structural Elements are

referenced directly,
• Features are referenced

© 2005-7 Markus Völter- 131 -

by name

Product Line Implementation: Variabiliy in Code and Models

Negative Variability for Aspects II

• A cartridge call to the XVar tool in the API-level code generator
workflow configures the structural model.

© 2005-7 Markus Völter- 132 -

67

Product Line Implementation: Variabiliy in Code and Models

Customizing Code

• Remember that our libraries contain a mixture of models
and code – the implementation (“business logic”) is
implemented manually in Java.

• Hence, if you want to define variants of library components, , y y p ,
it is not enough to vary the models (and with it the
generated code). You also need to vary manually written
code.

• Consider making the lights dimmable:
• The interface ILightDriver needs an operation setLightLevel()
• The state of the light driver component needs an additional

tt ib t t k t k f th li ht l l

© 2005-7 Markus Völter- 133 -

attribute to keep track of the light level
• And the implementation code needs to change – it needs to

implement the optional setLightLevel() operation.

• The variability in the models is handled as explained before.

Product Line Implementation: Variabiliy in Code and Models

Customizing Code II

• Variable code sections can be marked up using special
syntax:
public class LightDriverImplementation extends LightDriverImplBase {

@Override
protected String getIdInternal() {protected String getIdInternal() {

return getConfigParamValueForId();
}

…

//# dimmableLights
@Override
protected int setLightLevelInternal(int level) {

state().setEffectiveLightLevel(level);
return level;

}
//~# dimmableLights

© 2005-7 Markus Völter- 134 -

• This piece of code is in a .javav file
• Hence it is not compiled
• It is customized into a .java file based on the configuration

}

68

Product Line Implementation: Variabiliy in Code and Models

Customizing Code III

• Here is the workflow component that handles the
customization.

• The component

© 2005-7 Markus Völter- 135 -

• The component
• looks for sourceExt-files in the sourcePath directory
• customizes them,
• And writes the result to genExt-files in the genPath

directory.

Product Line Implementation: Variabiliy in Code and Models

C O N T E N T S

• PLE Concepts

• Classical PLE
Implementation
• Source time
• C il ti

• MDD-AO Implementation
• Intro to Case Study
• The Various (Meta-)Models
• Libraries
• An Example House
• Orthogonal Variability• Compile time

• Deployment/Configuration time
• Link time
• Run time

• MDD-AO-PLE
• What is MDD
• What is AO
• What is MDD AO PLE

Orthogonal Variability
• Transformation and Template AO
• AO Modeling
• Code Level Aspects
• Negative Variability
• Testing
• Enforcing Conventions
• Product Line Evolution

• Summary

© 2005-7 Markus Völter- 136 -

• What is MDD-AO-PLE
• More Terms and Concepts

69

Product Line Implementation: Variabiliy in Code and Models

Testing in Product Lines

• In PLE, testing is important, just as in “normal” application
development.

• We distinguish between
• testing the domain architecture (an activity in domain

engineering)
• and testing products (an activity in application engineering)

• In testing products, there is an additional distinction:
• Testing a specific product with tests specific to that product
• Testing a set of features in a product based with tests specific to

features of to combinations of features

© 2005-7 Markus Völter- 137 -

• Ideally, the domain architecture should support testing

• Tests in that sense are features that depend on other (“real”)
features
• they are included in a product’s test suite if the features they test

are included in the product

Product Line Implementation: Variabiliy in Code and Models

Testing in SmartHome

• Testing is an activity on the CBD level
• You cannot test on the level of the problem space
• And OSGI-level would be too technology-specific

• Testcode is currently written manually –y y
wrapped as components, to be deployable
on the target environment.

• Components that contain tests are actually
TestComponents – the metamodel has been
extended

• A TestComponent has to provide exactly one port that provides
h S i f (hi h h () h d)

© 2005-7 Markus Völter- 138 -

the ISystemTest interface (which has a runTests() method)

• A test runner is deployed into the system if tests should be
executed (configuration model!)
• The test runner finds all ports that provide ISystemTest and calls

their runTest() method

70

Product Line Implementation: Variabiliy in Code and Models

Product Specific Tests

• If a certain feature is selected in the
configuration model, then a model-2-
model transformation automatically
builds the following:
• A TestComponent that has a p

required port for each provided of
each instance of each component
in the system

• A configuration and a singleton
instance of this component.

• Based on the “rest” of the toolchain,
the component is build, packaged,

© 2005-7 Markus Völter- 139 -

activated …

Product Line Implementation: Variabiliy in Code and Models

Product Specific Tests II

• The developer implements the test inside that component
using the well-known CBD-level implementation idioms.

public class TestAllComponentForLargeHouseImplementation
extends TestAllComponentForLargeHouseImplBase {

@Override
protected void runTestInternal() {

if (cellarLight_defaultPort() != null) {
cellarLight_defaultPort().turnOn();
assertTrue(cellarLight_defaultPort().isOn(),

"switching on the light did not work");
} else {
fail("cellarLight_defaultPort not connected!");

}
}

@Override

© 2005-7 Markus Völter- 140 -

protected String getTestDescriptionInternal() {
return "testing complete system (TestAllComponent)";

}

}

71

Product Line Implementation: Variabiliy in Code and Models

Feature-Dependent Tests

• A feature-dependent test is only included in the system if the
features it depends on are instantiated in the system.

• Specifically, tests are
included if the set of

t it t t components it tests
are included in the
system

• TestSpecifications
are used to describe such
tests and their depedencies.

• The API level generator builds a TestComponent from the

© 2005-7 Markus Völter- 141 -

• The API level generator builds a TestComponent from the
TestSpecification that has required ports to the provided ports of
the respective components
• The developer implements the test manually using the well-known

CBD-Level idioms

Product Line Implementation: Variabiliy in Code and Models

Feature-Dependent Tests II

• The test specification shown here
wants to test LightDrivers and
LightSwitches.

public class TestForSpecLightTesterImplementation
extends TestForSpecLightTesterImplBase {

@Override
protected String getTestDescriptionInternal() {

return "testing functionality of lights and light switches";
}

@Override
protected void runTestInternal() {

for (int i = 0; i < rpForLightDriverDefaultPortCount(); i++) {
ILightDriver d = rpForLightDriverDefaultPort(i);
d turnOn();

© 2005-7 Markus Völter- 142 -

d.turnOn();
assertTrue(d.isOn(), "light "+d.getInstanceInfo()+

" is not turned on even after it has been turned on");
d.turnOff();
assertTrue(!d.isOn(), "light "+d.getInstanceInfo()+

" is not turned off even after it has been turned off");
}

}
}

72

Product Line Implementation: Variabiliy in Code and Models

C O N T E N T S

• PLE Concepts

• Classical PLE
Implementation
• Source time
• C il ti

• MDD-AO Implementation
• Intro to Case Study
• The Various (Meta-)Models
• Libraries
• An Example House
• Orthogonal Variability• Compile time

• Deployment/Configuration time
• Link time
• Run time

• MDD-AO-PLE
• What is MDD
• What is AO
• What is MDD AO PLE

Orthogonal Variability
• Transformation and Template AO
• AO Modeling
• Code Level Aspects
• Negative Variability
• Testing
• Enforcing Conventions
• Product Line Evolution

© 2005-7 Markus Völter- 143 -

• What is MDD-AO-PLE
• More Terms and Concepts

• Summary

Product Line Implementation: Variabiliy in Code and Models

The use of Conventions

• Since we do not want to modify generated code, all kinds of
(naming) conventions are used:
• Components: Base class is generated, developers have to extend

this base class
• Code Aspects: Developers have to manually write Java classes p p y

with a certain name, inheriting from a given base class; and the
class must be abstract

• We use the oAW Recipe Framework to notify developers of
remaining manual coding steps:
• The recipes check all the code in the IDE workspace – generated

and manually written
• They are created as part of the workflow

© 2005-7 Markus Völter- 144 -

They are created as part of the workflow

• As a consequence, all the conventions are “toolified”.

73

Product Line Implementation: Variabiliy in Code and Models

Recipe Framework I

• The manual class exists, but does not extend the generated base
class

© 2005-7 Markus Völter- 145 -

Product Line Implementation: Variabiliy in Code and Models

Recipe Framework II

• The extends has been added correctly.

© 2005-7 Markus Völter- 146 -

74

Product Line Implementation: Variabiliy in Code and Models

C O N T E N T S

• PLE Concepts

• Classical PLE
Implementation
• Source time
• C il ti

• MDD-AO Implementation
• Intro to Case Study
• The Various (Meta-)Models
• Libraries
• An Example House
• Orthogonal Variability• Compile time

• Deployment/Configuration time
• Link time
• Run time

• MDD-AO-PLE
• What is MDD
• What is AO
• What is MDD AO PLE

Orthogonal Variability
• Transformation and Template AO
• AO Modeling
• Code Level Aspects
• Negative Variability
• Testing
• Enforcing Conventions
• Product Line Evolution

© 2005-7 Markus Völter- 147 -

• What is MDD-AO-PLE
• More Terms and Concepts • Summary

Product Line Implementation: Variabiliy in Code and Models

Unexpected: Deployment

• As a consequence of new application scenarios, it became
necessary to change the granularity of the deployment:
• Currently, we use one bundle per Floor
• We now need one bundle per Room

• Instead of hardcoding that new requirement
into the tool, we wil make the deployment
a configuration option.

• The first step is to update the
configuration model:

• We then have to change the ps2cbd transformation

© 2005-7 Markus Völter- 148 -

• In cbd2osgi, a Configuration is mapped to Bundles
• So we have to make sure, we generate the appropriate set of

Configurations from the problem space models.

75

Product Line Implementation: Variabiliy in Code and Models

Unexpected: Deployment II

• Here is the original code:
create System transformPs2Cbd(Building building):

setName(building.name+"System") ->
setConfigurations({ building.createBuildingConfiguration() });

create Configuration createBuildingConfiguration(Building building):
setName(building.name+"BuildingConfiguration") ->setName(building.name+ BuildingConfiguration) >
setSubconfigurations(building.floors.createConfig());

create Configuration createConfig(Floor f):
setName(f.name+"FloorConfiguration") ->
instances.addAll(f.rooms.lights.createInstance()) ->
instances.addAll(f.rooms.devices.createInstance()) ->
instances.addAll(f.rooms.windows.sensor.createInstance()) ->
instances.addAll(f.rooms.select(r|r.heating !=

null).heating.thermostat.createInstance()) ->
f.rooms.devices.typeSelect(LightSwitch).size > 0 ?

handleLightCoordinator(f) : null;

© 2005-7 Markus Völter- 149 -

• We create one root configuration for the building (which will not
result in a bundle, since it is not a “root” configuration)

• Below that, there’s one configuration per Floor.

Product Line Implementation: Variabiliy in Code and Models

Unexpected: Deployment III

• Here is the changed version:
create Configuration createBuildingConfiguration(Building building):

setName(building.name+"TopLevelConfiguration") ->
setSubconfigurations(building.floors.rooms.getConfig()) ->
building.floors.rooms.populateConfig();

private populateConfig(Room r):private populateConfig(Room r):
r.getConfig().instances.addAll(r.lights.createInstance()) ->
...;

private Configuration getConfig(Room r) :
switch {

case hasFeature("perFloor"): r.floor.createConfig()
case hasFeature("perRoom"): r.createConfig()
default : r.floor.building.createConfig() //hasFeature(perBuilding)

};

private Configuration getConfig(Floor f) :
switch {

h (l) f fi ()

© 2005-7 Markus Völter- 150 -

case hasFeature("perFloor"): f.createConfig()
case hasFeature("perRoom"): f.rooms.get(0).createConfig()
default : f.building.createConfig() //hasFeature(perBuilding)

};

create Configuration createConfig(Floor f): …

create Configuration createConfig(Room f): …

create Configuration createConfig(Building f): …

76

Product Line Implementation: Variabiliy in Code and Models

Unexpected: Deployment IV: Summary

• The only necessary change was localized in the ps2cbd
transformation (and in the feature model to select the alternative)

• All the bundle stuff, the generation of the ant files, build,
deployment, etc. followed without additional changes.

• The effort was less than one hour.

© 2005-7 Markus Völter- 151 -

Product Line Implementation: Variabiliy in Code and Models

C O N T E N T S

• PLE Concepts

• Classical PLE
Implementation
• Source time
• C il ti

• MDD-AO Implementation
• Intro to Case Study
• The Various (Meta-)Models
• Libraries
• An Example House
• Orthogonal Variability• Compile time

• Deployment/Configuration time
• Link time
• Run time

• MDD-AO-PLE
• What is MDD
• What is AO
• What is MDD AO PLE

Orthogonal Variability
• Transformation and Template AO
• AO Modeling
• Code Level Aspects
• Negative Variability
• Testing
• Enforcing Conventions
• Product Line Evolution

© 2005-7 Markus Völter- 152 -

• What is MDD-AO-PLE
• More Terms and Concepts

• Summary

77

Product Line Implementation: Variabiliy in Code and Models

Summary

• It is essential to explicitly describe the variabilities wrt. to the
various product in a product line.

• While you can directly map variabilities to implementation code, it is
much better to use a model-driven approach and map the

i bilit t d lvariability to models
• because they are more coarse grained and there’s less to vary

• Variant management tools integrate well with the model-driven
tool chain

• Generators, transformation languages and all the other MDD
tooling is mature and can be used in practice.

© 2005-7 Markus Völter- 153 -

• Advanced tools have sufficient features to build variants of
generators, transformations or models based on configuration data
in feature models

THANKS!

