Writing Adaptable Software:

Mechanisms for Implementing

Variabilities in Code and Models
OOPSLA 2007 Tutorial

Markus Voelter
voelter@acm.org
http://www.voelter.de

This work is supported by

i - Copyright is held by the author/owner(s).
. OOPSLA 2007, October 21-25, 2007,
‘ armnaie Montréal, Québec, Canada.

ACM 07/0010.

_V6’ter . r aralel

olter

ieurbiiro fiir softwar

® Independent Consultant Markus Volter
B i voelter@acm.org
® Based out of Goppingen, www.voelter.de
Germany

® Focus on
® Model-Driven Software
Development
® Software Architecture

® Product Lines

volter prmmm e

CONTENTS

® PLE Concepts

® Classical PLE
Implementation
® Source time
Compile time
Deployment/Configuration time
Link time
Run time

® MDD-AO-PLE

What is MDD

What is AO

What is MDD-AO-PLE
More Terms and Concepts

CONTENTS
® PLE Concepts

® Classical PLE
Implementation
® Source time
Compile time
Deployment/Configuration time
Link time
Run time

® MDD-AO-PLE

What is MDD

What is AO

What is MDD-AO-PLE
More Terms and Concepts

® MDD-AO Implementation

® Summary

® MDD-AO Implementation

® Summary

Intro to Case Study

The Various (Meta-)Models
Libraries

An Example House
Orthogonal Variability
Transformation and Template AO
AO Modeling

Code Level Aspects
Negative Variability
Testing

Enforcing Conventions
Product Line Evolution

©2005-7 Markus Vélter

Intro to Case Study

The Various (Meta-)Models
Libraries

An Example House
Orthogonal Variability
Transformation and Template AO
AO Modeling

Code Level Aspects
Negative Variability
Testing

Enforcing Conventions
Product Line Evolution

©2005-7 Markus Vélter

Software System Families

® Typically, MDD makes most sense in the context of
software system families because developing
modeling environments, generators, translators,
etc. can be a lot of work and it pays only if reused.

® What is a software system familiy?

We consider a set of programs to constitute a
family whenever it is worthwhile to study programs
from the set by first studying the common
properties of the set and then determining the
special properties of the individual family

members.
Definition by Parnas

volter prmmm e

Variability Analysis

® Variability analysis discovers the variable and fixed parts of
a product in a domain. Parts can be

® Structural or behavioral
® Functional or non-functional (technical)
® Modularized or aspectual

® To define variable parts, we need to have a commonality
base: a base platform, a common architecture

® There are two kinds of variability:
® positive variability: add something (optional)
® negative variability: removes something (essential)

® Another classification: structural vs. non-structural var.

volter prmmm e

Product Line Implementation: Variabiliy in Code and Models

Structural vs. Non-Structural Variability

® Structural Variations ® Based on this sample
Example Metamodel metamodel,
. you can build a wide
_ase -
variety of models:
a) b)
[Data 'T" Attribute | —
[bpe:sing | Customer Partg/ on Address
[Entity —>{ DependentObject | name: g eme: St ::Lysst:’w:;
id: long o-n street: String

® Non-Structural Variations
Example Feature Models

Counter

Dynamic Size, ElementType: int,
Counter, Threadsafe

Optimization

Safety

Static Size (20), | ElementType | Speed | | Memory Additional
ElementType: String [open] Usage Features
Dynamic Size, Speed-Optimized,

Bounds Check | int | | float | | String | Thread

volter prmmm e

s Volter

Product Line Implementation: Variabiliy in Code and Models

Routine Configuration vs. Creative Cont

Guidance, Complexity,
A Ciiiciency Flexibility. P>

Routine Creative
Configuration Construction

Configuration Feature-Model Graph-Like
Parameters Based Languages
Configuration
Property Files
- Tabular
Configurations

® This slide (adopted from K. Czarnecki) is important for the
selection of DSLs in the context of MDSD in general:

® The more you can move your DSL ,form* to the configuration
side, the simpler it typically gets.

©2005-7 Markus Vélter

a) j[—~ b) e ———
~— Option A D ~ Option A

4—+— " option8 — Option 8
“h__| — OptienC T~ OptionC

® Negative Variability (a) takes optional parts away from
an ,,overall whole*

® Challenge: the ,,overall whole“ can become really big an
unmanageable

® Positive Variability (b) adds optional parts to a minimal
core.

® Challenge: How to specify where and how to join the
optional parts to the minimal core

©2005-7 Markus Vélter

Typical Binding Times & Techniques

® For each of the variable features you need to define when
you'‘ll bind the feature

® source time: manual programming, generators

® Compile time: function overloading, precompiler, template
evaluation, static aspect weaving

® deployment/configuration time: component deployment
(impl. for an interface), environment variables

® link time: DLLs, class loading
® run time: virtual functions, inheritance & polymorphism,

factory-based instance creation, delegation, meta
programming, data driven (tables, interpreters)

vo,ter ” SIEMENS =t -10 - ©2005-7

Markus Volter

Binding Time Tradeoffs

flexibility performance code size complexity
source time - + + -
compile time + -+ -+ -
link time + + -+ -
load time + 4 + + +
run time + 44 - - +

volter prmmm e

©2005-7 Markus Vélter

CONTENTS
® PLE Concepts

® MDD-AO Implementation

® MDD-AO-PLE

What is MDD

What is AO

What is MDD-AO-PLE
More Terms and Concepts

Negative Variability
Testing

Enforcing Conventions
Product Line Evolution

® Intro to Case Study
® Classical PLE : IE)?J?;OUS (Meta-)Models
I:ngoli:?eet?raaetlon ® An Example House
- compile time : ?riat:sg)?nma;t\ii)ar:i?aﬁgit'lyem late AO
: Biilzi};:;ent/Configuration time - A Modeling p
® Run time : Code Level Aspects
L J
L J
L J

® Summary

©2005-7 Markus Vélter

Manual Programming

change it manually.

CONTENTS
® PLE Concepts

® Classical PLE
Implementation

Source time

Compile time

Deployment/Configuration time

Link time

Run time

® MDD-AO-PLE
® What is MDD
® What is AO
® What is MDD-AO-PLE
® More Terms and Concepts

® Handling variabilities by manually programming is the
simplest way of handling variabilities.

® However, it is obviously very inflexible, since, whenever
something changes you have to go back to the code and
® Actually, there’s no variability in the code.

® We won’t elaborate this any further.

©2005-7 Marku

® MDD-AO Implementation
® Intro to Case Study

The Various (Meta-)Models

Libraries

An Example House

Orthogonal Variability

Transformation and Template AO

AO Modeling

Code Level Aspects

Negative Variability

Testing

Enforcing Conventions

Product Line Evolution

® Summary

Function/Method Overloading

® Assume the following piece of code:

public class Calculator {
public int add(int x, inty) {
return x+y;
3
public double add(double x, double y) {
return x+y;
3
¥

// somewhere else..

Calculator ¢ = new Calculator();

int res = c.add(3,5); // calls the first one

double res2 = c.add(3.1415, 1.142); // calls the second one

® Here we use compile-time overloading, not
polymorphism!

volter prmmm e

Preprocessors: C/C++ Examples

© 20057

Markus Volter

® The following statement replaces the statement itself
with the content of the file specified as part of the

statement:

#include ,,iostream.h*

® The next statement is a conditional statement that

includes the part between the #if and the #endif.

#if defined (ACE_HAS TLI)
static ssize_t t_snd_n (ACE_HANDLE handle,
const void *buf, size_t len, int flags,
const ACE_Time_Value *timeout = O,
size_t *bytes_transferred = 0);
#endif /* ACE_HAS TLI */

® The ACE_HAS_TLI can be considered a boolean variable

that can be defined or undefined.

|#define ACE_HAS_TLI1 // defines ACE_HAS TLI, sets it true

volter prmmm e

Markus Volter

Simple Macros: C/C++ Examples (11)

® A typical case is to make sure include files are only
included once per compilation unit.

#if ldefined(ComponentHel loWorldIncluded)
#define ComponentHel loWorldIncluded

#include "components\HelloWorld\HelloWorldsSl .h,,
#include "components\Hel loWorld\HelloWorldRl .h,,
#include "container\Diagnosable.h"

class HelloWorld: public Lifecyclelnterface, public ComponentBase,
public HelloWorldSl,public HelloWorldRl,public Diagnosable {

private:
public:

HelloWorld(Q);
~HelloWorld(Q);

static int PARAMETER_NOT_DEFINED;
static int DP_inputvoltage;
static int DP_clientcount;

int getDiagnosticParameter(int name);
3
#endif

Vofter 4 nrw;:'\l:' =7 = ©2005-7 Markus Vélter

Simple Macros: C/C++ Examples (111)

® Macros can also be used to define constants (although
specifically C++ provides better (and typesafe) means to
achieve this):

#define MAX_ARRAY_SIZE 200
#define AUTHORNAME MarkusVoelter

® Processing is done via strict text pattern matching.
Wherever the preprocessor finds the pattern, it replaces it.
It has no clue about language semantics.

® Some more complex expressions involving
parameters can also by preprocessed:

#define MAX(X,y) (X<y ? y : X)
#define square(x) Xx*x

vo,ter " SIEMENS =t -18 - ©2 Markus Volter

Simple Macros: Summary

® Macros are a useful means to achieve simple text
replacement.

® |n the context of programming languages, the problem
is that macros are not syntax- or semantic-aware (and
not type safe).

® As with almost anything, it can be abused by being used
too heavily or by constructing formally legal, but nearly
incomprehensible macro definitions.

® However, it is a proven tool and has been used
successfully in many systems.

Template Parameters (in C++)

® Unlike the generics implementation in Java, the templates
in C++ are completely static — this is why this is a
source time mechanism.

® For every instantiated template (i.e. Template parameter)
a completely new variant of the respective generic class
is created.

® Consequently, this approach is quite efficient — but
potentially produces large images.

10

Template Metaprogramming (in C++)

® Also called compile-time metaprogramming, because
metaprograms ,,run“ while the program is compiled

® Uses the features of C++ template instantiation
® Programming style is functional and operates on types

® Note that some awkward constructs are required,

® because C++ templates were not originally intended for
this purpose

® and many generally unknown and non-trivial features of
the standard are used.

® Error reporting is usually clumsy

Static Aspect Weaving

® AOP can be used for various reasons
@ fixing“ broken code
® Separate cross-cutting (often technical) concerns
® Handling variants

® Depending on the features we want in our system, we add
additional pieces of (AspectJ) source code.

® In our example, we can optionally add error handling

® done by adapting/extending the build path of the
respective project

® |t happens statically, it's woven on byte code level
® Can also be done at deployment time...

® Using advices, you can attach additional behaviour to
existing code.

volter prmmm e

11

Static Aspect Weaving: Example

® \We use a small service framework to illustrate the
technique. Here is an introductory test case:

public void testSimpleAdding() {
ServiceEngine engine = new ServiceEngine();

engine.registerService(new CalculationService(),
CalculationServiceContext.class);

CalculationServiceContext ctxl = new CalculationServiceContext(1,2);
engine.addTask(ctxl);

CalculationServiceContext ctx2 = new CalculationServiceContext(3,4);
engine.addTask(ctx2);

engine.run();

assertEquals(3, ctxl.getResult());

assertEquals(7, ctx2.getResult());

©2005-7 Markus Vélter

Static Aspect Weaving: Example 1

® One variant adds error logging to the service engine
framework. Here is a test case; adding negative numbers is
illegal, we expect an error in the log.

public void testSimpleAdding() {
ServiceEngine engine = new ServiceEngine();
engine.registerService(new CalculationService(),
CalculationServiceContext.class);

CalculationServiceContext ctx = new CalculationServiceContext(1,-2);
engine.addTask(ctx);

engine.run();

assertEquals(-1, ctx.getResult());

assertNotNul I (engine.logFor(ctx));

® The logFor(...) operation is new, as is the functionality
to create a log in case the result is negative.

volter prmmm e

©2005-7 Markus Vélter

12

Static Aspect Weaving: Example 111

® Here's the aspect that implements that variant:

public aspect ErrorlLogging {
private Map<IServiceContext, Error> ServiceEngine.log = ..

public Error ServiceEngine.logFor(lServiceContext ctx) {
return log.get(ctx);

3

public void ServiceEngine.log(IServiceContext ctx, Error err) {
log.put(ctx, err);

}

pointcut serviceExec(ServiceEngine e, 1ServiceContext c, IService s) :
execution(* ServiceEngine.executeService(lServiceContext, IService)) &&
args(c,s) && target(e);

Status around(ServiceEngine e,

1ServiceContext ¢, IService s) :

serviceExecution(ServiceEngine,

I1ServiceContext, IService)

}

&& args(c,s) && target(e) {
Status s = proceed(engine,ctx,srv);
if (s I= Status.ok)

engine.log(ctx, new Error(s, ''no further information'™));

return s;

bs

vo,ter " SIEMENS =t

©2005-7 Marku

s Volter

CONTENTS
® PLE Concepts

® Classical PLE

mplementation

Source time

Compile time
Deployment/Configuration time
Link time

Run time

® MDD-AO-PLE

What is MDD

What is AO

What is MDD-AO-PLE
More Terms and Concepts

® MDD-AO Implementation

Intro to Case Study

The Various (Meta-)Models
Libraries

An Example House
Orthogonal Variability
Transformation and Template AO
AO Modeling

Code Level Aspects
Negative Variability
Testing

Enforcing Conventions
Product Line Evolution

® Summary

s Volter

13

Component Deployment

® Consider a J2EE application server. When deplying EJBs you
can
® Pass in configuration parameters
® .wire" the dependencies to other components
® Configure security and transactions,
® .. and generally address QoS issues by deploying on
different hardware

Component Deployment; Interceptors

® |n general, whenever you can add interceptors to a
system, this allows you to add/configure certain cross-

cutting concerns:
® Typically, this consists of generating proxies [GoF] for
application components

® that can hook-in interceptors [POSA2].

® Use a factory to instantiate the proxies if necessary.

® Consider you face the following situation:

Client Some
Component

Factory

creates

11 A 4 11 A 4
iont | ’C) Some [T777
Client
Component delegates Some
to Component
Proxy
|
i 1-Int
Interceptor

® From a client’s perspective, nothing has changed, the
client still uses the interface I1. However, the client
actually talks to a proxy that handles CCC, and then
forwards to the real object.

vo,ter " SIEMENS =t

©2005-7 Marku

Component Deployment; Interceptors 111

® Make sure that the join points are method calls; then the
following interceptor interface can be used:

public interface Interceptor {
public void beforelnvoke(Object target,
String methodName,
Object[] params);
public void afterlnvoke(Object target,
String methodName,
Object[] params,
Object retValue);

® The factory determines which interceptors will be
used for a given object based on some kind of
configuration (file).

15

Component Deployment; Interceptors IV

® The following is the basic structure of the proxy:

public class SomeComponentProxy implements 11 {
private SomeComponent delegate;
private Interceptor interceptor; // can also be a list
// of interceptors

public String someOperation(String pl, int p2) {
Object target = delegate;
String opName = ‘““someOperation”;
Object[] params = {pl, p2};
interceptor.beforelnvoke(target, opName, params);
String res = delegate.someOperation(pl, p2);
interceptor.afterinvoke(target, opName, params, ret);
return res;

T

// more operations of I1

}

Component Deployment; Interceptors V

® Example. In the EJB scenario introduced above, the
generated proxy would be the bean implementation class
from the perspective of the application server, the real
bean implementation would be an “implementation detail”

of this class.

Lifecycle controls lifecycle
Manager
A
_____________ - — — 1
usles | k
I o . |
Container Remote Home Session I
Invoker | Interface Interface Bean |
l A
| A L I
forwards H ! |
invocations | Lemmememmeoee- = [
| ‘ '
| .| Bean Impl | _ forwards. Bean Impl |
| "1 Proxy invocations Class |

©2005-7 Markus Vélter

©2005-7 Markus Vélter

16

CONTENTS

® PLE Concepts

® Classical PLE
Implementation

Source time

Compile time

Deployment/Configuration time

Link time

Run time

® MDD-AO-PLE
® What is MDD
® What is AO
® What is MDD-AO-PLE
® More Terms and Concepts

DLL loading and Classloading

® MDD-AO Implementation
® Intro to Case Study

The Various (Meta-)Models

Libraries

An Example House

Orthogonal Variability

Transformation and Template AO

AO Modeling

Code Level Aspects

Negative Variability

Testing

Enforcing Conventions

Product Line Evolution

® Summary

©2005-7 Marku

® |n static languages such as C/C++, you can load
different DLLs that define the same entry points.

® |n Java you can use class loading ... Although the
variability mechanism in fact will be a runtime solution
using polymorphism

17

CONTENTS

® PLE Concepts ® MDD-AO Implementation
® Intro to Case Study

Negative Variability
Testing

Enforcing Conventions
Product Line Evolution

® MDD-AO-PLE
® What is MDD
® What is AO
® What is MDD-AO-PLE
® More Terms and Concepts

® Classical PLE : I_T)e Vgrious (Meta-)Models
i ibraries
Iznspgfrizetir;iatlon ® An Example House
e Compile time ® Orthogonal Variability
® Deployment/Configuration time : ;rgn’\jf(;rr?atlon and Template AO
® Link time odeling
e Run time : Code Level Aspects
L]
L]
L]

® Summary

©2005-7 Marku

Polymorhpism

® This is well known. The method that is invoked depends on
the runtime (dynamic) type of the object on which you
invoke the operation.

® A factory is often used in conjuction
® Related to the strategy & bridge patterns

18

Product Line Implementat: i n Code and Models

Polymorhpism 11

® A simple test case:

public class PricingTest extends TestCase {
private List<Product> products;

protected void setUp() throws Exception {
products = new ArraylList<Product>();
products.add(new Product()); products.add(new Product());
products.add(new Product()); products.add(new Product());
products.add(new Product());

¥

public void testLinearPricing() {
Customer normalCustomer = new Customer(false);
int totalPrice = Factory.getPricingStrategy(normalCustomer).
calculatePrice(products);
assertEquals(500, totalPrice);
¥

public void testRebatePricing() {
Customer valuedCustomer = new Customer(true);
int totalPrice = Factory.getPricingStrategy(valuedCustomer).
calculatePrice(products);
assertEquals(300, totalPrice);
¥

}

volter prmmm e

©2005-7 Markus Vélter

Polymorhpism 111

® Strategy Implementation and the Factory:

public abstract class PricingStrategy {
public abstract int calculatePrice(List products);

}

public class LinearPricing extends PricingStrategy {
public int calculatePrice(List products) {
return products.size() * 100;
¥

}

public class RebatePricing extends PricingStrategy {
public int calculatePrice(List products) {
int count = products.size();
if (count > 3) count = 3;
return count * 100;
¥
T

public class Factory {
public static PricingStrategy getPricingStrategy(Customer c) {
if (c.isValued()) return new RebatePricing();
else return new LinearPricing();
3
}

volter prmmm e

©2005-7 Markus Vélter

Metaprogramming

In as much as a computational process can be constructed
to reason about an external world in virtue of
comprising an ingredient process (interpreter) formally
manipulating representations of that world,

so, too, a computational process could be made to reason
about itself in virtue of comprising an ingredient process
(interpreter) formally manipulating representations of ist
own operations and structures.

Smith, The Reflection Hypothesis

Metaprogramming in OO Languages

® There are several terms in use:
® Introspection/Reflection: read/modify the program
® Reification: change the semantics of existing code

® Often, the term Meta Object Protocol is used

® Example Languages:

® CLOS: Reification, Reflection, Introspection, MOP, Lisp in
Lisp

® Smalltalk: Reflection, Dictionary, (Smalltalk := nil)...

® Java: Introspection, teilweise Reflection, java.lang.Class,
java.reflect

® Self: Reification, Reflection, Introspection

® Ruby: Reflection, Introspection

volter prmmm e

20

Metaprogramming in OO Languages 11

® | assume you all know Java Reflection ... and it's also not
very interesting (since it's not very powerful).

® Considering the current hype about dynamic languages
such as Ruby, and the fact, that these languages
® integrate with Java nicely (JRuby)

® And that Java (at least, the VM) may even get native
support for more dynamic languages (invokedynamic
keyword)

® ... I will show an Example in Ruby
® |t shows how to handle structural variability using
metaprogramming

©2005-7 Markus Vélter

Metaprogramming in OO Languages 111

® Here is an entity class definition:

class Person < Entity
properties :name, :firstname
has_one :adr => Address
has_many :addresses => Address
end

® And here is a test case:

class SimpleTests < Test::Unit::TestCase

def test people
p = Person.new(:name => "Voelter", :firstname => "Markus')
assert_equal p.name, "Voelter"
assert_equal p.firstname, "Markus*

® Where do the native Ruby properties name and
firstname come from, and how come they can be
intialized via the => syntax?

vo,ter ” SIEMENS ElallE S0P o ©2005-7 Markus Volter

21

Metaprogramming in OO Languages 1V

® Here is the class
definition of Entity:

class Entity < WithProperties
end

® .. and the
WithProperties
class =

® The properties key-
word in really static
method that is exe-
cuted during class
definition.

® |t in turn creates the
initializer and the
setters and getters

class WithProperties

def self._properties(*attrNames)

end
end

define_method(:initialize) do | values |
attrNames.each do | attrName |
instance_variable_set(
('@ +attrName.to_s).to_sym,
values[attrName.to_sym])
end
end
attrNames.each do | attrName |
getter = %Q{
def #{attrName.to_s}
@#{attrName.to_s}
end

self.module_eval (getter)
setter = %Q{
def #{attrName.to_s}= (value)
@#{attrName.to_s} = value
end

self.module_eval (setter)
end

volter prmmm e

CONTENTS

® PLE Concepts

® Classical PLE
Implementation
® Source time
Compile time
Deployment/Configuration time
Link time
Run time

® MDD-AO-PLE
® What is MDD
® What is AO
® What is MDD-AO-PLE
® More Terms and Concepts

©2005-7 Markus Vélter

® MDD-AO Implementation
® Intro to Case Study
® The Various (Meta-)Models
Libraries
An Example House
Orthogonal Variability
Transformation and Template AO
AO Modeling
Code Level Aspects
Negative Variability
Testing
Enforcing Conventions
Product Line Evolution

® Summary

Markus Volter

22

What is MDSD?

® Domain Driven Development is about making software
development more domain-related as opposed to
computing related. It is also about making software
development in a certain domain more efficient.

Domain Concepts Domain Concepts

el WOrk A

of developers

Software Technology Software Technology
Concepts Concepts

What is MDSD? |1

® Model-Driven Software Development is about making
models first class development artefacts as opposed
to “just pictures”.

® Various aspects of a system are not programmed
manually; rather they are specified using a suitable
modeling language.

® The language for expressing these models is specific to
the domain for which the models are relevant. The
modeling languages used to describe such models are
called domain-specific languages (DSL).

® Models have to be translated into executable code for
a specific platform.

® Such a translation is implemented using model
transformations.

® An approach based on model interpretation is also
possible, but seldomly used — I will ignore this here!

volter prmmm e

23

How does MDSD work?

® Developer develops model(s)
. Model || === » Metamodel
based on certain
metamodel(s). i A
® Using code generation A B
. Transformer < Tranformation g
templates, the model is Rules g
transformed to executable l ; 2
code. v i
o
® Optionally, the generated Model | o > | Metamodel | 12
code is merged with , N
manually written code. ! i
Cod
® One or more model-to- Transformer | <— | Generation
- Templates
model transformation steps /
may precede code generation. l \
ceneratea | [Mo | |
Code E
| optionali

volter prmmm e

©2005-7 Markus Vélter

Models & Meta Models

® A model is an abstraction of a real world system or
concept.

® |t only contains the aspect of the real world artifact that is
relevant to what should be achieved with the model.

® A model is therefore less detailed than the real world
artifact.

® MDD models are precise and processable.
® Complete regarding the abstraction level or viewpoint.

® The concepts used for building the model are actually
formally defined.

® The way to do this is to make every model conform to a
meta model.

® The meta model defines the “terms” and the grammar
we can use to build the model.

® Models are instances of their respective meta models.

volter prmmm e

©2005-7 Markus Vélter

Meta Meta Models

® A meta model also has a meta model
® after all, a meta model is a model that plays the role of
the meta model for some other model.

® The meta model’s meta
model is called the meta

meta model. Reference
sourceMult ‘ generalization
® A meta meta model targetMult
. containement
typically looks

more or less like P
children

that > Thing [+
T “| Property

4 Composite

Thing

©2005-7 Markus Vélter

Meta Levels

® This diagram illustrates the various meta levels using
UML as well as a custom meta model

® Caveat: Note that absolute meta levels (as shown here)
can be a problem and lead to strange statements — better
avoid them and consider this really only an example

Meta Meta Model M3
(MOF, Ecore, ...)
UML Meta Model Architecture Meta Model M2
Meta Model Meta Model
A model ,,drawn” in UML Architecture Model M1
Model Model

volter prmmm e

25

Domain Specific Language

® A Domain Specific Language (DSL) is a formalism to
build models. It encompasses
® the meta model of the models to be built
® some textual or graphical (or other)

concrete syntax that is used to
represent (“draw”) the models.

® |n the context of product
line engineering DSLs are
used to bind variabilities.

® Consequently, feature
diagrams are a special kind
of DSL, one that can be used
to express configurative
variability.

Domain
Specific
Language

volter prmmm e

©2005-7 Markus Vélter

What is MDSD? 111

target
software
architecture

design
expertise

precise/
executable

® Related Approaches (Specializations):
MDA, SF, DSM, GP, ..

volter prmmm e

Markus Volter

26

CONTENTS

® PLE Concepts ® MDD-AO Implementation
® Intro to Case Study

Negative Variability
Testing

Enforcing Conventions
Product Line Evolution

® MDD-AO-PLE
® What is MDD
® What is AO
® What is MDD-AO-PLE
® More Terms and Concepts

® (Classical PLE : I_T)e Vgrious (Meta-)Models
; ibraries
ITF;EEUI’::STitr:‘;IOH ® An Example House
e Compile time ® Orthogonal Variability
® Deployment/Configuration time : ;rgn’\jf(;rr?atlon and Template AO
® Link time odeling
e Run time : Code Level Aspects
L]
L]
L]

® Summary

©2005-7 Markus Vélter

What is AOSD?

® AOSD is about localizing cross-cutting concerns into
well-defined modules called aspects.

® Various approaches to AOSD are possible, including
language extension (AspectJ) and
framework/infrastructure-based approaches (such as
Spring AOP, JBOSS AOP or AspectWerkz).

® A core characteristic of each AOSD tool is its join point
model, i.e. the means by which the base code and the
aspect code can be joined.

® Static and Dynamic join points can be supported
® The granularity of the join point model varies.

® Introductions/Inter-Type declarations are often, but
not always possible

volter prmmm e

©2005-7 Markus Vélter

27

How does AOSD work?

® Developer develops
program code

® Developer develops

Normal OO
Program

(or reuses) aspect
code

® Developers specifies the
weaving rules (defines
pointcuts)

® Aspect Weaver weaves
program and aspects
together and produces
the ,,aspectized” program

or dynamically

volter prmmm e

CONTENTS

® This may happen statically

Weaving

l l Specification

Aspect Weaver

v

[
(o]

Woven Program
o Q0 © ©
e O o, ®

©2005-7 Markus Vélter

® PLE Concepts

® Classical PLE
Implementation
® Source time
Compile time
Deployment/Configuration time
Link time
Run time

® MDD-AO-PLE
® What is MDD
® What is AO
® What is MDD-AO-PLE
® More Terms and Concepts

® MDD-AO Implementation

® Summary

Intro to Case Study

The Various (Meta-)Models
Libraries

An Example House
Orthogonal Variability
Transformation and Template AO
AO Modeling

Code Level Aspects
Negative Variability
Testing

Enforcing Conventions
Product Line Evolution

28

What is MDD-AO-PLE

® As mentioned above, the core challenge of product line
implementation, is the implementation of the product
variability.

® Models are more abstract and hence less detailed than code

Transformation Implementation
Artefacts

more abstract less abstract
less detailed more detailed

® Thus, the variability is inherently less scattered, making
variability management on model level simpler!

)
° o

© = Variation Point

volter prmmm e

What is MDD-AO-PLE 11

® AO is used in several ways:

® On model level, we use it for weaving models and meta
models

® |n the transformation, we weave variants into
transformations and generators

® And on code level, we use it to directly implement fine-
grained implementation variants.

® We provide more details on all of these aspects © later, as
well as examples.

® Definition:
MDD-AO-PLE uses models to describe product lines.
Variants are defined on model-level. Transformations
generate running applications. AO techniques are used to
help define the variants in the models as well as in the
transformers and generators.

volter prmmm e

©2005-7 Markus Vélter

©2005-7 Markus Vélter

29

What is MDD-AO-PLE 111

® Variability can be described more concisely since in
addition to the traditional mechanisms, variability is also
described on model level.

® The mapping from problem to solution domain can be
formally described automated using model-to-model
transformations.

® Aspect-oriented techniques enable the explicit expression and
modularization of crosscutting variability on model,
code, and generator level.

® Fine grained traceability is supported since tracing is done

on model element level rather than on the level of
artifacts.

volter prmmm e

What is MDD-AO-PLE 1V

Problem Space Solution Space
o Domain
= Requirements
=
@
@
£
=
0 Formal Formal Core Assets
i M
= Domain C) Solution Space I:'
T MetaModel MetaModel L—rl L,_J
=
o
(s}
o
= Product
o} Requirements
@
IS
=)
&
= Formal Formal
o Domain M Solution Space Product
w Model Model
2
a
o
<

S
9..
~
@
Y,
@
m
=
m
2
w
D
B
L]

©2005-7 Markus Vélter

30

CONTENTS
® PLE Concepts

® Classical PLE
Implementation
® Source time
Compile time
Deployment/Configuration time
Link time
Run time

® MDD-AO-PLE
® What is MDD
® What is AO
® What is MDD-AO-PLE
® More Terms and Concepts

Architecture Meta Models

® MDD-AO Implementation
® Intro to Case Study

The Various (Meta-)Models

Libraries

An Example House

Orthogonal Variability

AO Modeling

Code Level Aspects
Negative Variability
Testing

Enforcing Conventions
Product Line Evolution

® Summary

©2005-7

® An architectural meta model defines formally the
concepts available for defining software architectures.

® This one defines
the component

Component

Transformation and Template AO

Markus Volter

pori

definition viewpoint

of a component

architecture.

® Complete architecture
meta models typically

contain several viewpoints.

® Architecture meta models are typically

Connecting Delegating
Wire Wire

Wire

name

defined as part of domain engineering

volter prmmm e

Interface

name

31

Architectural Models

® An architecture model is an instance of an architecture
meta model.

HierarchicalComponentA

Component Component
InstanceB InstanceC

® They are defined during application engineering

©2005-7 Markus Vélter

Application Domain Meta Model and Model

® Application Domain Meta Models are formalizations of
domain requirements. Often this meta model is a

feature model. It is created as part of domain
engineering.

Temperature

Humidity
/‘\ |Analog E | Digital |

Inside

| Inside

| Outside

| Qutside I

® An application domain model
is then an instance of that meta
model; it is created during
application engineering.

Weather
Staton
Humidity

=

volter prmmm e

32

Software Domain Meta Model

® Software Domain Meta Models are formalizations
of the architecture of the to-be-built product line (i.e. they
are architecture meta models).

® Typically, this meta model is a NOT a feature model.

® |t is created as part of domain engineering.

mterface

I m ----- = |"wu |

Gompenentinstance

©2005-7 Markus Vélter

Software Domain Meta Model and Model

® An software domain model is then an instance of that
meta model; it is created during application engineering.

:Temperatur
Processor

:Humidity
Processor

Digital
DisplayDriver

tin:
Temperatur
SensorDriver

tout:
Temperalur
SensorDriver

hout:
Humidity
SensorDriver

33

Variants and Models 11

® |t is especially useful to combine structural and non-
structural variations
— specifically, you may want to ,,configure* structural models
with the help of feature models,
— we want to describe variants of structural models
(and use these variants as generator input)

® Examples:
® A party may have one or more addresses
® A party may store telecontacts or not
® In case of telephone numbers, you may want to store the
country code
® Addresses may have the state field (USA)

©2005-7 Markus Vélter

Variants and Models 111

® Implementation using negative

Varlablllty: Party
. d Needsstate®|
You can assign model elements ..‘

Phone
of the structural model to
features in the feature model.

Multiple
Addresses ®

International
® Phone

LocalPhone | Persistence

® The respecticve model
elements are only there
if the associated feature

Hibernate

is selected, .
<<entity>> o <<dependentOb>>
i i Party It 1 Address
® And it's remOVed, if the name: String address | city: String .
. i - String e
feature is not there. i on o
i street: String
o.n
<<dependentOb>>
H Phone
® Implementation using L [number: int
- - _— %, | regionCode: int
pOSItlve Varlablllty: *-¢countryCode: int
model weaving (see later)
VO’ter 4 leMENs = ©2005-7 Markus Vélter

34

CONTENTS
® PLE Concepts

Intro

volter prmmm e

® Classical PLE
Implementation

Source time

Compile time
Deployment/Configuration time
Link time

Run time

® MDD-AO-PLE

What is MDD

What is AO

What is MDD-AO-PLE
More Terms and Concepts

to Case Study

® lights
thermostats
electric blinds

® MDD-AO Implementation

Intro to Case Study

The Various (Meta-)Models
Libraries

An Example House
Orthogonal Variability
Transformation and Template AO
AO Modeling

Code Level Aspects
Negative Variability
Testing

Enforcing Conventions
Product Line Evolution

® Summary

fire and smoke detection sensors
white goods such as washing machines
as well as entertainment equipment.

©2005-7 Markus Vélter

® A home automation system called Smart Home.

® In homes you will find a wide range of electrical and electronic
devices

® Smart Home connects those devices and enables inhabitants
to monitor and control them from a common UI.

® The home network also allows the devices to coordinate their
behavior in order to fulfill complex tasks without human
intervention.

©2005-7 Marku

s Volter

35

Application Domain Modeling

® The domain expert (i.e. a
building architect) uses a
suitable modeling language
for building smart homes.

® Currently, we use a simple
tree editor for that

® |t is based on Exeed, and
it is basically an EMF tree
view with customized icons
and labels

=]

)

%5 Bulding LargeHouse

& cellar onlevel 0
{3 Room cellarCorridor
- B] Lightswitch cellarightSwicch for cellarLight
=-F window cellarcorridorwindow
© W Window Sensor
Light cellarLight switched by cellarLightSwitch
- Room stockroom
+ B wghtswitch stockroomLightSwiteh For stockroomlight
- Bl Lightswitch stockraomLightSwitch for stockroomLight
=-F window srwindow
© W Window Sensor
= Light stockroormLight switched by stackroomLightSwiteh and stackroomLightSwitehz
- @ Light Regulator
1 Door cellarDoor cannects cellarCorridor and stackroom

ore

® Note that problem space modeling uses a creative
construction DSL since describing a Smart Home is not just a

matter of “ticking boxes”.

® A more convenient editor will be provided later.

volter prmmm e

CONTENTS

® PLE Concepts

® Classical PLE
Implementation
® Source time
Compile time
Deployment/Configuration time
Link time
Run time

® MDD-AO-PLE

What is MDD

What is AO

What is MDD-AO-PLE
More Terms and Concepts

©2005-7 Markus Vélter

® MDD-AO Implementation

Intro to Case Study

The Various (Meta-)Models
Libraries

An Example House
Orthogonal Variability
Transformation and Template AO
AO Modeling

Code Level Aspects

Negative Variability

Testing

Enforcing Conventions
Product Line Evolution

® Summary

©2005-7 Markus Vélter

36

Product Line Implementation: Variabiliy in Code and Models

Application Domain Meta Model (PSMM)

) P Lightswincn | r——
- e — =
-Hnenees | ! ~awiches [Gners

o .

0

T

L L ¥
oo | Vimht | jores

[onaem
uyas aodrret
or |]
ke N o s
(= woces smstegy | Hedting 1 1
tor RoomDevice [T
- L . 0.1
T | m.,j
B
o 0.1 1 achustor 0.1 1 1
doceSengor o engor -regublor

[S [i
o = =3

volter mammmme

©2005-7 Markus Vélter

Product Li i iabiliy in Code and Models

d Transformations Overv

common.mm//datamm.ecore
common.mm//operationsmm.ecore

cbd.mmifcbdmm.ecore H
S ssassnsde M- —
ps.ranplsmrn.al:nre COMMON osgi.mm//losgimm.ecore
MM-PS MM-CBD MM-0SGI [
M-PS —»»| M-CBD S TN YT So— »»| Code

ps.trafo.ps2cbdl//ps2cbd.ext
osgl.trafo.fromCbd//cbd2osgi.ext

volter prmmm e

37

T conlg et
o

]
omporents | Compowent |
e =
i
ServiceComponent | [Periodiccamponen |
i [-astayraas - e

kus Volter

R nannia _deployedinterceptors.
-
| 0.0
o1
parbrt
~subconfigurations Configuration
o ~configurations Eaatem
0. =
0.s -nsfances
~conngetors 0.4
Connector | Componentinstance | i-ances type
I To » 1 Contponent
[—
T e
1
o
_portinstiances
SimpleConnector | .sduce| Portinstance
1 —configParamv/alues |ConfigParameterValue
0. |-value : String
target
1

Interceptor

38

Low Level Software Domain Modeling

® As part of our OSGi based implementation, we use another
M2M transformation (and hence, another meta model).

® As far as the product line is concerned, that second model
transformation is an implementation detail of our
implementation technology.

® Other implementation technologies might choose to generate
code directly from the CBD models.

® Again, no concrete syntax is available for this level of
modeling.

©2005-7 Markus Vélter

OSGI Meta Model (OSGIMM)

System
-projectilame : String
-hundles
ot
Bundle
-dependsOr s o on
L |-roctPackage : String [-
01 | Symbolichame - String | "% teatures —

N
viceCs fodi
|SEr | odicCo o+ | ServiceRer
:I _dlelayinhs - int efs |-mincint

-z int

T -confrofgRet
1
¥ iy ControlledPeriodicComponent
| implePer|

7 Markus Vélter

39

CONTENTS

® PLE Concepts ® MDD-AO Implementation
® Intro to Case Study

Negative Variability
Testing

Enforcing Conventions
Product Line Evolution

® MDD-AO-PLE
® What is MDD
® What is AO
® What is MDD-AO-PLE
® More Terms and Concepts

® (Classical PLE : 'Ll'ht;e Va'rious (Meta-)Models
i ibraries
ITZ?JESEE:‘:IO” ® An Example House
e Compile time ® Orthogonal Variability
® Deployment/Configuration time : ;r(e)m’\jf%rr?atlon and Template AO
® Link time odeling
e Run time : Code Level Aspects
L]
L]
L]

® Summary

©2005-7 Markus Vélter

Library Components

® Library components are predefined building blocks to be used in
products. There are three “flavors”:

® Code-Only: the aspect of the PL that is covered by the library
component is not supported by generators,

® The production process for the product will simply
include/link/instantiate/deploy the component if it’'s required as part
of a product.

® Example: an optional SNMP agent running on a system node

® Model-Only: PLA contains generators that can completely generate
the component implementation from a model.

® |f the generator changes, the library component’s implementation is
automatically adapted (since it's regenerated).

® Example: A reusable business process component specified as a
component with an associated state machine

® Model/Code Mix: This is necessary if you can represent some
aspects of a component via a model, but cannot represent others.

volter prmmm e

40

There are two kinds of source code in the system.

CBD-level code is partly generated/partly hand-written.

® As the name implies, it does not depend on the concrete
implementation technology (such as OSGi)

® Base classes (and other skeleton artifacts) are generated, the
manually written code is integrated in well-defined ways

® This is the way, manually written business logic is integrated.

Implementation-level code is completely generated
® |t is specific to the concrete implementation technology

® |t wraps or uses the CBD-level code and adapts it to the
concrete implementation technology

The generation process is separated into two phases, one
for each kind of source code.

vo’ter ” SIEMENS ElallE SGHL S ©2005-7 Marku

The EconomyLib Library

The EconomyLib library contains pre-built components,
interfaces and data types that are needed for building Smart
Homes of the Economy variety.

Interfaces and data types are model-only, whereas
components are model/code mixed, because they contain
manually written code parts.

Libraries such as the EconomyLib are CBD-level code. There
is absolutely nothing in there that is specific to the concrete
implementation technology.

The library comes with a model file as well as a source code
directory.

Note that this library depends on another library that defines
basic primitive types.

vo’ter ” SIEMENS ElallE SGR ©2005-7 Markus Volte

41

Product Line Implementation: Variabiliy in Code and Models

e T L The LightSwitchCoordinator
B ook L Coordnair orchestrates lights and switches
4 Requred Part lights
(=1~ <~ Entity LightSwitchCoordstate - - - -
% et oneSwichispressed ® The LightSwitchDriver proxies
=< Service Component LightSwitchDriver - -
% e port defa a light switch
< Configuration Parameter toagledLights
+ Cotratn ettt ® The state knows whether the
[+ 4 Entity Light SwitchDriverState

switch is pressed or not

-4+ Service Component LightDriver
4 Provided Port default
-4 Configuration Parameter id

S 4 Entiy LightDriverstate ® The LightDriver proxies an
< Attribute burning -
L e actual light
=4 Interface ILightSwitch .
3 Gendion ressed ® |ts state has an ID and it
(=4 Interface ILightDriver

knows whether it is burning

4 Cperation burnon
4 Operation burncFf
< Operaliun isOn

4 Operation getld L ILightSWitCh |S USE‘d tO query a
=14 Struct LightSwitchStatus . . .
e messed switch whether it is pressed

4 Attribute toggledLiohts
4 Attribute id

-4 platformjresourcejsmarthome.chd.mmfsrc-gen ebdmm.core e | LightDri\/er can be used to
-] platformjrescLrcefsmarthome. common. mmjsre-gen{datamm.ecore)

-] platformejrescurcefsmarthome. common, mmjsre-genyoper ationsmm.ecore turn a light on or off

-] platformejrescurcefsmarthome. common. mmjsre-genyarapertiesm.ecore

-8 platformjresaurcefsmarthome. cbe. ib.sharedsretypes.ni

volter prmmm e

©2005-7 Markus Vélter

Product Li in Code and Models

Lib Library: Generating CBD-Level code

=

E g€ E ‘E Manually i
Input c X g E y =
6 2 £ N Written =
[w 3
o 1 2
: s
A 4 &
Output Base g
Classes o

A

A

rb M-Types
M- G
EconomyLib \

chd.generator//*.xpt

volter prmmm e

42

n Code and Models

. . e e - 4 Perindic Component LightSwitchCoordinator
® This is the package smarthome.eco..witchCoordinat 4 Requred Fort suitches
{4 Required Part lights
Component that public class LightSwitchCoordinator B4 Entity LightSwitchCoordState
switches ||ghts extends LightSwitchCoordinaton L4 attribute oneSwitchsPressed
H‘} Interface ILightSwitch
based on the status @override b ot
. - - £l 4 Interface ILightDriver
Of the SWltCheS pUDIIC void execute() { 4 Operation turnCn

Collection<LightSwitchStatus> st

= = to < Operation burmOff
switchesAll (). isPressed :

-+ Operation ison

® |t s a periodic for (LightSwitchStatus status : -4 Operation getld
P if (hasChanged(status.getld() & 4 Interface Iwindowactustar
component, hence string changedLights = staty -4 Operation open
H arselLightsToSwitch(changedl < Operation dose
it has only an . (changedl 4 anmrupiamanans
oo Attribute pressed
execute() 3 L4 attribute toggledLiohts
Operation A 3 S Aitribute id

private boolean hasChanged(String id, boolean pressed) {
F // is the light switch in another position than
[J
Note how it uses // last time around?

the switchesAll() }

operation to access private void parselLightsToSwitch(String lights) {
all the switches it is // find out which lights this switch affects
// and switch these lights
connected to. }
3

volter prmmm e

©2005-7 Markus Vélter

4 Service Component LightDriver

® This one represents a light. Provided Port defaul

< Configuration Parametsr id
=4 Entity LightDriverState

® |tis a service component, L3 horen uring
|t implements the El 4 Interface LightDriver
- . - 4 Operation turnon
operations provided by the 4 Cperation tmft
default port’s interface package smarthome.ecolib.comp 8‘;::;::;:&;
public class LightDriverimplementation
® You can also see how it extends LightDriverimplBase {
accesses configuration public String getldO {
parameters and itS return getConfigParamValueForld();
3

internal state
public boolean isOn() {

return state().getBurning(Q);
3

public void turnOff() {
state() -setBurning(false);
}e

public void turnOn() {
state() .setBurning(true);
3

©2005-7 Markus Vélter

® We use an M2M transformation to map from the application
domain to the software domain.

® Here are some examples of what that transformation

has to do:

® Lighting:
- For each light in a room, instantiate a light driver component
- For each light switch, instantiate a light switch component
- For each room with lights, instantiate a light controller, that

manages lights and the connected switches

® Windows:

- For each window, instantiate a window sensor component

® Note how the transformation only instantiates and connects
software components. The components themselves are pre-
built and are available in libraries.

volter prmmm e

©2005-7 Markus Vélter

CONTENTS

® PLE Concepts ® MDD-AO Implementation
® Intro to Case Study

Negative Variability
Testing

Enforcing Conventions
Product Line Evolution

® MDD-AO-PLE
® What is MDD
® What is AO
® What is MDD-AO-PLE
® More Terms and Concepts

® (Classical PLE : I_T)e Vgrious (Meta-)Models
; ibraries
ITF;EEUI’::STitr:‘;IOH ® An Example House
e Compile time ® Orthogonal Variability
® Deployment/Configuration time : ;rgn’\jf(;rr?atlon and Template AQ
® Link time odeling
e Run time : Code Level Aspects
L]
L]
L]

® Summary

44

Product Line Implementation: Variabiliy in Code and Models

Example House: The App Domain Model

EI‘} Building LargeHouse
Ea% cellar an level 0

Room cellarCorridar
E_I LightSwitch cellarLightSwitch for cellarLight
“Window cellarCorvidorWindow

i window Sensor
Bl ; Light: cellarLight switched by cellarLightSwitch

...... § Light Regulator
oom stockroom

W@ window Sensor

Light stackroomLight switched by stockroomLightSwitch and stockroormLightSwitchz
9 Light: Regulator

----- ,[]1 Door cellarDoor connects cellarCorridor and stockroom

® A house with only one level, and two rooms, connected by
doors.

® The rooms have windows as well as lights and light
switches.

volter prmmm e

©2005-7 Markus Vélter

in Code and Models

Output

Christas ps2chbd osgi
Input Haus.xmi mixin.xmi mixin.xmi

M-psZcbd
mixin

M-osgimixin

M-Christas
Haus

ps.paZcbdipsZebd.ext

[types | utilities [ib osgl ot
1 1 1
= - _
= | % £
_ 1] 2
Library g é =
e g
€
a
1

volter prmmm e

45

Product Line Implementation: Variabiliy in Code and Models

Example House: The Transformed CBD Model

° .
For each of the |Ight$ B 4 Systern LargeHouseSyskem

{:md switches We have =8 <+ Configuration LargeHouseBuildingConfiguration
instances of driver B < Configuration cellarFloorCanfiguration
components (the Bl 4 Component Instance cellarLight

component types 4 Component Instance stockroomLight

are taken from the 4 Component Instance cellarlightSwitch

Iibrary) < Component Instance stockroomLightSwitch

4 Component Instance stockroomLightSwitchz

< Component Instance cellarCarridorwindowsensor

- . 4 Component Instance srwindowSensar

switch COO_I"d Inator < Component Instance cellarLightSwitchCoordinator
component instance +]- 4 Querying Connector cellarlightSwitchCoordinator2switches
for each floor that has < Querying Connectar cellarLightSwitchCoordinator Zlights
light switches.

® We also have a light

® We use query based connectors to connect the coordinator with the
lights and the switches.

® The query dynamically finds all lights and switches for a given floor,
dynamically at runtime.

® We also have hierarchical configurations for the building and floors.

volter prmmm e

©2005-7 Markus Vélter

in Code and Models

Example House: The Tr

=)~ 4= System LargeHouseSystem

® Leaf configurations have been trans- e "
formed into bundles.

£
- 4+ Service ILightSwitch

4 Service Iwindowsensar

H- 4 Service IwindawSensorCheatInterface
+]- 4 Service Component cellarLight

H- 4 Service Component stackroomLight

£

3}

£

3}

¥

® Interfaces (from the Lib!) are now
Services in this model.

4+ Service Component cellarlightSwitch

< Service Camponent stockroomLightSwitch
4+ Service Component stockroomLightSwitch

< Service Camponent cellarCorridorindowSensar
4+ Service Component sriwindowSensar

® Component instances have become OSGI-
Ievel com ponents Of the approprlate type_ = 4 Simple Periodic Companent LightSwitchCoordinator

-4 Service Ref switches

® Those use ServiceRefs with queries to 4 é»'strﬁ;m}f:fh;'iHW"“E"‘”
find the respective provided services | v ier Hoor_cellr
. 4 Entity LightSwitchCoordState

at runtime.

® Note how the mixin model (2 csanznsm x N

=14 platform: fresourcejsmarthame. example. largeHouse sre fosgimizin. xmi

specifies the root packages B4 Chie Osgi M
[RR & nclle Spec FirstFloorFloorConfiguration
for the bundles to enable : 4 Bundls Spec graundFlaorFlosrConfiguration
neration. ; 4 Bundle Spec cellarFloorConfiguration
code generatio] platformn: fresourcesmarthome.osgi.trafo, FromChdjsrcfcbd2osgiMicin, ecore
Prnh\ems|Javadnc|Daclaratlnn‘Search|[nnsn\a‘?mgress f: Properties 52 G4
Propert: | Yalue
Mame "= firstFloorFloorConfiguration
Root Package "= smarthome bundles FirstConfiguration

volter prmmm e

Example House: Code Generation

Base Manually
Lihrary ---------

0SGI
Output Code

a
+ Build
Files

compile/build...

chd.generator/i”.xpt

osgl.gencrator”.xpt

©2005-7 Markus Vélter

Example House: Generated Code

® We generate the OSGi bundle activators which
® |nstantiate the components deployed in that bundle
® Register the services of those components

® Register generated service trackers for each of the component’s
service refs ... using an LDAP expression to dynamically find the
provided services

® \We generate a manifest file
® including the correct package exports and imports

® \We generate an ant build file to assemble the bundle JARs
® JAR will contain OSGl-level code as well as the CBD level code

® The used libraries know their Eclipse project so we know from
where we need to grab the implementation source code

® We generate a batch file that runs the OSGi runtime
(Knopflerfish) with the correct configuration (xargs-file)

volter prmmm e

47

Product Line Implementation: Variabiliy in Code and Models

Example House: Running the System (UlI)

® A console allows the inspection and change of component states.

Smaritome State ispector
States | Compenoris EOMPONENT- I

Rafresh States

oo B
colaMoortonfraton: sodroontie.
Ut ate
I

® |t also shows the actual connections of service refs

Refresh Components

[£] SmartHome State Inspector #3777 i ‘g A
[States | Components erviceRef ights
cellarFloorConfiguration::stockroomlighty
o [LightSwitchDriverimplementation [~ cellarFioorConfiguration;scellarLight
- serviceRef syitches
L ThemmometerDiverimplementstion | | cellarFloorConfiguration;scellarLightSwitch)
& [WindowSensorDriverlmplementatary celarFloorConfiguration::stockroomlightswitch
[i ! cellarFlaorCanfiguration: stockroomLightswitche)
[LightSwitchCaordinator
S =
= Ed
« I | vl

volter prmmm e

CONTENTS
® PLE Concepts

® Classical PLE
Implementation
® Source time
Compile time
Deployment/Configuration time
Link time
Run time

® MDD-AO-PLE

What is MDD

What is AO

What is MDD-AO-PLE
More Terms and Concepts

5-7 Markus Volter

® MDD-AO Implementation
Intro to Case Study

The Various (Meta-)Models
Libraries

An Example House
Orthogonal Variability
Transformation and Template AO
AO Modeling

Code Level Aspects

Negative Variability

Testing

Enforcing Conventions

Product Line Evolution

® Summary

©2005-7 Markus Vélter

48

Orthogonal Variability Management

® Configuration models are “instances” of Feature Models.
® There is no variability left in them
® They are basically a list of selected features
® (there are also partial configurations and properties...)

® Feature Model ® Configuration Model

Display

Humidity

=] (=]

® From the perspective of a backend (i.e. generator, compiler, etc)
only the configuration model is relevant!

® ... as long as we expect that the configuration is valid wrt. to the
feature model and we have implemented the generator correctly.

Vo’ter ” SIEMENS ElallE =G = ©2005-7 Markus Vélter

Orthogonal Variability Management |1

® 0AW comes with a feature that allows domain architecture artifacts
to depend on whether certain features are selected.

® An API is available that allows to plug in various feature
modeling tools
® In the simplest case, that APl can be bound to a simple text file
that contains a list of selected features.

® Another binding is available to Pure Systems’ pure::variants tool

® That configuration model controls various aspects of the model
transformation and code generation process.
® |t is read at the beginning of the workflow and is available globally.

® Currently, we use it for the

following optional features: & 1 smerthomeconfFeatures
P . E|? environmentalContral
Tracing 4 srCordtioning
® Reflective Data Structures T e
® Viewer (Ul) ol -
® Automatic Windows 't eeptastchues

Vo’ter.- d SIEMENS ElaklE

49

Product Line Implementation: Variabiliy in Code and Models

Orthogonal Variability Management 111

smartharne, canfig.xFr

® The configuration is done via

<& v 1 jsmarthomeconfigFeatures |

- i i STl talControl

a pure:variants variant G T i

mOdeI (ps:vdm) i B ﬁ_@ temphanagement
j Lo 1 automaticwindows
= F debug

. .) s
® pure::variants supports the interactive] e S
selection of features, while evaluating 117 tradng

constraints and feature relationships
to make sure only valid variants are T — C—
dEflned. ol E smarthomeconfigFeatures

=] F enwironmentalControl
-----] airConditioning

® If a constraint is violated, the model | ST
. . . Foed] aukomaticindows
is either automatically corrected, or v 7t

T b ¢ viewer

an error iS ShOWh - ----- (17 reflectiveDataStructures

(] 7 tracing

@ Feature Models | &) Family Mude\s|
CTTMOD, o002 o] oo roes e

1 error, 0 warnings, 0 infos (Filter matched 1 of 114 items)
Description =
I E= Ervors (1 item)

3 ‘viewer' require(s) reflectiveDataStructures’

-7 Markus Volter

CONTENTS

® PLE Concepts ® MDD-AO Implementation
Intro to Case Study

The Various (Meta-)Models
Libraries

An Example House

Orthogonal Variability

Transformation and Template
AO

® Classical PLE
Implementation
® Source time
Compile time
Deployment/Configuration time

Link t.|me ® AO Modeling
Run time ® Code Level Aspects
® Negative Variability
® MDD-AO-PLE ® Testing

® What is MDD ® Enforcing Conventions
® What is AO ® Product Line Evolution
® What is MDD-AO-PLE
® More Terms and Concepts ® Summary

©2005-7 Markus Vélter

Optional Feature: Logging

® Tracing is simply about writing a stdout log of the methods
called on Service Components as the system runs.

® The runtime infrastructure (OSGlI-level) supports the use of
interceptors for any component.

® Interceptors are available in libraries (just as the light switch
components and their interface and the primitive types)

® If the model configures interceptors for a given component,
the generated activator actually instantiates them, instantiates a
proxy for each component and adds the interceptors to that

proxy.

® In short: if the feature debug.tracing is selected, the
transformation from PS to CBD level must make sure that the
appropriate interceptor is configured for the components.

vo,ter ” SIEMENS =t -101 - ©2005-7

Markus Volter

transformation transformation aspect
D= {_...aound.. 3
workflow

transform >

4

transform-
aspect

.......................

configuration model

Markus Volter

51

Product Line Implementation: Variabiliy in Code and Models

Optional Feature: Logging, Implementation

® The implementation uses AO for the model transformation
language. Here is the aspect:

import psmm;
import cbdmm;

extension ps2chd;

extension org::openarchitectureware::util::stdlib::io;
extension org::openarchitectureware::util::stdlib::naming;

around ps2cbd: :transformPs2Cbd(Building building):
let s = ctx.proceed(): (
building.createBuildingConfiguration()-
deployedInterceptors.addAl I (
{ utilitiesLib().interceptors.findByName(*Tracinglnterceptor') }
) >
s

)

® We advice ps2cbd::transformPs2Cbd
® \We then execute the original

il 4 Componant [nstand ocniligheinich

definition (ctx.proceed()) 1 4 Comporan e sodrocnL e
® Then we add, to the top level config, Pritere oedesen| S e ropem 2 Py 5 e
the Tracing Interceptor o i S e
— Parent
Vofter ” SIEMENS ElallE ©2005-7 Markus Volter

Product Line Implementation: Variabiliy in Code and Models

Optional Feature: Logging, Implementation 11

® Remember we only want to have these interceptors in the system
iff the feature debug.tracing is selected in the global
configuration model.

® That dependency is expressed in the workflow:

<component id="xtendComponent.ps2chd"” class="oaw.xtend.XtendComponent'>

</component>

<feature exists="debug.tracing">
<component adviceTarget="xtendComponent.ps2cbd"” class="oaw.xtend.XtendAdvice'>

<!-- references tracing.ext, file that contains aspect on prev. slide -->
<extensionAdvices value="tracing"/>
</component>
</feature>

® The stuff inside the <feature>...</feature> tag is only executed if
the respective feature is selected in the global configuration

® The XtendAdvice component type is an aspect component for
the Xtend component used for transforming models.

vo,ter ” SIEMENS ElallE ©2005-7 Markus Volter

52

Product Line Implementation: Variabiliy in Code and Models

Optional Feature: Logging, Implementation 111

<component id="xtendComponent.ps2chd"” class="oaw.xtend.XtendComponent'>
</component>

<feature exists="debug.tracing">
<component adviceTarget="xtendComponent.ps2cbd"” class="oaw.xtend.XtendAdvice'>

<!-- references tracing.ext, file that contains aspect on prev. slide -->
<extensionAdvices value="tracing'/>
</component>
</feature>

® An Advice component basically takes the sub-elements and adds
them to the component refenced by the adviceTarget attribute.

® |In the case here, that target is the one that runs the PS to CBD
M2M transformation

® Using this mechanism, the configuration of aspect code (the
<extensionAdvices> element is non-invasive.

©2005-7 Markus Vélter

® The viewer Ul shown before is not "_ =
generated. It is a generic piece of
code that reflects on the data
structures that it is supposed to render. = e

® To make this work, the following two additions have to be made to
the generated system:

® The component state data structures must feature a generated
reflection layer

® Whenever a component is instantiated in the activator, its state
has to be registered with the viewer.

® These things are implemented using generator aspects,
depending on the selection of the debug.viewer feature.

©2005-7 Markus Vélter

53

Product Line Implementation: Variabiliy in Code and Models

Optional Feature: Component State Viewer [Thumbnail]

template file template aspect

workflow

generate (0sgi) >

t configuration model

generator-
aspect

generate (chd)

Jr— Teeeeeee
generator-
aspect

template file template aspect

extend file extend aspect

A

X(): ...

volter prmmm e

Markus Volter

Product Line Implementation: Variabiliy in Code and Models

Optional Feature: State Viewer, Implementation

® Here are the respective feature-dependent aspects in the
workflow

® This one happens on CBD level because the data implementations
are independent of the runtime platform

<feature exists="debug.viewer":>
<component adviceTarget="generator.chdapi™ class="oaw.xpand:.Generatoridvice™:
<advices value="data::api::reflect::reflectImpl™/>
<extensionddvices wvalue="data::api::reflect::reflect”/ >
</ component>
</ feature>

® The second one influences the generation of the OSGI
activator, since that one has to publish the component states
once they are instantiated.

<feature exists="debug.viewer >
<oomponent adviceTarget="generator.osgistuff" class="oaw.xpand.Generatorbdvice™:
<extensionddvices walue="osgi::impl::viewver::viewerExtidvices"/>
<advices value="osgi::impl: :viewer: :vieweriptidvices"/ />
</ component>
</ feature>

volter prmmm e

©2005-7 Markus Vélter

Product Line Implementat: n Code and Models

Optional Feature: State Viewer, Implementation 11

® reflectlmpl.xpt adds around advice to a number of definitions in
the code generation templates:

® some are pure hooks, i.e. they are empty!

«AROUND data::api::data::body FOR ComplexType»
«targetDef.proceed()»
«EXPAND reflectionlmplementation»
«ENDAROUND>»

«AROUND data::api::data::imports FOR ComplexType»
«targetDef.proceed()»
import smarthome.common.platform._MemberMeta;
import smarthome.common.platform.ComplexTypeMeta;
«ENDAROUND>»

«DEFINE typeClass FOR ComplexType»
«DEFINE reflectionlmplementation FOR Comple «FILE fileName()»

private transient ComplexTypeMeta _ meta package «implClassPackage()»;
public ComplexTypeMeta _ metaObject() { «EXPAND imports»
- public class .. {
3 «EXPAND body»
public void _ metaSet(MemberMeta member, T

«ENDFILE»
«ENDDEF INE»

3
public Object _ metaGet(MemberMeta membe %
«DEFINE imports FOR ComplexType»«ENDDEFINE»

H
«ENDDEF INE» «DEFINE body FOR ComplexType»

«ENDDEF INE»

volter prmmm e

©2005-7 Markus Vélter

Product Line Implementation: Variabiliy in Code and Models

Implementation

® reflect.ext adds a newly implemented interface to an existing
extension function

around data::api::dataapiutils::implementedinterfaces(ComplexType this):
((Collection)ctx.proceed()) .add('smarthome.common.platform.ReflectiveComplexType™);

® That original function is called from a template in order to find
out which additional interfaces a data bean class needs to
implement:

public class «implClassName()»
«IF implementedinterfaces().size > O»implements «ENDIF»
«FOREACH implementedInterfaces() AS e SEPARATOR ', "»«e»«ENDFOREACH» {
«EXPAND body»
3

® The same mechanisms are used to “advice” the templates that
generate the OSGi level code for the activator.

volter prmmm e

©2005-7 Markus Vélter

55

CONTENTS
® PLE Concepts

® Classical PLE
Implementation
® Source time
Compile time
Deployment/Configuration time
Link time
Run time

® MDD-AO-PLE

What is MDD

What is AO

What is MDD-AO-PLE
More Terms and Concepts

building model

® MDD-AO Implementation
Intro to Case Study

The Various (Meta-)Models
Libraries

An Example House

Orthogonal Variability
Transformation and Template AO
AO Modeling

Code Level Aspects

Negative Variability

Testing

Enforcing Conventions

Product Line Evolution

® Summary

©2005-7 Markus Vélter

5o |

configuration model

woven building model

transform

~ transform-
aspect

\

©2005-7 Markus Vélter

56

Optional Feature: Automatic Windows

® Automatic windows are an optional feature on the PS level.
® If we have at least one thermometer in a room,

® We can automatically open the windows if the temperatures are
above 25°C average, and close them if we are below 20°C.

® \We also need windows actuators for that

® We want this feature, if the global configuration model has the
environmentalControl.tempManagement.automaticWindows
feature selected.

® To implement it,
® We weave the necessary elements into the PS model

® Advice the PS to CBD transformation to consider these
additional elements

® ... and then (for debugging purposes) write the modified model
to an XMl file.

VOIter 4 leMENs =4 ©2005-7 Markus Vélter

Product Line Implementation: Variabiliy in Code and Models

Optional Feature: Automatic Windows, Implementation

® Here is the aspect for the PS model:

| B4 Room %rooms

i< Thermometer 7thermoliame
B4 Window %ewindows
L 4 Window Actuator
] platform: fresource smarthorme. ps.mmsec-genfpsmm, score

® Here are the pointcut expressions used in the aspect model:

rooms(Building this):
floors.rooms.select(e|le.windows.size > 0) ;

windows(Building this):
rooms() -windows;

thermoName(Thermometer this):
((Room)eContainer) .name. toFirstLower()+"Thermometer";

® rooms returns all the rooms that have windows

windows returns the windows in these rooms

® thermoName calculates a sensible name for the thermo device

vo,ter ” SIEMENS ElallE ©2005-7 Markus Volter

57

- g

® Here is the result of the example

< Building LargeHouse

house after weaving. ol Mk

® The rooms now have a thermometer I Gl o

with a suitable name - wndonscllrComortidon
® The windows have an actuator g o st
4 Light Regulator
® The transformation must now be e e ovensacomL i

enhanced to transform those new R
devices into instances of software B & indon sindon
components. 4 Window Actuator

B4 Light stackroomLight
b Light Regulator

® Also we need some kind of driver ~4 Door celerDanr
R) (-] platform: fresource fsmarthame.ps mm/src-genjpsmm ecore
component that periodically checks
the temperature of all thermometers,
calculates the average, and then opens or closes the windows.

® This whole additional transformation is located in a separate
aspect transformation file and is “adviced” into the original
transformation.

volter prmmm e

©2005-7 Markus Vélter

® Here is the workflow fragment that configures all of this:

<feature exists="environmentalControl.tempManagement.automaticWindows">

<!-- the stuff that enhances the M2M transformation -->
<component adviceTarget="xtendComponent.ps2chd"
class=""org.openarchitectureware.xtend.XtendAdvice'>
<extensionAdvice value="windowAutomation::extensionAdvices'/>
</component>

<I-- this launches the model weaver that adds the aspect to the PS model -->
<cartridge file="org/openarchitectureware/util/xweave/wf-weave-expr"
baseModelSlot="psmodel""
aspectFile="platform:/resource/smarthome.ps. lib/src/windowAutomation/aspect.xmi"
expressionFile="windowAutomation: :expressions'/>

<I-- and here we write the model for debugging purposes -->
<component class="org.eclipse.mwe.emf.Writer'>
<useSingleGlobalResourceSet value="true"/>
<uri value="${dumpFileUriPrefix}/psWithWindowAutomation._.xmi* />
<cloneSlotContents value="true"/>
<modelSlot value="psmodel* />
</component>

</feature>

©2005-7 Markus Vélter

volter prmmm e

Product Line Implementation: Variabiliy in Code and Models

Optional Feature: Burglar Alarm

® |n the configuration feature model, you can m,tmmfgm,es
select whether your house should feature a : fZ et contol
burglar alarm system; and if so, which e-in? i
kinds of alarm devices it should have. ﬂi
] 3 light

® There is a library of pre-built components
for these devices in the securehome library
project

® The ps2cbd transformation
® |nstantiates a control panel component (turn on/off)
® |Instantiates the burglar alarm detection agent
® ... connects those two ...
L J

And then instantiates an instance of each of the alarm devices
selected in the feature model

® .. and connects those to the agen.

vo,ter ” SIEMENS ElallE Markus Volter

Optional Feature: Burglar Alarm I1

transformation

® Thumbnail: configuration model

—
® Here is (part of) the code:

create System transformPs2Cbd(Building building):

hasFeature('burglarAlarm'™) ? (handleBurglarAlarm() -> this) : this;

handleBurglarAlarm(System this):
let conf = createBurglarConfig(Q: (
configurations.add(conf) ->

conf._connectors.add(connectSimToPanel(createSimulatorinstance(),
createControlPanelInstance())) ->
hasFeature("'siren”) ? conf.addAlarmDevice('AlarmSiren™) : null ->
hasFeature(“bell™) ? conf.addAlarmDevice('AlarmBell') : null ->
hasFeature("light") ? conf.addAlarmDevice('AlarmLight™) : null

® Note how we query the feature model from within the
transformation instead of using aspects to contribute the additional
behaviour to the transformation.

vo,ter ” SIEMENS ElallE ©2005-7 Markus Volter

59

Optional Feature: Burglar Alarm 111

® |t is also possible to access attributes of features (if the
feature modeling tool supports attributes).

® Here we set the volume level of the siren:

handleBurglarAlarm(System this):

isFeatureSelected(“siren”) ? (

) : null ->
);
private create ConfigParameterValue

setName(“'level™) ->

let siren = conf.addAlarmDevice("AlarmSiren’):
siren.configParamValues.add(siren.createConfigParamForLevel())

createConfigParamForLevel (Componentlnstance instance): [£) smarthame.config fm £3

=] E smarthomeconfigFeatures

volter prmmm e

setValue((String)getFeatureAttributevalue("siren”, "level”)); ¥ environmentaiControl
-7 debughndTest
-7 security
® The feature model needs to have o B
the level attribute, of course. =

R light
7 lightSimulation
~# authentication
7 dimmablatights

1 deploymenk

©2005-7 Marku

s Volter

CONTENTS
® PLE Concepts

® Classical PLE
Implementation
® Source time
Compile time
Deployment/Configuration time
Link time
Run time

® MDD-AO-PLE

What is MDD

What is AO

What is MDD-AO-PLE
More Terms and Concepts

® MDD-AO Implementation

Intro to Case Study

The Various (Meta-)Models
Libraries

An Example House
Orthogonal Variability
Transformation and Template AO
AO Modeling

Code Level Aspects
Negative Variability
Testing

Enforcing Conventions
Product Line Evolution

® Summary

©2005-7 Marku

s Volter

60

® Sometimes the simplest way to implement variability is to aspects
on code level (AOP)

® Since we’re using Java as the implementation language, we’ll use
AspectJ as the implementation language for code level aspects

® The following challenges must be addressed:
@ A certain aspect shall only be woven iff a certain feature is
selected in the global configuration model
® |t might be necessary to define (in the models!) to which
joinpoints an aspect should be woven

® We assume that aspect functionality is hand-written, they are
available in libraries. We distinguish
® Complete aspects: advice and pointcut handwritten, inclusion is
optional based on feature configuration
® Incomplete aspects: advice is handwritten, pointcut is generated
based on information in the models

volter prmmm e

©2005-7 Markus Vélter

Complete Aspects [Thumbnail]

configuration model

system model

S -y >

<<manual>>
... abstract ...

generate >

AspectJ aspect

| <<generated>>

AspectJ aspect

volter prmmm e

Markus Volter

61

Complete Aspects

® Here is a sample aspect (trivialized authentication):

public abstract aspect AuthenticationAspect {
pointcut pc(): call (public * smarthome.ecolib.components..*(..));

before() : pcQ {
// do some fancy authentication here
}

3

® The aspect contains all the relevant code (hence the pointcut is
extremely generic) and is completely handwritten

® The aspect is abstract to make sure it is not woven by default!

® |f it should be woven (see later for how this is determined) a
concrete sub-aspect is automatically generated

® Which is then grabbed by the weaver and automatically woven

public aspect AuthenticationAspectimpl extends AuthenticationAspect {

3

volter prmmm e

Complete Aspects 11

the library model
® provides awareness of the generated
build file, etc.
® Allows the use of model-level negative
variability (see below)

| Properties £ 12 th\ems} leh Dedaratmﬂ 3

® Using a naming convention (enforced and checked by the recipe
framework) the manually written code is associated with the model

7 Markus Vélter

©2005-7 Markus Vélter

® As with interceptors, components and B by eanontd
) “ Test Specification lightTester
other code-related architectural 4 Test Sperfication DoodeTester
- i Complete Code Aspect AuthenticationAspect
elements , aspects are represented n {4 Component Level Aspect Windowst atusPrinterfspect

62

configuration model

model
pointcut

— Incomplete
AspectBase H

Java Class H

> before...
< generate >

Java Class

<<generated>>
... pointcut ...

AspectJ aspect

Vofter 4 nrw;:'\l:' o6 ©2005-7 Markus Vélter

Incomplete Aspects

® |Incomplete aspects need to define their pointcut in the model.

® Hence we need a joinpoint model for the CBD meta model:
® Currently we support operation executions on service
components as joinpoints (same location as the interceptors)
® The granularity for selection is either a complete component, or
components’ provided ports.

MbdeiRoot

. Cod: t
-projectiame : String -aspects, e Aspect

® Here is the meta model of BT e PR —
the joinpoint model: 1

® Note how easy it is to define ‘ et
a joinpoint model if you use ‘ .

your own domain-specific ﬁ—‘

meta model [| [portt |
[[
L L

-cofponent -pofts
1.4 1.4

Component ProvidedPort

7 Markus Vélter

63

Product Line Implementation: Variabiliy in Code and Models

Incomplete Aspects 11

® Here is the model part CER BT e
of a component-level
incomplete aspect.

® |t specifies the com-
ponents to whose

< Queueing Channel WindowStatusChannel
< Test Specification ightTester
< Test Specification DoadleTester

[+ _Fntity WindowSensorStatus.
= Praperties £1 _[2 Problems | [, Dedavauuﬂ 7 Seartﬂ =] cﬂnsu\e]C ngresﬂ 25 Plugrin Dependenmes] {

methods it wants to Propert [vaue
. Component '= Service Companent WindowSensorDriver, Service Component WindowdctuatorDriver
advice hame '= WindowStatusPrinteraspect

® The advice is manually written; the implementation class has to
extend a predefined base class, and it needs to be abstract
(conventions checked by recipes)

® Developers implement a before or after method

public abstract class WindowStatusPrinterAspect extends IncompleteCodeAspectBase {
protected void beforeMethodExecution(JoinPoint jp) {
// do sensible stuff here
3
3

volter prmmm e

-7 Markus Volter

Incomplete Aspects 111

® Based on the pointcut information in the model, the generator
generates a sub-aspect that contains a suitable pointcut — this
aspect is then woven.

public aspect WindowStatusPrinterAspectimpl extends WindowStatusPrinterAspect {
pointcut pcWindowSensorDriver(smarth...WindowSensorDriverlImplementation tgt): (
call (public * smartho...IWindowSensor.*(..)) |I|
call (public * sma..IWindowSensorCheatlnterface.*(..))) && target(tgt);

before(smarthome.ec...WindowSensorDriverimplementation tgt) :
pcWindowSensorDriver(tgt) {
this._beforeMethodExecution(thisJoinPoint);
3

after(sm...WindowSensorDriverimplementation tgt) :
pcWindowSensorDriver(tgt) {
this._afterMethodExecution(thisJoinPoint);
3

// more stuff..

® Note how the pointcut is restricted to the operations of the
interfaces of the provided port, as implemented by the
respective component implementation class.

volter prmmm e

©2005-7 Markus Vélter

CONTENTS
® PLE Concepts

® Classical PLE
Implementation

Source time

Compile time
Deployment/Configuration time
Link time

Run time

® MDD-AO-PLE

What is MDD

What is AO

What is MDD-AO-PLE
More Terms and Concepts

Negative Variability

volter prmmm e

® MDD-AO Implementation

Intro to Case Study

The Various (Meta-)Models
Libraries

An Example House
Orthogonal Variability
Transformation and Template AO
AO Modeling

Code Level Aspects
Negative Variability
Testing

Enforcing Conventions
Product Line Evolution

® Summary

©2005-7 Markus Vélter

® |In negative variability, elements of a structural model are
associated with features in a configuration model. If that
feature is not selected, the respective elements of the structural
models are removed.

® The oAW XVar tool does that

® The dependencies between the structural model and the
configuration model are externalized into a dependency
model.

® This makes sure the meta model of the structural model need not

be changed in order to make it “configurable”

Dependency
Model
Structural Model A
O C A)
O o -

----- --»| feature,
""""" feature;

Configuration Model

feature,

©2005-7 Markus Vélter

65

Product Line Implementat: i n Code and Models

Negative Variability for Aspects

® We use negative variability to remove the aspect definitions
(see previous topic) from the library model if a specific feature is
not selected.

® Since the aspect model elements are removed from the model, no
aspect-subclasses are generated, and hence, no aspect is

woven.
® Here is the dependency & dependencytlodel i 23
=4 platform: jresourcejsmarthome. cbd. lib.economyhome/src/dependencyMadel. xmi
mOde| : ‘ E-4 Dependency Model
> Dependency authentication
hd StrUCtu I’a| Elements are b g Dependency windowStatusPrinter

platfarm: fresourcejorg. openarchitecturaware. Ut covarfsrejFesturedependency. ecare
resourcefsmarthome. chd. b, economyhome/src/economyLib, xmi
resource/smarthame.cbd. mmsrc-gen/cbdmm. ecare.

resaurce smarthome. common. mmfsre-genfdatamm . ecore
resaurce/smarthame. common. mmjsrc-gen/oper akionsmm, ecore

platform:

referenced directly,
#] platform:

© Features are referenced #] platfarm:
by name 18] platform:

] Properties &3 [t Prob\ems] ik Declarat\on] ,;" Searcﬂ El Conso\ew @ Prugress] %h, Plt

= inter
= Component Level Aspect WindowStatusPrinkerhspect

Vé’ter 4 b | = 9§ ©2005-7 Markus Vélter

Negative Variability for Aspects 11

® A cartridge call to the XVar tool in the API-level code generator
workflow configures the structural model.

<workflow shstract="trus">

<readConfig uri="i{globalconfiguracionModel} "/ >

<read
uri="platform:/resource/smwarthome.chd. lib. economyhome/ sre/economyLib. xmi™
model3loc="ecomodel"/ >

<catridge file="org/openarchitectureware/util/xvar/wf-xvar.oaw"
dependencyFileUri="platform:/resource/swarthome . chd, likh, economyhome// sre/ dependencyMode L, xmi™
baseModelslot="ecomodel "/ >

<feature exists="dumpCEDAfteriVar™:>
<oloneindiirite wri="temp-models/chdifteriVar. xmi™

model3loc="ecomodel” />
</ feature>

<!== more... --x

</ worksE lows

©2005-7 Markus Vélter

66

Customizing Code

® Remember that our libraries contain a mixture of models
and code — the implementation (“business logic”) is
implemented manually in Java.

® Hence, if you want to define variants of library components,
it is not enough to vary the models (and with it the
generated code). You also need to vary manually written
code.

® Consider making the lights dimmable:
® The interface ILightDriver needs an operation setLightLevel()

® The state of the light driver component needs an additional
attribute to keep track of the light level

® And the implementation code needs to change — it needs to
implement the optional setLightLevel() operation.

® The variability in the models is handled as explained before.

VO’ter y leMENs = AZR = ©2005-7 Markus Vélter

Customizing Code 11

® Variable code sections can be marked up using special
syntax:

public class LightDriverimplementation extends LightDriverimplBase {

@0verride
protected String getldinternal() {
return getConfigParamValueForld();

b

//# dimmableLights

@0verride

protected int setLightlLevellnternal(int level) {
state() .setEffectivelLightLevel (level);
return level;

3
//~# dimmableLights

3

® This piece of code is in a .javav file
® Hence it is not compiled
® |t is customized into a .java file based on the configuration

vo’ter ” SIEMENS ElallE Sy ©2005-7 Markus Volter

67

Customizing Code 111

volter prmmm e

® Here is the workflow component that handles the
customization.

<workflow abstract="trus":>

<oatridge file="org/openarchitecturevare/util/wvar/file/wi-xvarfile.oav™

sourcePath="platform: /resource/smarthome.chd. lih. economyhome/ sre”

sourceExt="jgwav"

genPath="platform:/resources smarthome . chd. libh . economyhomes sro—gen™

genExc="java"
useConmments="false"/>

</ workflows

® The component
® |ooks for sourceExt-files in the sourcePath directory
® customizes them,
® And writes the result to genExt-files in the genPath

directory.

CONTENTS
® PLE Concepts

® Classical PLE
Implementation

Source time

Compile time
Deployment/Configuration time
Link time

Run time

® MDD-AO-PLE

What is MDD

What is AO

What is MDD-AO-PLE
More Terms and Concepts

©2005-7 Markus Vélter

® MDD-AO Implementation

Intro to Case Study

The Various (Meta-)Models
Libraries

An Example House
Orthogonal Variability
Transformation and Template AO
AO Modeling

Code Level Aspects
Negative Variability
Testing

Enforcing Conventions
Product Line Evolution

® Summary

©2005-7 Markus Vélter

68

Testing in Product Lines

® In PLE, testing is important, just as in “normal” application
development.

® We distinguish between
® testing the domain architecture (an activity in domain
engineering)
® and testing products (an activity in application engineering)

® |n testing products, there is an additional distinction:
® Testing a specific product with tests specific to that product

® Testing a set of features in a product based with tests specific to
features of to combinations of features

® |deally, the domain architecture should support testing

® Tests in that sense are features that depend on other (“real”)
features

® they are included in a product’s test suite if the features they test
are included in the product

volter prmmm e

©2005-7 Markus Vélter

Testing in SmartHome

® Testing is an activity on the CBD level
® You cannot test on the level of the problem space
® And OSGI-level would be too technology-specific

® Testcode is currently written manually —
wrapped as components, to be deployable
on the target environment.

ServiceComponent

® Components that contain tests are actually
TestComponents — the metamodel has been
extended

TestComponent

® A TestComponent has to provide exactly one port that provides
the I1SystemTest interface (which has a runTests() method)

® A test runner is deployed into the system if tests should be
executed (configuration model!)

® The test runner finds all ports that provide I1SystemTest and calls
their runTest() method

volter prmmm e

©2005-7 Markus Vélte

Product Line Implementation: Variabiliy in Code and Models

Product Specific Tests

[4 System LargeHouseSystem

® |f g certain feature is selected in the B4+ Test Component TestAllComponentForLargeHouse

. R < Provided Part test
configuration model, then a model-2- 4 Required Port stockroomLightSwitch_deFault
. R -4 Required Port InstanceTestForSpecLightTester_test
model transformation automatically 4 Requirad Port colrCorridortindonsenscr_defaul
- - . -4 Required Port cellarCorridorWindowSensor_cheatPort
bu | IdS th e fOI IOWI n g - -+ < Required Part cellarLightSwitch_default
4 Required Port burglarDetectionAgentSingleton_default
® A TestComponent that has a 4 Required Port instanceAlemsiren_defauk
i H < Required Port ThermometerDriverd_default
requi red pOI’t for each prOVIded of -4 Required Port cellarCorridorWindowiAckuator_default
each instance of each component 4 Required Port ThermomsterDriver]_defauit
. -4 Required Port burglarDetectionAgentContralPane/Singleton_default
n the System < Required Port InstanceTestForSpecDoodleTester_test
. R N - 4 Reguired Port sriwindowSensor_default
L4 A Conflgurat|on and a Slng|et0n < Required Port stwindowSensar_cheatPort
A A - 4 Required Port cellarLioht_default
|nStanCe Of thls Component‘ < Required Port instanceslarmLight _defaul:
-4 Required Port stockroomLightSwitchz_default
@ P . < Required Port srwindawictuatar_default
® Based on the “rest” of the toolchain, 4 Required Port instancelarmBell_dcFault
. : 4 Required Port stockroomLigh _default
the component is build, packaged, e oA

activated ...

vo,ter " SIEMENS =t

©2005-7 Markus Vélter

Product Li i i in Code and Models

Product Specific Tests 11

® The developer implements the test inside that component
using the well-known CBD-level implementation idioms.

public class TestAllComponentForLargeHouselmplementation
extends TestAllComponentForLargeHouselmplBase {

@Override
protected void runTestinternal() {
if (cellarLight_defaultPort() != null) {
cellarLight_defaultPort().turnOn();
assertTrue(cellarLight_defaultPort().isoOn(),
"switching on the light did not work');
} else {
fail("cellarLight_defaultPort not connected!");
}
3

@0Override
protected String getTestDescriptioninternal() {
return "testing complete system (TestAllComponent)';

b

volter prmmm e

Product Line Implementation: Variabiliy in Code and Models

Feature-Dependent Tests

® A feature-dependent test is only included in the system if the
features it depends on are instantiated in the system.

® Specifically, tests are Wbdeinoot
included if the set of B s
components it tests
are included in the sesspeciicaions
system ﬁm o [etanceserector | \ [FerieCompanen)

— wseectors | —————— _compenentType]

® TestSpecifications
are used to describe such e
tests and their depedencies. E

® The API level generator builds a TestComponent from the
TestSpecification that has required ports to the provided ports of
the respective components
® The developer implements the test manually using the well-known
CBD-Level idioms

volter prmmm e

Markus Volter

Feature-Dependent Tests |1

configvcm | B economyLbuari £3

® The test specification shown here & Intetacs IDovde
wants to test LightDrivers and I G

- - o e ol ghts
LightSwitches. Lt Alelectr sniches
-4 Test Specification DoodleTester
& Al Selector wd
<+ Complete Code Aspect AuthenticationAspect
4 Component Level Aspect WindowStatusPrinteraspect
public class TestForSpecLightTesterlImplementation s Dort | evelhspect ThenmoDdyetlienert.
extends TestForSpecLightTesterImplBase { [Froperties 23 [£: problems| (€ peckration| " search| B console| &
Propert; | valus

Coniponent Type '= Service Component LightDriver
Name i= lights

@0verride
protected String getTestDescriptioninternal() {
return "testing functionality of lights and light switches";

@0verride
protected void runTestinternal() {
for (int i = 0; i < rpForLightDriverDefaultPortCount(); i++) {
ILightDriver d = rpForLightDriverDefaultPort(i);
d.turnOnQ);
assertTrue(d.isOn(), "light "+d.getlnstancelnfo()+
' is not turned on even after it has been turned on™);
d.turnOffQ);
assertTrue(!d.isOn(), "light "+d.getlnstancelnfo(+
' is not turned off even after it has been turned off');

}
}

volter prmmm e

©2005-7 Markus Vélter

CONTENTS
® PLE Concepts ® MDD-AO Implementation

® Intro to Case Study
® (Classical PLE : I_T)e Vgrious (Meta-)Models
; ibraries
ITF;EEUI’::STitr:‘;IOH ® An Example House
e Compile time ® Orthogonal Variability
® Deployment/Configuration time : ;rgn’\jf(;rr?atlon and Template AO
® Link time odeling
e Run time ® Code Level Aspects
® Negative Variability
- ® Testing
MDD'AQ'PLE ® Enforcing Conventions
What is MDD ® Product Line Evolution
What is AO

What is MDD-AO-PLE
More Terms and Concepts

® Summary

©2005-7 Markus Vélter

The use of Conventions

® Since we do not want to modify generated code, all kinds of
(naming) conventions are used:

® Components: Base class is generated, developers have to extend
this base class

® Code Aspects: Developers have to manually write Java classes
with a certain name, inheriting from a given base class; and the
class must be abstract

® \We use the 0AW Recipe Framework to notify developers of
remaining manual coding steps:

® The recipes check all the code in the IDE workspace — generated
and manually written

® They are created as part of the workflow

® As a consequence, all the conventions are “toolified”.

©2005-7 Markus Vélter

Product Code and Models

Recipe Framework 1

® The manual class exists, but does not extend the generated base
class

wEh

) “edmhcustibrerinpkmartstion. v |
2l package swarzhone.ecolin.

MPONAKLE , ¥1BdAVASTUATOCDE LVeE S

public class VindowhctuatorDriverImplemencation |

I

=1
i dependencybiodel xmi 1.2 (A5CHE 4o =
« v 1l
Propesties | |1 Problems | -, Dederation | -4 Search | (5] Console | = frogress | 24 Plugen Dependencies | 1/ Hastory L] Recpes 1

8 components | marms | ok |

B & Conporent Testf rpe g openarchiedbursrant.recipe o,

5@ Lightswbhrmvess Component Lightswtchiriees B b

5 @ LightDriver: Component LightDrrver e

W Fes Companart o i

© DetereDivie; Cosmpanent ereserDriver FaetHiarn
sver: Companenk W - Ay i

& for the Component: WindowichustorCriver you have to provide an mplanats
0 o have ko extend WindowhchustorCrives|

Thermoststdeiver: Component ThermostatDvrver

WindoerSersorvives: Component WindowSersorduiver

DOODLEComponsnt: Component DOCCLECOmponent

LigheSustehiCnerdnahar: Companent LightSwienToerdnakne

ThermometeeDaiver: Compaonent ThermameterCener

[(EEEY

Product Line Implementati iabi Code and Models

Recipe Framework |1

® The extends has been added correctly.

12 Package Evplorer £ BT ——

=] package smarthome,ecolib,Components.windowACtustorDr iy

public class VindowictuacorDriverImplementacion extends
ViedowhcruarorDriver InplBase |

V- |

OO EC g, £z S

Ighieiver 1 pretected void closelnternal() (

IghkSwitch nordnahor eheatPoreiore () . youreClosedNow(] !

IghkSuchDnteer 1

testForspechocdeTester

testForSpecLightTester nerrid

thermometarDrsser B pratected void openlnternal

thermostatDriver cheatPortPare () . youreop.

S)

T} WindowachustorDriver Implement astion. java 1.1

§} wndowSensorDriver

1
4} dependencyModel mi 1.2 {4511 o) _,j
o | . |
Progesties | [Problens |) Dederation | -4 Search |] Console | fropress | £ Mugein Dependencies | (1 History |] fecipes 73

® comporerts

5 8 1 Comgonent

LigheSwherDriver: Componsnt LigheSwhehDriver

Ughelxiver: Comgonent Lightetver
TesForpecightTester: Componenk TewForspecightTester
DomerDrivie: Compoent, DammerDrver

| e |
oG 0N At ewir e 16004, 80,
ong openarchitecturewars Jecoe. Ut
smarthome . ecolb, companents wid.
wirdomichustorter
smarthome cbe Ib ecoramrhone
smthore. scolb, comparents. wind...

se0 80

@ For the Companent WindowdehuatrDerver o have 1o proide an mpleneta
& you e 0 exhend Windowssustorrve|

Thermestateteee: Component Thermaststrmer

WindoerSensorriver: Component WindowSergoramer

DCDDLEGamponent: Component [OCOLEComponent

SkenCoerdnaor: Component LightSwachCoordngtoe

ThetmometeDuree: Comporert Tharmomeserleter

ceso0

CONTENTS
® PLE Concepts

® Classical PLE
Implementation

Source time

Compile time
Deployment/Configuration time
Link time

Run time

® MDD-AO-PLE

What is MDD

What is AO

What is MDD-AO-PLE
More Terms and Concepts

Unexpected: Deployment

volter prmmm e

® The first step is to update the
configuration model:

® MDD-AO Implementation

Intro to Case Study

The Various (Meta-)Models
Libraries

An Example House
Orthogonal Variability
Transformation and Template AO
AO Modeling

Code Level Aspects
Negative Variability
Testing

Enforcing Conventions
Product Line Evolution

® Summary

® |nstead of hardcoding that new requirement
into the tool, we wil make the deployment
a configuration option.

©2005-7 Markus Vélter

® As a consequence of new application scenarios, it became
necessary to change the granularity of the deployment:

® Currently, we use one bundle per Floor
® We now need one bundle per Room

E] smarthame. config, xfm &3

E ! smarthomeconfigFeatures
' enviranmentalControl
debug

security

deployment

~4% per Building

b per Floor

-4 per Room

(- - [-
e =l =l =ad

® \We then have to change the ps2cbd transformation
® In cbd2osgi, a Configuration is mapped to Bundles
® So we have to make sure, we generate the appropriate set of

Configurations from the problem space models.

©2005-7 Marku

s Volter

74

Product Line Implementation: Variabiliy in Code and Models

Unexpected: Deployment 11

® Here is the original code:

create System transformPs2Cbd(Building building):
setName(building.name+'System") ->
setConfigurations({ building.createBuildingConfiguration() }):

create Configuration createBuildingConfiguration(Building building):
setName(building.name+"BuildingConfiguration”) ->
setSubconfigurations(building.floors.createConfig()):

create Configuration createConfig(Floor f):
setName(f.name+"FloorConfiguration™) ->
instances.addAll(f.rooms.lights.createlnstance()) ->
instances.addAll(f.rooms.devices.createlnstance()) ->
instances.addAll(f.rooms.windows.sensor.createlnstance()) ->
instances.addAll(f.rooms.select(r|r.heating !=

f.rooms.devices.typeSelect(LightSwitch).size > 0 ?
handleLightCoordinator(f) : null;

null) .heating.thermostat.createlnstance()) ->

® \We create one root configuration for the building (which will not

result in a bundle, since it is not a “root” configuration)
® Below that, there’s one configuration per Floor.

vo,ter " SIEMENS =t

Product Line Implementation: Variabiliy in Code and Models

Unexpected: Deployment 111

® Here is the changed version:

create Configuration createBuildingConfiguration(Building building):
setName(building.name+"TopLevelConfiguration™) ->
setSubconfigurations(building.floors.rooms.getConfig()) ->
building.floors.rooms.populateConfig();

private populateConfig(Room r):
r.getConfig().instances.addAll(r.lights.createlnstance()) ->

private Configuration getConfig(Room r) :
switch {
case hasFeature(*'perFloor'): r.floor.createConfig()
case hasFeature(''perRoom™): r.createConfig()

3

private Configuration getConfig(Floor f) :
switch {
case hasFeature(‘'perFloor'): f.createConfig()
case hasFeature(‘'perRoom): f.rooms.get(0).createConfig()
default : f.building.createConfig() //hasFeature(perBuilding)
}:

create Configuration createConfig(Floor f): ..

create Configuration createConfig(Room f): ..

create Configuration createConfig(Building f): .

default : r._floor.building.createConfig() //hasFeature(perBuilding)

volter prmmm e

©2005-7 Markus Vélter

75

Unexpected: Deployment IV: Summary

CONTENTS
® PLE Concepts

® Classical PLE
Implementation

Source time

Compile time
Deployment/Configuration time
Link time

Run time

® MDD-AO-PLE

What is MDD

What is AO

What is MDD-AO-PLE
More Terms and Concepts

® The only necessary change was localized in the ps2cbd
transformation (and in the feature model to select the alternative)

® All the bundle stuff, the generation of the ant files, build,
deployment, etc. followed without additional changes.

® The effort was less than one hour.

©2005-7 Markus Vélter

® MDD-AO Implementation
Intro to Case Study

The Various (Meta-)Models
Libraries

An Example House
Orthogonal Variability
Transformation and Template AO
AO Modeling

Code Level Aspects
Negative Variability

Testing

Enforcing Conventions
Product Line Evolution

® Summary

©2005-7 Markus Vélter

76

® |t is essential to explicitly describe the variabilities wrt. to the
various product in a product line.

® While you can directly map variabilities to implementation code, it is
much better to use a model-driven approach and map the
variability to models

® because they are more coarse grained and there’s less to vary

® Variant management tools integrate well with the model-driven
tool chain

® Generators, transformation languages and all the other MDD
tooling is mature and can be used in practice.

® Advanced tools have sufficient features to build variants of
generators, transformations or models based on configuration data

e moams T ANKS!

Vo’ter.- d SIEMENS ElaklE

©2005-7 Markus Vélter

77

