
 1/27

Software Architecture
A pattern language for building

sustainable software architectures
Version 1.0, Mar 10, 2005

(c) 2005 Markus Völter, Heidenheim, Germany
voelter@acm.org, www.voelter.de

Abstract
Recently, the business of software architecture has become one of
technology hypes and technology geeks. An architecture often defines
itself by the primary technology it is built upon. Developers are given a
J2EE book and then let loose. And then the project fails, although “we
used an industry standard” … How come?

The craft of defining an architecture – independent of buzzwords – has
gone out of fashion. Designing architectures on a conceptual level is not
something people learn, or read books about (there aren't many books
on this topic!). The view for the essential aspects of an architecture is
obstructed by all the technology crap.

This paper outlines a couple of best practices that I consider essential
when building a real-world software architecture. It could be called an
“architectural process” if you wish…

 2/27

Introduction
Why write a paper on software architecture? There are several reasons.
The most important is that I think the craft of software architecture in
current industrial practice is not what it should be.

Before I start bashing current practice, I want to make what this paper
is actually about. I – personally – think, there is a difference between
the functional architecture of a system, and the technical architecture.
The functional architecture is aligned with the domain. For example, it
is about understanding processes, responsibilities, variabilities; in one
word it's about what the system should do. Technical architecture on
the other hand is about how the functional architecture is implemented:
do we have components? Are we distributed? How do we scale? What
about systems management? How do we realize the required QoS? How
are processes rendered? Do we use a relational or a non-relational DB?
In this paper, I focus primarily on technical architecture. Specifically, I
want to show, how we can come up with a technical architecture that
makes the development of the functional architecture (i.e. the
realization of the use cases for the system) as pain-free as possible.

Current state of the practice

Software architecture is too much technology driven. You hear
statements such as “we have a web-service architecture”. Obviously,
this statement is stupid because it describes only one aspect of the
overall system (communication), and second, web services are a
particular implementation technology for that aspect. There is much
more to say about the architecture (even about the communication
aspect), than just a realization technology. The same is true with “EJB
Architectures” or a “Thin Client Architecture”. A too early commitment
to a specific technology usually results in blindness for the concepts and
a too tight binding to the particular technology. The latter, in turn,
results in a complicated programming model, bad testability and no
flexibility to change the technology, as QoS requirements evolve. It
disguises the view for the really important things.

Another problem is the hype factor. While it is good practice to
characterize an architecture as implementing a certain architectural
style or pattern [POSA1], some of the buzzwords used today are not
even clearly defined. A “service based architecture” is a classic. Nobody
knows what this really is, and how it is different from well-designed
component-based systems. And there are many misunderstandings.
People say “SOA”, and others understand “web service”… Also, since
technologies are often hyped, a hype-based architecture often leads to
too early (and wrong) technology decisions – see above!

 3/27

Another problem is what we usually call industry standards. A long
time ago, the process of coming up with a standard was basically the
following: try a couple of alternatives; see which one is best; set up a
committee that defines the standard, based on the experiences made
before, the standard is usually close to the solution that worked best.
Today, this is different. Standards are often defined by a group of
(future) vendors. Either they already have tools, and the standard must
accommodate for all the solutions of all the tools of all the vendors in
the group, or, there is no practical previous experience and the standard
is defined “from scratch”. As a consequence of this approach, standards
are often not usable (because there was no previous experience), or
overly complicated (because it must satisfy all the vendors…). Thus, if
you use standards for too many aspects of your system, your system will
be complicated!

All these things together prevent people from thinking about the really
relevant aspects of an architecture. In my opinion, these include
architectural patterns, logical structures (architectural metamodels),
programming models for developers, testability, and the ability to
realize key QoS concerns.

The following pages sketch something that I consider a reasonable
approach to software architecture. It also paves the way to automating
many aspects of the software development, a key ingredient to model-
driven software development [SV05] and Product Line Engineering.

Of course I am not the only one seeing this problem in current software
architecture. There are good architectural resources you should
definitely read, such as [POSA1, 2 and 3] as well as [JB00], [VSW02]
and [VKZ04].

Patterns Overview

The approach is structured into three phases.

Elaboration: In the first phase, the elaboration, you define a
TECHNOLOGY-INDEPENDENT ARCHITECTURE. Based on it, you define a
nice and workable PROGRAMMING MODEL for the developers that work
with the architecture. In order to let developers run their stuff locally, a
MOCK PLATFORM is essential. Finally in this phase, you define one or
more TECHNOLOGY MAPPINGS which project the TECHNOLOGY-
INDEPENDENT ARCHITECTURE to a particular platform that provides the
required/desired QoS features. A VERTICAL PROTOTYPE verifies that the
system performs as desired – here is where you run the first load tests
and optimize for performance – and that developers can work efficiently
with the PROGRAMMING MODEL.

Iteration: The second phase iterates over the steps in the first phase.
While I generally recommend an agile approach, I want to outline

 4/27

explicitly the fact that you typically don't get it right the first time. You
usually have to perform some of the steps several times, especially the
TECHNOLOGY MAPPING and the resulting VERTICAL PROTOTYPE. It is
important that you do this before you dive into phase 3: Automation.

Automation: The third phase aims at automating some of the steps
defined in the first, and refined in the second phase, making the
architecture useful for larger projects and teams. First, you will
typically want to GENERATE GLUE CODE to automate the TECHNOLOGY

MAPPING. Also, you often notice that even the PROGRAMMING MODEL
involves some tedious repetitive implementation steps that could be
expressed more briefly with a DSL-BASED PROGRAMMING MODEL. Finally,
MODEL-BASED ARCHITECTURE VERIFICATION helps ensure that the
architecture is used "correctly" even in large teams.

The following illustration shows the patterns and their dependencies.

Technology-
Independent
Architecture

Programming
Model

Technology
Mapping

Mock Platform

Phase 1: Elaborate

Vertical
Prototype

makes nice

provides QoS
for

maps

verifies verifies

Glue Code
Generation

automatesDSL-based
Programming

Model

improves

Phase 3:
Automate

formalizes

Architecture
Metamodel

Model-Based
Architecture
Validation

ve
rif

ie
s

 5/27

Example and Known Uses
Throughout this pattern language I use a running example. The
example is taken from the domain of business systems and should be
readily understandable for everybody.

This pattern language has been used over and over again in successful
software projects. As a consultant I have used it (or seen it being used)
in various projects in different domains. It is especially interesting to
see that this approach is not limited to enterprise architecture (as one
might guess from the example). The following non-exhaustive list
provides some pointers:

Embedded Components: The small components project [MV02] has
basically outlined how to use components in embedded systems. In the
context of the AUTOSAR standard [AS], I have contributed to a
prototype project at BMW Car IT which has implemented the standard
(for some information on it, see [RV05]. In this project it was clear from
the beginning that a model-driven approach would be required.

Enterprise Systems: At a customer I cannot disclose at this time, a
business system was built that resembles the example in this paper
conceptually. Here it was not clear from the beginning, that models and
code generation would be useful, the customer was quite skeptical.
However, since the Phase 1 patterns had been used successfully, the
potential for MDSD has been recognized, and the Phase 3 Patterns had
been added later.

Radio Astronomy: In a project that develops management and
control software for a future radio telescope array [ALMA] a distributed
component infrastructure had been built that uses the Patterns in
Phase 1, together with GLUE CODE GENERATION for remote transport
using CORBA and transparent value object serialization to XML. The
component infrastructure is available for Java and C++.

Phase 1 – Elaborate!
This section outlines best practices and approaches which I think are
important and applicable for all kinds of projects – you don't want to go
without these. This first elaboration phase should be handled by a small
team, before the architecture is rolled out to the team as a whole.

Example. We want to build an enterprise system that
contains various subsystems such as customer management,
billing and catalogs. In addition to managing the data using a
database, forms and the like, we also have to manage the

 6/27

associated long-running business processes. We will look at how
we can attack this problem below.

� Technology-Independent Architecture

Context

You have to define a software architecture for a non-trivial system or
product line.

Problem

How do you define a software architecture that is well-defined, long-
lived and feasible for use in practice? The architecture has to be
reasonable simply and explainable on a beer mat1.

Forces

• You want to make sure that the architectural concepts can be
communicated to stakeholders and developers

• Implementation of functional requirements should be as efficient
as possible.

• The architecture must “survive” a long time, longer than the
typical hype or technology cycles

• The architecture might have to evolve with respect to QoS levels
such as performance, resource consumption or scalability.

Solution

Define the architectural concepts independent of specific technologies
and implementation strategies. Clearly define concepts, constraints and
relationships of the architectural building blocks – a glossary or an
ARCHITECTURAL METAMODEL can help here. Define a TECHNOLOGY

MAPPING in a later phase to map the artifacts defined here to a
particular implementation platform.

Use the well-known architectural styles and patterns here.
Typically these are best practices for architecting certain kinds of
systems independent of a particular technology. They provide a
reasonable starting point for defining (aspects of) your system's
architecture.

1 …referencing a revolutionary idea for tax declarations in Germany ☺

 7/27

Example. As part of our example, we decide that our system
will be built from components. Each component can provide a
number of interfaces. It can also use a number of interfaces
(provided by other components). Communication is
synchronous. Communication is also restricted to be local, no
remoting is supported on this level. We design components to be
stateless.

In addition to components, we also explicitly support business
processes. These are modeled as a state machine. Components
can trigger the state machine by supplying events to them.
Other components can be triggered by the state machine,
resulting in the invocation of certain operations.
Communication to/from processes is asynchronous. Remote
communication is supported.

Rationale, Discussion and Consequences

If you use less complicated technology, you can focus more on the
structure, responsibilities and collaborations among the parts of your
systems. Implementation of functionality becomes more efficient. And
you don't have to educate all developers with all the details of the
various technologies that you'll eventually use.

However, the interesting question is: How much technology is in a
technology-independent architecture? Is AOP ok? In my opinion, all
technologies or approaches that bring provide additional expressive
concepts are useful in a TECHNOLOGY-INDEPENDENT ARCHITECTURE.
AOP is such a candidate. The notion of components is also such a
concept. Message queues, pipes and filters and in general, architectural
patterns are also useful.

When documenting and communicating your TECHNOLOGY-
INDEPENDENT ARCHITECTURE models are useful. I am not talking about
formal models as they're used in model-driven software development –
we'll take a look at these later. Simple box and line diagrams, layer
diagrams, sequence, state or activity charts can help to describe what
the architecture is about. They are used for illustrative purposes, to
help reason about the system, or to communicate the architecture. For
this very reason, they are often drawn on beer mats, flip charts or with
the help of Visio or Powerpoint. While these are not formal, you should
still make sure that you define what a particular visual element means
intuitively – boxes and lines with no defined meaning are not very
useful, even for non-formal diagrams.

 8/27

� Programming Model

Context

You have defined a TECHNOLOGY INDEPENDENT ARCHITECTURE. Your
architecture is rolled out, developers have to implement functionality
against this architecture.

Problem

The architecture is a consequence of many non-functional requirements
and the basic functional application structure, which might make the
architecture non-trivial and hard to comprehend for developers. How
can you make the architecture accessible to (large numbers of)
developers?

Forces

• You want to make sure the architecture is used “correctly” to
make sure it’s benefits can actually materialize.

• You have developers of different qualifications in the project
team. All of them have to work with the architecture.

• You want to be able to review application code easily and
effectively.

• Your applications must remain testable.

Solution

Define a simple and consistent programming model. A programming
model describes how an architecture is used from a developer’s
perspective. It is the “architecture API”. The programming model must
be optimized for typical tasks, but allow for more advanced things if
necessary. Note that a main constituent of a programming model is a
How-To Guide that walks developers through the process of building an
application.

Example. The programming model uses a simple IOC
approach à la Spring to define component dependencies on an
interface level. An external XML files takes care of the
configuration of the instances. The following piece of code shows
the implementation of a simple example component. Note how
we use Java 5 annotations

public @component class ExampleComponent
 implements HelloWorld {// provides HelloWorld

 private IConsole console;

 9/27

 public @resource void setConsole(IConsole c) {
 this.console = c; // setter for console
 } // component

 public void sayHello(String s) {
 console.write(s);
 }
}

The process states are implemented using the State pattern
(from the GoF) book. Processes engines are components like any
other. For the triggers, they provide an interface that contains
only void operations (which can easily be sent asynchronously).
They also define interfaces with the actions (also implemented
as void methods, for the same reason) that those components
can implement that want to be notified of state changes. The
following code shows the skeleton of a component that hosts a
state machine; it has two triggers (T1 and T2) and calls a single
action on a resource component. It also has one guard that
needs to be evaluated.

public @process class SomeProcess
 implements ISomeProcessTrigger {

 private IHelloWorld resource;

 public @resource void setResource(IHelloWorld w) {
 this.resource = w;
 }

 public @trigger void T1(int procID) {
 SomeProcessInstance i = loadProcess(procID);
 if (guardG1()) {
 // advance to another state…
 }
 }

 public @trigger void T2(int procID) {
 SomeProcessInstance i = loadProcess(procID);
 // …
 resource.sayHello("hello");
 }
}

The actual process instance is loaded by the process component
upon a received trigger. Triggers (and as a consequence, the
respective interface) contain a unique process ID.

Rationale, Discussion and Consequences

The most important guideline when defining a programming model is
usability and understandability for the developer. This is the reason

 10/27

why the documentation for the programming model should always be in
the form of tutorials or walkthroughs, not as a reference manual!
Frameworks, libraries, and as we'll see in DSL-BASED PROGRAMMING

model, domain-specific languages are useful here.

Sometimes it's not possible to define a programming model completely
unaware of the platform on which it will run (see TECHNOLOGY

MAPPING). Sometimes the platform has consequences for the
programming model. For example, if you want to be able to deploy
something as an enterprise bean, you should not create objects yourself,
since this will be done later by the application server. There are a
couple of simple guidelines that help you come up with a programming
model that stands a good chance that it can be mapped to various
execution platforms:

• Always develop against interfaces, not implementations

• Never create objects yourself, always use factories

• Use factories to access resources (such as database connections)

• Stateless design is a good idea in enterprise systems

• Separate concerns: make sure a particular artifact does one
thing, not five.

A good way to learn more about good PROGRAMMING MODELS and
TECHNOLOGY-INDEPENDENT ARCHITECTURE can be found in Eric Evans
wonderful book on Domain-Driven Design [EE03].

One of the reasons why a technology decision is made early in the
project is the “political pressure” to use a certain technology. For
example, your customer’s company already has a global lifetime license
for IBM’s Websphere and DB2. You have no chance but to use those
two. You might wonder whether the approach based on a TECHNOLOGY-
INDEPENDENT ARCHITECTURE and explicit TECHNOLOGY MAPPINGS still
work? In case the imposed technology is a good choice, the benefits of
the approach described here still apply. In case the technology is not
suitable (because it is overly complicated or unnecessarily powerful),
life with the technology will be easier if you isolate it in the
TECHNOLOGY MAPPING.

� Technology Mapping

Context

You have defined a TECHNOLOGY INDEPENDENT ARCHITECTURE and a
PROGRAMMING MODEL.

 11/27

Problem

Your software has to deliver certain QoS levels. Implementing QoS as
part of the project is costly. You might not even have the appropriate
skills on the team. Also, your system might have to run with different
levels of QoS, depending on the deployment scenario.

Forces

• You don't want to implement the advanced features that enable
all the non-functional requirements yourself.

• You want to keep the conceptual discussions, as well as the
PROGRAMMING MODEL free from those technical issues.

• You might want to run the system with various levels of QoS,
with minimal cost for each.

Solution

Map the TECHNOLOGY-INDEPENDENT ARCHITECTURE to a specific
platform that provides the requires QoS. Make the mapping to the
technology explicit. Define rules how the conceptual structure of your
system (the metamodel) can be mapped to the technology at hand.
Define those rules clearly to make them amenable for GLUE CODE

GENERATION.

Decide about standards usage here, not earlier. As mentioned,
standards can be a problem, they can also be a huge benefit. For
stuff that is not related to your core business, using standards is
often useful. But keep in mind: First solve the problem. Then look
for a standard. Not vice versa. And make sure PROGRAMMING

MODEL hides the complexity.

Use technology-specific Design Patterns here. Once you decided
on a certain platform, you have to make sure you use it correctly.
Often, the platform is not really easy to use. If it is a commonly
used platform, though, platform specific best practices and
patterns are documented. Now is the time to look at these and use
them as the basis for the TECHNOLOGY MAPPING.

Example. For the remote communication between business
processes we will use web services. Since we transport rather
simple trigger events implemented as asynchronous oneway
methods, the mapping to the technology is trivial. So, from the
business interfaces such as IHelloWorld, we generate a WSDL
file, as well as the necessary endpoint implementation. Of

 12/27

course we don't implement all the technology ourselves – we use
on of the many available web service frameworks.

The infrastructure for running the application itself will be kept
as simple as possible, i.e. Spring will be used as long a no
advanced load balancing and transaction policies are required.
The following is the spring configuration file for this simple
example.

<beans>
 <bean id="proc" class="somePackage.SomeProcess">
 <property name="resource">
 <ref bean="hello"/>
 </property>
 </bean>
 <bean id="hello"
 class="somePackage.ExampleComponent">
 <property name="console">
 <ref bean="cons"/>
 </property>
 </bean>
 <bean id="cons" class="someframework.StdOutConsole">
</beans>

Once this becomes necessary, we will use Stateless Session
EJBs. The necessary code to wrap our components inside beans
is easy to write. So, for each bean, we write a remote/local
interface, an implementation class that wraps our own
implementation, as well as a deployment descriptor.

Persistence for the process instances – like any other persistent
data – is managed using Hibernate. To make this possible, we
create a data class for each process. It contains the id of the
process's current state, as well as the values of the context
attributes. Since this is a normal value object, using Hibernate
to make it persistent is straight forward.

Rationale, Discussion and Consequences

Let's recap: The TECHNOLOGY-INDEPENDENT ARCHITECTURE defines the
concepts that are available to build systems. The PROGRAMMING MODEL

defines how these concepts are used from a developer's perspective. The
TECHNOLOGY MAPPING defines rules how the PROGRAMMING MODEL
artifacts are mapped to a particular technology.

The question is now, which technology do you chose? In general, this is
determines by the QoS requirements you have to fulfill. Platforms are
good at handling technical concerns such as transactions, distribution,
threading, load-balancing, failover or persistence. You don't want to
implement these yourself. So, always use the platform that provides the

 13/27

services you need, in the QoS level you are required to deliver. Often
this is deployment specific!

� Mock Platform

Context

You have a nice PROGRAMMING MODEL in place.

Problem

Based on the PROGRAMMING MODEL, developers now know how to build
applications. In addition to that, developers have to be able to run
(parts of) the system locally, at least to run unit tests. How can you
make sure developers can run "their stuff" locally without caring about
the TECHNOLOGY MAPPING and its potentially non-trivial consequences
for debugging and test setup?

Forces

• You want to make sure developers can run their code as early as
possible

• You want to minimize dependencies of a particular developer on
other project members, specifically those caring about non-
functional requirements and the TECHNOLOGY MAPPING.

• You have to make sure developers can efficiently run unit tests.

Solution

Define the simplest TECHNOLOGY MAPPING that could possibly work.
Provide a framework that mocks or stubs the architecture as far as
possible. Make sure developers can test their application code without
caring about QoS and technical infrastructure.

Example. Since we are already using a PROGRAMMING MODEL

that resembles Spring, we use the Spring container to run the
application components locally. Stubbing out parts is easy based
on Springs XML configuration file. Since persistence is
something that Hibernate takes care of for us, the MOCK

PLATFORM simply ignores the persistence aspect.

Rationale, Discussion and Consequences

This pattern is essential in larger and potentially distributed teams to
allow developers to run their own stuff without caring too much about

 14/27

other people or infrastructure. This is essential for unit testing! Testing
one's business logic is simply if you have your system well modularized.
If you stick to the guidelines given in the PROGRAMMING MODEL pattern
(interfaces, factories, separation of concerns) it is easy to mock technical
infrastructure and other artifacts developed by other people.

Note that it's essential that you have a clearly defined programming
model, otherwise you TECHNOLOGY MAPPING will not work reliably.

Note that the tests you run on the MOCK PLATFORM will not find QoS
problems – QoS is provided by the execution platform.

� Vertical Prototype

Context

You have a TECHNOLOGY INDEPENDENT ARCHITECTURE, a PROGRAMMING

MODEL as well as a TECHNOLOGY MAPPING. The first implementations of
functionality are available and tested using the MOCK PLATFORM.

Problem

Many of the non-functional requirements your architecture has to
realize depend on the technology platform, which you selected only
recently in the TECHNOLOGY MAPPING. This aspect cannot be verified
using the MOCK PLATFORM, since it ignores most of these aspects. The
mapping mechanism might even be inefficient. How do you make sure
you don’t run into dead-ends?

Forces

• You want to keep your architecture as free of technology specific
stuff as possible.

• However, you want to be sure that you can address all the non-
functional requirements.

• You want to make sure you don’t invest into unworkable
technology mappings

Solution

As soon as you have a reasonable understanding of the TECHNOLOGY

INDEPENDENT ARCHITECTURE and the TECHNOLOGY MAPPING, make sure
you test the non-functional requirements! Build a prototype application
that uses all of the above and implements it only for a very small subset
of the functional requirements. This specifically includes performance
and load tests.

 15/27

Work on performance improvements here, not earlier. It is bad
practice to optimize design for performance from the beginning,
since this often destroys good architectural practice. Of course, in
certain domains, there are some really fundamental patterns to
realize certain QoS properties (such as stateless design for large-
scale business systems). You shouldn't ignore these intentionally at
the beginning. Don't pretend to be dumber than you are!

Example. The vertical prototype includes parts of the
customer and billing systems. Both kinds of interactions are
required here. For creating an invoice, the billing system uses
normal interfaces to query the customer subsystem for customer
details. The invoicing process – incl. payment receipt and
optional reminder management is based on a long-running
process.

A scalability test was executed and resulted in two problems:
For short running processes, the repeated loading and saving of
persistent process state had become a problem. A caching layer
was added. Second, web-service based communication with
process components was a problem. Communication was
changed to CORBA for remote cases that were inside the
company – the external processes are still based on web
services. Note that the application code did not have to be
changed, only the adapters that mapped the logical
communication to web services had to be extended to use
CORBA.

Rationale, Discussion and Consequences

Vertical prototypes are a well-known approach to risk reduction. In the
approach to architecture suggested in this paper, the vertical prototype
is, however, even more critical than in other approaches since you have
to verify that the (nice) programming model does not result in problems
with regards to QoS later. You have to make sure the various aspects
you define in your architecture really work together!

Phase 2 – Iterate!
Now that you have the basic mechanisms in place you should make sure
that they actually work for your project. Therefore, iterate over the
steps given above until they are reasonable stable and useful.

Then, roll out the architecture to the overall team. In case you have
larger project teams, the TECHNOLOGY MAPPING is still too much work,

 16/27

or if you don’t arrive at a suitable PROGRAMMING MODEL, you should
consider Part 3, Automate!

Example. There was the idea to use Spring not just as the
MOCK PLATFORM, but also for the production environment.
However, as a consequence of new requirements, this has
become infeasible. Spring does not support two important
features: Dynamic installation/de-installation of components,
and isolations of components from each other, specifically with
regards to using different classloaders. Both of these problems
arose as a consequence the additional non-functional
requirement that several versions of the same component have
to run in one system.

As a consequence, the Eclipse platform has been chosen as the
new execution framework. The PROGRAMMING MODEL did not
change; the TECHNOLOGY MAPPING, however had to be adapted.

Phase 3 – Automate!
The steps outlined above are useful in any kind of project. In case your
project is really large (i.e. you have a large number of developers), or in
case your TECHNOLOGY MAPPING or the PROGRAMMING MODEL is too
tedious to use, you should consider automating the development. The
next set of patterns describes how.

� Architecture Metamodel

Context

You have a TECHNOLOGY-INDEPENDENT ARCHITECTURE. You want to
automate various tasks of the software development processes.

Problem

In order to be able to automate, you have to codify the rules of the
TECHNOLOGY MAPPING and define a DSL-BASED PROGRAMMING MODEL.
For both aspects, you have to be very clear and precise about the
artifacts defined in your TECHNOLOGY-INDEPENENT ARCHITECTURE.

Forces

• Automation cannot happen if you can't formalize translation
rules.

 17/27

• An architecture definition based on prose text is not formal
enough.

• When building models (as part of the DSL-BASED PROGRAMMING

MODEL and for MODEL-BASED ARCHITECTURE VALIDATION) you
have to have a formal basis.

Solution

Define a formal architecture metamodel. An architecture metamodel
formally defines the concepts of the TECHNOLOGY-INDEPENDENT

ARCHITECTURE. Ideally this metamodel is also useful in the
transformers/generators that are used to automate development.

Example. The metamodel for the system is shown below, it is
rendered as a MOF model2. It is interesting to see that even the
container is modular with respect to its services. Characteristics
(special kinds of interfaces) are used to mark components with
respect to the services they require. A container service (such as
persistence of lifecycles) will take care of components that have
a specific characteristic.

2 In case you think it looks like UML: this is true, since UML and MOF share a
common core.

 18/27

Interface

providedInterface

0..n

requiredInterface

0..n

Container

0..n

Component

Characteristic
0..n

Container
Service0..n

Operation
1..n

Parameter

0..n

Type

re
tu

rn
Ty

pe

type

PrimitiveType

ComplexType

1 0..n

newVersionOf

1 0..n

newVersionOf

if a component B is a new version
of a component A, then B has to
have the same interfaces,
additional provided interfaces,
fewer required interfaces or new
version of interfaces of A

a new version of an interface has to
have the same return type and the
same parameters - or parameters
with subtypes.

Process
Component

State
Machine State

1..n

Transition

fromto
0..n 0..n

Trigger
Operation0..1

Example models (at least some) are shown in the DSL-BASED

PROGRAMMING MODEL pattern.

Rationale, Discussion and Consequences

Formalization is a double-edged sword. While it has some obvious
benefits, it also requires a lot more work than informal models. The only
way to justify the extra effort is additional benefits. The most useful
benefit is if the metamodel doesn’t just collect dust in a drawer, but is
really used by tools in the development process. It is therefore essential
that the metamodel is used, for example as part of the code generation
in DSL-BASED PROGRAMMING MODELS and ARCHITECTURE-BASED MODEL

VERIFICATION. See the Implement the Metamodel pattern in [MV04]

 19/27

� Glue Code Generation

Context

You have a TECHNOLOGY INDEPENDENT ARCHITECTURE, as well as a
working TECHNOLOGY MAPPING.

Problem

The TECHNOLOGY MAPPING – if sufficiently stable – is typically
repetitive and thus tedious and error prone to implement. Also, often
information that is already defined in the artifacts of the PROGRAMMING

MODEL have to be repeated in the TECHNOLOGY MAPPING code (method
signatures are typical examples).

Forces

• A repetitive, standardized technology mapping is good since it is
a sign of a well though-out architecture

• Repetitive implementations always tend to lead to errors and
frustration.

Solution

Based on the specifications of the TECHNOLOGY MAPPING, use code
generation to generate a glue code layer, and other adaptation artifacts
such as descriptors, configuration files, etc. To make that feasible you
might have to formalize your TECHNOLOGY INDEPENDENT ARCHITECTURE
into an ARCHITECTURAL METAMODEL. In order to be able to get access to
the necessary information for code generation, you might have to use a
DSL-BASED PROGRAMMING MODEL.

Example. Our scenario has several useful locations for glue
code generation.

• We generate the Hibernate mapping files

• We generate the web service and CORBA adapters based
on the interfaces and data types that are used for
communication. The generator uses reflection to obtain
the necessary type information.

• Finally, we generate the process interfaces from the state
machine implementations.

In the programming model, we use Java 5 annotations to mark
up those aspects that cannot be derived by using reflection
alone. Annotations can help a code generator to "know what to
generate" without making the programming model overly ugly.

 20/27

Rationale, Discussion and Consequences

Build and test automation is an established best practice in current
software development. The natural next step is to automate
programming – at least those issues that are repetitive and governed by
clearly defined rules. The code and configuration files that are
necessary for the TECHNOLOGY MAPPING are a classic candidate.
Generating these artifacts has several advantages. First of all, it's
simply more efficient. Second, the requirement to "implement" the
TECHNOLOGY MAPPING in the form of a generator helps refine the
TECHNOLOGY MAPPING rules. Code quality will typically improve, since a
code generator doesn't make any accidental errors – it may well be
wrong, but then the generated code is typically always wrong, making
errors easier to find. Finally, developers are relieved from having to
implement tedious glue code over and over again, a boring, frustrating,
and thus error prone task.

� DSL-based Programming Model

Context

You have a PROGRAMMING MODEL defined.

Problem

Your PROGRAMMING MODEL is still too complicated, with a lot of domain-
specific algorithms implemented over and over again. It is hard for your
domain experts to use the PROGRAMMING MODEL in their everyday work.
And the GLUE CODE GENERATION needs information about the program
structure that is hard or impossible to derive from the code written as
part of the PROGRAMMING MODEL.

Forces

• The PROGRAMMING MODEL is still on the abstraction level of a
programming language. Domain-specific language features
cannot be realized.

• Parsing code in order to gain information on what kind of glue
code to generate is tedious, and the code also does not have the
necessary semantic richness.

Solution

Define Domain-Specific Languages that developers use to describe
application structure and behavior in a brief and concise manner.

 21/27

Generate the lower-level implementation code from these models.
Generate a skeleton against which developers can code those aspects
that cannot be completely generated from the models.

Example. There are at least two rather obvious places, where
using a DSL makes a lot of sense. One place is components,
interfaces and dependencies. Describing this aspect in a model
has two benefits: First, the GLUE CODE GENERATION can use a
more semantically rich model as its input, and the model allows
for very powerful MODEL-BASED ARCHITECTURE VALIDATION (see
below).

<<component>>
StdOutConsole

<<component>>
HelloWorld

IHelloWorldIConole

{persistent}

From these diagrams, we can generate a skeleton component
class as well as all the necessary interfaces. Developers simply
inherit from the generate skeleton and implement the
operations defined by the provided interfaces.

A second place is the processes. Here, the necessary state
machines can be “drawn” using UML state machines. This is
much simpler than coding the State pattern manually. To
integrate processes with the other components (e.g. those that
use the processes) can easily be rendered by “black-boxing” the
state machine with a component and using it in component
diagrams. The component is derived from the state chart
automatically.

 22/27

s1

s2

s3

[valid] T1

[invalid] T1

T2/someAction

sd SomeProcess

cd SomeProcessComponent

<<component>>
SomeProcessComponent

<<interface>>
ISomeProcessTrigger

triggerT1()
triggerT2()

<<interface>>
ISomeProcessResource

isValid()
isInvalid()

someAction()

Verifying the consistency of these models and generating the
necessary code is standard, and no particular problem with
today’s tools.

Rationale, Discussion and Consequences

This pattern marks the entrance into the model-driven software
development arena. Defining DSLs for various aspects of a system and
then generating the implementation code – fitting into the
PROGRAMMING MODEL defined above – is a very powerful approach. On
the other hand, defining useful DSLs, providing a suitable editor, and
implementing an generator creates efficient code is a non-trivial task.
So this step only makes sense if the generator is reused often, the
"normal" PROGRAMMING MODEL is so intricate, that a DSL boosts
productivity, or if you want to do complex MODEL-BASED ARCHITECTURE

VALIDATION.

The deeper your understanding of the domain becomes, the more
expressive your DSL can become (and the more powerful your
generators have to be). In order to manage the complexity, you should
build cascades of DSL/Generator pairs. The lowest layer is basically the
GLUE CODE GENERATOR; higher layers provide more and more powerful
DSL-BASED PROGRAMMING MODELS. The following illustration shows the
approach.

 23/27

MDSD-
Infrastructure

Input Models

Output Model

Glue Code Generation

Code for Target Platform

Programming Model Artifacts

DSL-based prog.
model 1

Model for Domain 1

DSL-based prog.
model 2

Model for Domain 2

...

...

...

...

...

...

� Model-Based Architecture Verification

Context

You have all the things from above in place and you roll out your
architecture to a larger number of developers.

Problem

You have to make sure that the PROGRAMMING MODEL is used in the
intended way. Different people might have different qualifications.
Using the programming model correctly is also crucial for the
architecture to deliver it QoS promises.

Forces

• Checking a system for “architectural compliance” is critical!

• Using only manual reviews for that does not scale to large and
potentially distributed teams.

• Since a lot technical complexity is taken away from developers (it
is in the GENERATED GLUE CODE) these issues need not be
checked.

• Checking the use of the PROGRAMMING MODEL on source level is
complicated, mostly as a consequence of the intricate details of
the programming language used.

Solution

Make sure critical architectural things are either specified as part of
the DSL-BASED PROGRAMMING MODEL, or the developers are restricted in
what they can do be the generated skeleton, into which they add their

 24/27

3GL code. Architectural verifications can then be done on model level,
which is quite simple: it can be specified against the constraints defined
in the ARCHITECTURE METAMODEL.

Example. Since this system will be built by a large number of
developers, architectural constraint checking is essential. A
number of basic model checks are done, for example, that for
triggers in processes there is a component that calls the trigger.
Other checks include dependency management. It is easy to
detect circular dependencies among components. Also,
components are assigned to layers (app, service, base) and
dependencies are only allowed in certain directions. The IOC-
programming, combined with the fact that the component
signature is generated from the model prevents developers from
creating dependencies to components that are not described in
the model – and in the model, invalid dependencies can be
detected easily.

Another really important aspect in our example system is
evolution of interfaces. Take a look at the following diagram:

<<component>>
SomeCompV1

<<interface>>
SomeInterface

soSomething(int, ValueObject)

<<component>>
SomeCompV2

<<newVersionOf>>
<<interface>>

AnotherInterface

<<vo>>
ValueObject

<<component>>
SomeCompV3

<<newVersionOf>>

<<interface>>
SomeInterfaceV3

soSomething(int, ValueObjectV2)
anAdditionalOperation()

<<newVersionOf>>

<<vo>>
ValueObjectV3

<<newVersionOf>>

Note how this diagram makes new versions of things explicit!
This is essential to check and enforce compatibility rules that
make sure that a client that expects SomeInterface can also deal
with a new version, i.e. SomeInterfaceV3. The generated
implementation of SomeInterfaceV3 inherits from
SomeInterface. This makes the interface types compatible. The
generator also makes sure that a new version of an interface
has the same operations (plus maybe additional ones). An
interface can refine an operation by using a new version of a
value object – the new version of which inherits from the old
one. So, in one sentence: The verification phase of the generator

 25/27

enforces rules that make sure that new versions of components
and interfaces are always compatible with previous versions.

Rationale, Discussion and Consequences

This where you want to get in the end! In larger projects, you have to be
able to verify the properties of your system (from an architectural point
of view) via automated checks. Some of them can be done on code level
(using metrics, etc.). However, if you have the system's critical aspects
described in models, you have much more powerful verification and
validation tools at hand.

As pointed out earlier, it is essential that you can use the
ARCHITECTURE METAMODEL to verify models/specifications. Good tools
for model-driven software development (such as the
openArchitectureWare generator [OAW]) can read (architecture)
metamodels and use them to validate input models. This way, a
metamodel is not “just documentation”, it is an artifact used by
development tools. The following illustration shows how this tool works.

Summary
The approach to software architecture described in this papers is a tried
and trusted one. However, it is often not used … Why? People think it is
too complicated to use. And it's not "standard". Well, to some extend
this is true. Defining your own PROGRAMMING MODEL certainly means,
that not all developers will learn each and every J2EE detail. While this
might be considered a problem by some developers (for their CVs), it is
certainly a good thing wrt. productivity.

 26/27

References
ALMA European Southern Observatory, The Atacama Large

Millimeter Array, http://www.eso.org/projects/alma/

AS Autosar Consortium, Automotive Open Systems Architecture,
http://www.autosar.org

EE03 Eric Evans, Domain-Driven Design: Tackling Complexity in
the Heart of Software, Addison-Wesley 2003

JB00 Jan Bosch, Design and Use of Software Architectures,
Addison-Wesley, 2000

MV04 Markus Völter, Patterns for Model-Driven Software
Development, EuroPLoP 2004 proceedings and
http://www.voelter.de/data/pub/MDDPatterns.pdf

MV02 Markus Völter, A Generative Component Infrastructure for
Embedded Systems,
http://www.voelter.de/data/pub/SmallComponents.pdf

OAW openarchitectureware.org, The openArchitectureWare
Generator Framework, http://www.openarchitectureware.org

POSA1 Frank Buschmann, Regine Meunier, Hans Rohnert, Peter
Sommerlad, Michael Stal, Peter Sommerlad, Michael Stal,
Pattern-Oriented Software Architecture, Volume 1: A System
of Patterns, Wiley, 1996

POSA2 Douglas Schmidt, Michael Stal, Hans Rohnert, Frank
Buschmann , Pattern-Oriented Software Architecture, Volume
2, Patterns for Concurrent and Networked Objects, Wiley,
2000

POSA3 Michael Kircher, Prashant Jain, Pattern-Oriented Software
Architecture, Volume 3, Patterns for Resource Management,
Wiley 2004

RV05 Michael Rudorfer, Markus Völter, Domain-specific IDEs in
embedded automotive software, EclipseCon 2005 and
http://www.voelter.de/data/presentations/EclipseCon.pdf

SV05 Tom Stahl, Markus Völter, Modellgetriebene
Softwareentwicklung, dPunkt, 2005

VKZ04 Markus Voelter, Michael Kircher, Uwe Zdun, Remoting
Patterns : Foundations of Enterprise, Internet and Realtime
Distributed Object Middleware, Wiley 2004

 27/27

WSV02 Markus Völter, Alexander Schmid, Eberhard Wolff, Server
Component Patterns : Component Infrastructures Illustrated
with EJB, Wiley, 2002

