
 1/50

Patterns for
Model-Driven

 Software-Development

Version 1.4, May 10, 2004

Markus Völter

voelter@acm.org
völter – ingenieurbüro für

softwaretechnologie
Heidenheim, Germany

www.voelter.de

Jorn Bettin

 jorn.bettin@softmetaware.com
SoftMetaWare

Auckland, New Zealand
www.softmetaware.com

STATUS OF THIS WORK .. 3

WHAT IS MDSD .. 3

PATTERN FORM .. 4

OVERVIEW.. 5

THE PATTERNS .. 6

PROCESS & ORGANIZATION .. 6
Iterative Dual-Track Development ** .. 7
Fixed budget shopping basket **.. 9
Scope Trading **.. 11
Validate Iterations ** ... 14
Extract the Infrastructure ** .. 16
Build a Workflow (P) .. 18

DOMAIN MODELING ... 18
Formal Meta model ** ... 18
Talk Meta model (P) ... 21
Architecture-Centric Meta model (P) ... 22

TOOL ARCHITECTURE ... 23
Implement the Meta model **... 23
Ignore concrete Syntax ** .. 24
Modular, automated transforms (P) ... 26
Transformations as first-class citizens (P) ... 27
Aspect-Oriented Metamodels (P).. 28

 2/50

Descriptive Information in Models (P) ... 28
APPLICATION PLATFORM DEVELOPMENT .. 28

Two stage build * ... 28
Separate generated and non-generated code ** 30
Rich Domain-specific Platform **.. 32
Technical Subdomains ** ... 35
Model-Driven Integration *.. 36
Generator-based AOP * ... 38
Produce Nice-Looking Code … Wherever Possible ** 39
Descriptive Meta objects ** ... 41
Framework/DSL combination (P)... 43
External Model markings (P) ... 43
GenTime/Run time Bridge (P) ... 43
Generated Reflection Layer (P) .. 44
Gateway Meta classes (P) .. 44
Three Layer Implementation (P)... 45
Forced Pre/Post Code (P) .. 45
Believe in Re-Incarnation (P) ... 46
Inter-Model Integration with References (P) .. 46
Leverage the model (P)... 46
Build an IDE (P)... 47
Select from Buy, Build, or Open Source (P) ... 47

ACKNOWLEDGEMENTS .. 49

REFERENCES.. 49

 3/50

Status of this work
This paper presents a work-in-progress collection of patterns that occur in
model-driven and asset-based software development. We really appreciate
feedback!

The paper contains a couple of proto-patterns marked with a (P) after the
pattern title. They describe ideas that may or may not evolve into full-blown
patterns, and that are not (yet) described in proper pattern form. The proto-
patterns have been included in the paper to hint at possible directions for
extending the collection of patterns. We encourage people to contribute to
the collection by suggesting additional proto-patterns. We are specifically
seeking material in the area of versioning and testing in the context of
MDSD.

What is MDSD
Model-Driven Software Development is a software development approach
that aims at developing software from domain-specific models. Domain
analysis, meta modeling, model-driven generation, template languages,
domain-driven framework design, and the principles for agile software
development form the backbone of this approach, of which OMG’s MDA is
a specific flavor.

Here are a set of core values, which have been defined during a BOF session
at OOPSLA 2003.

We prefer to validate software-under-construction over validating
software requirements

We work with domain-specific assets, which can be anything from
models, components, frameworks, generators, to languages and
techniques.

We strive to automate software construction from domain models;
therefore we consciously distinguish between building software
factories and building software applications

We support the emergence of supply chains for software development,
which implies domain-specific specialization and enables mass
customization

 4/50

Until we come up with some more elaborate introduction, the following
mind map should suffice to give a rough impression.

Pattern Form
The patterns are documented in Alexandrian form. Since this form is now
widely used and well known, we refer readers to Christopher Alexander's
original work on pattern languages[Alexander 1977] for further details.

Note that, just as in Alexander’s Pattern Language, we will qualify each
pattern with no, one or two asterisks:

• No asterisk means that we are not very sure about the patterns
content.

• One asterisk means that we think the patterns is valid, but we are not
sure about details, formulations or all the forces.

• Two asterisks mean that the pattern is a fact.

The number and the quality of the known uses is also proportional to the
number of asterisks.

 5/50

Overview
The patterns are structured into several groups: Domain Modeling, Process &
Organization, Tool Architecture, and Application Platform Development. The
following illustration shows the relationships among some of the patterns, as
well as their association to the groups mentioned.

Iterative Dual-Track
Development

Scope Trading
benefits from

Validate Iterations

controlled
by

Extract the
Infrastructure

precedes

Process &
Organization

Formal Metamodel

leads
to

Architecture-
Centric Metamodel (P)

specializes

Domain
Modelling

Implement
the Metamodel

requires

Ignore Concrete
Syntax

simplified
by

Tool
Architecture

Two Stage
Build

Separate Generated
and Non-Generated Code

Rich Domain-Specific
Target Platform

evolves
into

Technical
Subdomains

consists
of

Model-Driven
Integration

is special
case of

Produce Nice-
Looking code...

whenever possible

Decriptive
Metamobjects

benefits
 from

Generator-
Based AOP

Application
Platform

Development

precedes

Fixed Budget
Shopping

Basket
modifies
content

poceed to
checkout

Modular,
Automated
Transforms simplified

by

Generated
Reflection
Layer (P)

part of

Gateway
Metaclasses (P)

uses

External
Model

Markings (P)

simplifies Leverage
the Model (P)

uses

Select from
Buy, Build or

Open Source (P)
balances

uses

Build a
Workflow (P)

Believe in
Reincarnation (P)

Gentime/
Runtime

Bridge (P)

Gentime/
Runtime

Bridge (P)

simplifies

Talk Metamodel (P)

validates

can
simplify

 6/50

The Patterns

Process & Organization

Model Driven Software Development is based on a clear distinction between
domain engineering, i.e. designing and building an application platform and
application engineering, i.e. designing and building individual applications.
This separation of concerns has a long track record in companies practicing
software product line engineering [CN 2002].

The relationship between application development teams and the
infrastructure team that develops the application needs to be managed in the
same way as the relationship between customer and application
development. The infrastructure team needs on-site customers in the form of
application development team representatives, otherwise there is a
significant risk that the functionality delivered by the infrastructure team
will not be acceptable to the application development teams. That does not
mean that each application development team needs to have a permanent
ambassador in the infrastructure team, it rather means that each of the
application development teams need a technically competent designer who
participates in a cross-team architecture group that determines the
requirements for the infrastructure team. The cross-team architecture group
is certainly not a novel concept, the novelty is rather in insisting on having
competent designers in the application development teams. This counter-acts
the tendency of all competent designers gravitating to the infrastructure
team. Effective skill transfer can be achieved by short-term secondments
(one iteration) between application and infrastructure teams in both
directions.

As experience shows, infrastructure teams are at risk of leaping on
interesting technologies and then hijacking the agenda to embark—with the
best intentions—on bestowing the rest of the world with a new silver bullet.
This risk can be managed by ensuring that the architecture group (consisting
of representatives from application development teams) is given the mandate
to exercise SCOPE TRADING and to VALIDATE ITERATIONS.

The architecture group representatives in the application development teams
are primarily accountable to their team, and all requirements for the
infrastructure need to be traceable to functional or non-functional
requirements for the overall product/project.

Secondments can be used to distribute domain knowledge and technical
knowledge.

 7/50

This organisational structure is highly important for managing larger
projects. In a small project the infrastructure team may boil down to one or
two people, and the architecture group operates very informally, however is
still makes sense to formally record the results of SCOPE TRADING.

The described structure of an infrastructure team and one or more
application development teams is compatible with Alistair Cockburn's
Crystal Orange methodology [Cockburn 1998], although Crystal Orange
does not consider the specific case of a model-driven approach.

ITERATIVE DUAL-TRACK DEVELOPMENT **

You are developing a software system (family) using MDSD. One or more
teams are working on one or more applications, and you need to develop a
domain-specific infrastructure (application platform). You need to deliver
iterations at fixed points in time, and the disruption caused by upgrading to
new iterations of the infrastructure needs to be minimized.

ÕÕÕ

When building a new software system family, you actually have to
develop two things: a concrete application as well as the MDSD
infrastructure that helps you build the applications based on the
family. Development of an elaborate infrastructure in parallel with
application functionality can compromise the stability of scope of
application development iterations because of the repeated
refactoring of application code to the updated platform.

The MDSD infrastructure consists of transformation definition, the meta
model, the concrete syntax definition as well as the target platform(s).

You cannot build applications based on the MDSD infrastructure unless the
infrastructure is in place. Also, you cannot build the infrastructure if you
don’t have a solid understanding of the application domain, typically gained
by developing a couple of applications in the domain.

Therefore:

Develop the infrastructure as well as at least one application at the
same time. Make sure infrastructure developers get feedback from the
application developers immediately. Develop both parts
incrementally and iteratively to achieve overall agility. To solve the
chicken-and-egg problem, EXTRACT THE INFRASTRUCTURE from a
running application. That means, in any particular iteration
infrastructure development is one step ahead, and new releases of
infrastructure are only introduced at the start of application
development iterations.

 8/50

Integration
and

Feedback

Application
Development

(n)

Infrastructure
Development

(n+1)

feedback

ÕÕÕ

In practice, to achieve sufficient agility, iterations should never be longer
than four to six weeks and it is a good idea to use a fixed duration for all
iterations.

Note that this incremental, iterative process based on synchronized
timeboxes does not mean that you should not do some kind of domain
analysis as described in [Cleaveland 2001] before starting development. A
good understanding of the domain is a useful precondition for doing MDSD.
Once development is under way, further domain analysis is performed
iteratively as required as part of the infrastructure workflow.

An infrastructure team is at risk of leaping on interesting technologies and
then hijacking the agenda to embark—with the best intentions—on
bestowing the rest of the world with a new silver bullet. This risk can be
managed by ensuring that the architecture group (i.e. consisting of
representatives from the application development teams) is given the
mandate to exercise SCOPE TRADING and VALIDATE ITERATIONS, so that the
infrastructure being developed becomes a real asset from the perspective of
application developers.

As a downside of this approach, it requires effective synchronization among
the different sub-processes, and versioning can become an issue, specifically
with today’s MDSD tools. Also, updating (refactoring) the application
models to comply to and utilize the new version of the infrastructure can be
a non-trivial endeavor.

Note that:

• Once MDSD is well established in an organization, the technology
infrastructure is highly standardized, and the focus of work shifts from
standardizing use of technologies to building a domain-specific
application platform, hence the term "application platform development"
becomes a more accurate description over time.

 9/50

• In the minimal case of a one-person project, this pattern collapses into
the requirement to cleanly separate the code base of infrastructure
(application platform) from the code base of individual applications.

ÕÕÕ

The Family-Oriented Abstraction, Specification, and Translation
(FAST) process [WL 1999] developed by AT&T has been used since
1992 and clearly differentiates between domain engineering and
application engineering. FAST is based on experience over two decades
of developing software families and has been evolving further at Lucent
Technologies where it has been applied to over 25 domains.

One of the authors has been using iterative dual-track development
since 1994, initially in conjunction with the programmable LANSA
RUOM model-driven generator [LANSA], and later in several projects
using different MDA tools.

Also, the b+m generative development process (GDP, see[GPD]) which
has been used for a long time in the area of model driven development
uses this principle as its basic foundation. It has proven to be essential
to MDSD

Further concrete examples for the organization (team structure) of
product line development are found in [Bosch 2000].

FIXED BUDGET SHOPPING BASKET **

You are iteratively developing software and need to ensure that a fixed
amount of money is spent wisely to build a product that meets customers'
needs.

ÕÕÕ

Practical experience shows that large software development
initiatives usually result in high risks for the customer and the
development organization. In anticipation of the risks both parties
attempt to mitigate the impact, the customer by insisting on a fixed
price, and the vendor by building contingency into the fixed price.
How do you ensure that the customer gets a working system for his
fixed budget?

These simplistic mitigation strategies don’t work, as the impact of the risks
of large-scale software development is hard—if not impossible—to measure
accurately in advance. Paying a premium for a fixed price contract does not
guarantee that the delivered system will meet user needs at the time of
deployment. Similarly adding significant contingency to the estimated effort
does not guarantee that a fully featured system can be delivered on time and
within budget.

 10/50

The abstract nature of software prevents contractual details from capturing
every aspect that needs to be considered in software design and software
implementation to lead to a user-friendly system, i.e. a system that optimally
supports users in their work. Software requirements are suitable to provide
guidance in terms of scope, but they are not sufficient to guarantee a product
that is acceptable to the customer.

Therefore:

Split the fixed budget over a series of iterations to determine the
available resource capacity. Use timeboxed iterations of constant
length to provide shippable code at least every three months.
VALIDATE ITERATIONS provides the “checkout” procedure to confirm
the items that meet expectations, and to put unsatisfactory items
back on the shelf of open requirements. Subsequently SCOPE TRADING
is used by business stakeholders in collaboration with selected end
users to spend their fixed “iteration budget” to fill the FIXED BUDGET

SHOPPING BASKET for the next iteration.

ÕÕÕ

Rather than performing time consuming, repetitive reviews of requirements
relating to customer needs as perceived at the inception of the project, much
better results are achieved by regularly performing VALIDATE ITERATIONS to
test-drive the software product under construction.

Requirements that have failed validation are annotated with clarifications,
and are listed alongside any new requirements that may have emerged during
the last iteration. Subsequently the development team calculates realistic
prices for all open requirements to enable SCOPE TRADING.

The work of two or three iterations can be packaged and made available in
the form of an intermediary release. The short release cycle makes SCOPE

TRADING practical, i.e. the addition of important new requirements delays
the implementation of less important features by a couple of months, and
not by longer periods. The quality of a release has to be such that it is
shippable, i.e. it must have passed all phases of testing. For this reason the
last iteration in a release focuses on bug fixes, testing, and packaging.

The following set of rules summarize the management of releases and
iterations:

• Use timeboxed iterations that are shorter than six weeks, validated by
users/customers.

• Produce shippable code at least every three months

• Ideally, deploy into production every three months to get “live” feedback

• For development of new business applications, “go live” within nine
months, don’t risk losing the team (mother) or the application (baby) as
illustrated in the diagram below.

 11/50

application space (scope)

time horizon < 9 months

iteration 1

target t1

target t2

target t3

iteration 2
iteration 3

ap
pl

ic
at

io
n

sp
ac

e
(s

co
pe

)

Each point in the "application space" represents a potential system, with
richness of functionality represented as the distance from the origin. In well-
run iterative, and incremental development, each iteration should lead to an
increase in functional richness.

ÕÕÕ

One of the authors started using this pattern in 1994, and has since
then refined this pattern into its current form, and applied it in a large
number of software development projects in various industries and
involving a wide range of technology stacks. This pattern achieves an
appropriate distribution of rights and responsibilities between the
customer and the software developer. All projects where this pattern
has been used—both MDSD and traditional projects—were highly
successful. The pattern has even been applied to fixed-price projects
such as the "Zemindar" project, which effectively became fixed-budget,
variable-scope projects, which becomes evident.

SCOPE TRADING **

You need to develop a (project) plan for the next iteration consisting of a
fully prioritized list of requirements that are scoped for the next iteration.

ÕÕÕ

The content of each iteration needs to reflect the priorities of
requirements in terms of relevance to the business, and also needs to
include items that are of critical architectural significance. Each
iteration needs to deliver functionality that can be validated by end
users and stakeholders in a meaningful way, and at the same time
architecturally significant items cannot be overlooked. If new
requirements are allowed to be raised during iterative development,
how do you manage scope and prevent scope creep?

The primary intention of an iterative approach is to enable validation and
allow early feedback to influence the direction of the project. It makes little
sense to measure progress against a fixed list of requirements that were

 12/50

drawn up at the start of the project. Instead, VALIDATE ITERATIONS
determines how close the project is to meeting the needs of users and
stakeholders at regular intervals.

It is not uncommon to see "iterative" development without direct
stakeholder feedback. Although it still allows to eliminate architectural risks
as early as possible, it means that iterative development falls far short of its
potential, and—from the perspective of the customer—it is much like
classical waterfall development, with a big surprise at the end.

Therefore:

New requirements raised are not allowed to enter a "running"
timebox. At the beginning of each iteration, use a scope trading
workshop to agree the scope of each iteration and capture the
outcome in an iteration plan. Ensure that not only end users but also
other relevant stakeholders are present at the workshop so that
priorities can be agreed. Formally document results of the workshop,
and then proceed within the timebox based on the priorities defined
in the scope trading workshop to ensure that estimation errors don't
affect the most important requirements and items of critical
architectural significance.

ÕÕÕ

The duration of a scope trading workshop can vary, usually it takes 1 to 4
hours, depending on size of the project. The scope trading workshop occurs
after VALIDATE ITERATION, as soon as indicative estimates of the effort for
the remaining open requirements have been compiled by the development
team based on velocity figures from the last iteration. Agile methodologies
such as Extreme Programming explain how to pragmatically measure
velocity and estimate requirements. Alternatively there are similarly
pragmatic approaches based on use case points. We refer to [Beck 2000] for
the details of estimating the effort associated with individual requirements.

The scope-trading workshop involves the project manager, the architect, key
stakeholders, and selected end users. The objectives for the workshop are
simple:

• Assigning a strict sequence of priorities to requirements items (stories,
use case scenarios, features—whatever is used in the methodology used in
the project) by the user/stakeholder community.

• Identification of all requirements that are of architectural significance for
the next iteration(s), that need to be included in the coming iteration.

As a guideline, no iteration should be filled entirely by architecturally
significant items, unless some of these items coincide with those that are at
the top of the list of user priorities. At the beginning of a project, EXTRACT

THE INFRASTRUCTURE means that significant amounts of architectural work
need to be done, which goes hand in hand with the well-known practice to
build a “technical prototype” at the beginning of a project. Over the course

 13/50

of several iterations, the number of architecturally significant items should
decrease, such that the stakeholder/user community drives the direction of
development. Once a development organization has a good MDSD
infrastructure for a certain domain, new projects will start with user
requirements right away.

All items that don't fit within the timebox are moved onto the list of open
requirements for following iterations as candidate scope items. At this point,
end users and stakeholders have a last chance to trade scope for the coming
iteration; however changes should be minimal if the preceding prioritization
exercise has been performed properly.

If end users can’t agree on a strict sequence, the stakeholder(s) can determine
an arbitrary sequence. This sets clear expectations of what would get
dropped off in next timebox in case of changes in scope or resource
limitations.

Scope trading is scalable to product development involving multiple
customers with different agendas, where every customer is contributing
different amounts to the available product development budget. In this case
an open and fair voting process can be established by giving every customer
a set of "priority points" in proportion to their financial contribution, and
then allowing every customer to allocate "priority points" to the items on
the product roadmap. Arbitration of priorities can occur in an anonymous
format facilitated by the product vendor, or even an independent third
party. The facilitator's role is restricted to iteratively allowing customers to
revise their priority point allocations, until no customer desires further
adjustments. The concept can be accelerated or timeboxed by the provision
of electronic collaboration tools similar to the tools used to implement
electronic auctions.

ÕÕÕ

One of the authors has been applying this pattern consistently over
many years, from small three-month web application development
projects to large-scale product development in the enterprise
applications market, where tier-1 products are sold for several million
dollars. The pattern gives stakeholders the ability of introducing new
requirements and priorities at the end of each iteration, thus providing
them with a very effective tool to steer the project. For some
stakeholders it comes as a surprise that identifying the items at the
bottom of the list of priorities is just as important as identifying the
items at the top of the list of priorities. In the "Zemindar" project and in
several other projects this pattern allowed the project to deliver a
working system by a fixed date.

 14/50

VALIDATE ITERATIONS **

You want regular confirmation that the project is on track, and
confirmation of the items that meet customer expectations, and items that
need further refinement or rework.

ÕÕÕ

End users need the ability to test drive software-under-construction,
and users as well as stakeholders need the ability to provide useful
feedback to the development team. Although on-site customer1
ensures that requirements can be clarified on a daily basis, and that
selected end users test-drive software-under-construction
continuously, scope within a timebox needs to remain fixed, progress
needs to be tracked at regular intervals and stakeholders need to
confirm the accuracy of the direction proposed by end users.

End users and business experts may identify and articulate new requirements
at any point in a project, but the scope of a timebox needs to be kept stable.
Although changed requirements necessitate a re-estimation of the effort by
the development team the development team should not be distracted during
an iteration. Additionally, priorities need to be realigned on a regular basis
without causing churn in the development process.

Overall, end-of-iteration activities that follow the timebox, including re-
estimation of effort should be packaged into the shortest possible schedule,
so that further development can continue in a new timebox with new
priorities as soon as possible.

Therefore:

A timebox is concluded with a formal iteration validation workshop to
confirm progress and to document the parts of the software that are
acceptable to users and stakeholders. Let an end user that acted as
the on-site customer drive the demonstration of implemented
features. Explicitly communicate to the end user and stakeholder
community that new requirements can be brought up at any point
during the workshop. Encourage exploration of "what-if" scenarios—
stakeholders may develop a new idea while watching the
demonstration, and similarly the architect may want to use the
opportunity to raise issues that may have escaped the requirements
elicitation process and that have been uncovered by the development
team.

ÕÕÕ

1 On-site customer is one of the core Extreme Programming practices that relates to the agile
principle of Business people and developers must work together daily throughout the project.

 15/50

VALIDATE ITERATIONS and on-site customer are highly complementary, if one of
the two is not done, then there is a significant risk of failure of iterative
development. On-site customer is about enabling iterative, incremental user
acceptance testing, and VALIDATE ITERATIONS is about formally confirming
user acceptance test results.

Results of the validation workshop are documented in an Iteration
Assessment that consists of

• A list of features that the customer has accepted

• A list of outstanding requirements

• A list of re-work items

After a validation workshop, and prior to SCOPE TRADING, high-level
requirements specifications need to be updated and revised such that
requirements size estimation is possible.

The total duration of the end-of-iteration activities including SCOPE

TRADING varies from less than a day of up to five days in the extreme case—
the less time is used the better, however the level of discipline cannot be
compromised. The amount of effort involved depends on the amount of
requirements covered, complexity of the functionality under validation, and
on how quickly consensus between stakeholders and amongst the end users
can be reached.

Ideally an end user drives the presentation of the system, explaining new
functionality to his peers. Alternatively a business analyst may drive the
presentation.

Independent of the main presenter, a facilitator familiar with the software-
under-construction is required to reach agreement on whether specific
implemented features satisfy requirements or require modification to be
acceptable to the customers. The facilitator also acts as the scribe and
documents all features and parts of features that the end users accept as
presented. Features may be accepted subject to minor modifications that
need to be documented in the workshop. The deficiencies of features not
acceptable to the end users or to other business experts in the audience need
to be documented by the facilitator.

In distributed projects that span time zones and geographies, validation
workshops may need to be conducted using electronic means such as
video/voice conferences coupled with web-based tools that allow the sharing
an application across several sites. In the scenario of a large number of
stakeholders (customers), validation workshops may need to be performed
involving representatives from a product user group and selected customer
representatives. Additionally, there may be a requirement to conduct more
than one workshop with different audiences—in which case care has to be
taken not to hold up further product development by dragging out the end-
of iteration activities.

ÕÕÕ

 16/50

One of the authors has been applying this pattern consistently over
many years in many projects. The pattern has been introduced very
successfully into several organizations that were initially skeptical of
the value of timeboxed iterative software development.

Based on practical project experience, the first validation workshop
can be somewhat of an anti-climax for users and stakeholders for two
reasons. Firstly the validation workshop uncovers misunderstandings,
which raises questions about the capability of the software development
team and the software development process. Secondly, not much visible
functionality is available at the end of the first iteration, as much of the
initial effort is used to eliminate architectural risk and to build "behind
the scenes" infrastructure. It is the second iteration workshop that
usually wins the customer's confidence, where the customer sees that
feedback provided in the previous workshop has been fully addressed.

EXTRACT THE INFRASTRUCTURE **

You are developing a software system (family) using model driven de-
velopment techniques. You do not yet have an MDSD infrastructure for the
respective domain in available.

ÕÕÕ

At the beginning of an MDSD project you often don’t know how to
get started. You know, that you should use ITERATIVE DUAL-TRACK

DEVELOPMENT, but how do you get started, anyway? You want to
have at least one running application as fast as possible.

Building a MDSD infrastructure requires you to think in terms of model
transformations and meta models. You will have to scatter the
implementation code over many transformation statements/rules (code
generation templates, etc.). This is an approach many people are not use to.

Also, you want to make sure you don’t have to debug the generated code
forever in the early phases of the project. The generated code should have a
certain minimum quality. You want to make sure it actually works.

Therefore:

Extract the transformations from a running example application. Start
by developing this prototype conventionally, then build up the MDSD
infrastructure based on this running application. Start ITERATIVE

DUAL-TRACK DEVELOPMENT after this initial stage.

 17/50

Manually
Developed
Prototype

Transformations

DSL(s)

Metamodel

Application Model

Platform(s)
Application

Development

Infrastructure
Development

ÕÕÕ

The prototype application should be a typical application in the respective
domain, not overly simply, but also not too complicated. If you are building
a big and complex system, only use a subsystem of the whole system as an
example.

There are two flavors of this pattern:

� In case you have been working on applications in the respective
domain for a while and want to introduce a model-driven approach,
you EXTRACT THE INFRASTRUCTURE from the previously developed
applications.

� In case you start with a completely new software system family (green
field), you should really develop a prototype in the sense of the word
and EXTRACT THE INFRASTRUCTURE from it.

Note that it is important that you extract the infrastructure from an
application that has high-quality architecture since this will be the basis for
your software system family. So, even if you do have a set of legacy
applications, it might be a good idea to write a new prototype with a new,
improved, cleaned-up architecture.

Based on the experience of the authors as well as other practitioners, this
infrastructure extraction (or “templatization”) takes roughly 20-25% of the
time it takes to develop the prototype.

This approach not only allows you to extract the transformations, it also
helps you come up with a reasonable domain meta model as a basis for your
DSL. Coming up with an expressive, small DSL also needs iterations as
described in ITERATIVE DUAL-TRACK DEVELOPMENT.

Note also that some kinds of generators (specifically those using text
templates) support the extraction of template code from running programs
very well.

As a final remark we want to mention that the “templates” as mentioned
above have nothing to do with C++ templates. Code generation templates

 18/50

are typically specific to a generator and allow you to navigate over the meta-
model. They provide all the usual control logic constructs, nesting, etc.
Typically, they are quite small and simple to use.

ÕÕÕ

In a project to develop a model-driven infrastructure for embedded
systems, the communication core for the system family will be
completely generated from models. The project will first develop a
complete implementation of the core for one specific scenario manually
and then extract the generative architecture from this prototype. This is
done although the company does have experience in the domain.

This pattern was the motivation for the LANSA template language, and
it was later used in 1993 as the foundation for LANSA RUOM, a
customizable template language-based model-driven generator. One of
the authors consistently used "templatization" of prototype code to
automate pattern-based development in many projects from 1994
onwards, to build insurance systems, distribution systems, enterprise
resource planning systems, and electricity trading systems. Although
today's MDSD tools still use non-standardized template languages, the
fundamental process is the same. The authors can confirm the validity
of this pattern for software development with LANSA RUOM [LANSA],
Codagen Architect [Codagen], eGen [Gentastic], GMT Fuut-je [Eclipse
GMT], the b+m openGeneratorFramework [GenFW].

BUILD A WORKFLOW (P)

Formalize the development process, for which workflow is a good paradigm.
Make it changeable and agile. Having a documented workflow process helps
to build team routines. Nothing helps more in keeping schedules and deliver
quality than having ingrained routines.

Domain Modeling

FORMAL META MODEL **

You are developing a MDSD infrastructure for a software system family.
You want to define your applications (family members) using a suitable
Domain Specific Language (DSL).

ÕÕÕ

 19/50

A domain always contains domain-specific abstractions, concepts and
correctness constraints. These have to be available in the DSL used
for developing applications in the domain. How do you make sure
your DSL and the application models defined with it are correct in
the sense of the domain?

Consider a DSL based on UML plus profile where you represent domain
concepts as stereotyped UML classes. While UML allows you to define any
kind of associations between arbitrary model classes, this might not make
sense for your domain. Only certain kinds of associations might be allowed
between certain kinds of concepts (stereotyped classes). In order to come up
with valid models, you have to respect these domain-specific constraints.

Therefore:

Use a formal means to describe your meta model. Describe it
unambiguously and make it amenable for use by tools (IMPLEMENT

THE META MODEL) to actually check your application models
described using the DSL. TALK METAMODEL based on the FORMAL

METAMODEL to verify it during its use.

ÕÕÕ

There are several useful notations for defining meta models. One very
popular one, especially if you’re using a UML-based DSL is MOF. If your
DSL is based on extending the UML (e.g. using a Profile), make sure your
meta model is as restrictive as possible and only allows the constructs you
want to support explicitly – “disable” all the non-useful default UML
features. Another useful meta modeling technique can be based on feature
modeling – especially if you’re mainly configuring applications with
features.

It requires quite some domain-experience to come up with a good domain-
specific meta model and DSL. In many organizations, however, a model-
driven approach is used primarily to auto-generate the “glue code” required
to run business logic on a given technical platform. In such as case, you may
want to use an ARCHITECTURE-CENTRIC META MODEL.

If the latter approach is used, the main purpose of the meta-model is to
enforce specific architectural constraints and to provide an efficient
mechanism for designers to express specifications that is free from concrete
syntax of implementation languages and from implementation-platform
dependent design patterns.

When building the meta model, make sure you understand your domain.
Building a glossary or ontology as a first step can help. Of course, the meta
model is defined incrementally, using ITERATIVE DUAL-TRACK

DEVELOPMENT.

Note that a FORMAL METAMODEL is a very important precondition for
coming up with a valid DSL and it is also the base for IMPLEMENTING THE

 20/50

METAMODEL – itself the basis for domain-specific tool support. However,
you still need to verify that the metamodel actually represents the real-world
domain correctly; you may want to TALK META MODEL to do this.

ÕÕÕ

The ALMA radio astronomy project uses the meta model defined below
to define (parts of) its data model. The meta model has been iteratively
developed and finally it has been formally documented in the form
below. The meta model is also implemented for use by the code
generator tool.

ALMA
Metamodel

UML Metamodel
UML::Class

Alma::Entity Alma::
DependentClass

/part

0..*

/part

0..*

Alma::
ValueType

Alma::
Alma

AbstractClass

attributes must
be primitive types
or value types

Alma::
Physical
Quantity

UML::Attribute

min : self.Type
max : self.Type

Alma::Bounded
Attribute

Type must be
int, long, float or
double

values : String

Alma::
EnumAttribute

1valueAttr
1unitAttr

{subsets
attribute}

{subsets
attribute}

Type of value
attributemust be
int, long, float or
doubleType of unit

attributemust be
String

must have only
the value and the
unit attribute, no
other attributes

/attribute

0..*

Alma::
Subsystem

/createdEntities
/usedEntities

the values are a
list of token
separated by !

{subsets
 dependency}

The following two diagrams show a somewhat more elaborate meta
model that has been developed for large-scale distributed development
of business applications, see [Bettin 2003] for more information.

 21/50

Another situation where a formal meta model really helped was while
writing a book on model-driven development. We wanted to sort out the
commonalities and differences between MDSD, MDA, GP and
architecture-centric MDSD. The breakthrough came when we came up
with a FORMAL META MODEL for the domain of MDSD and its
specializations.

TALK META MODEL (P)

It is important to continuously improve and validate the FORMAL META

MODEL for a domain. It has to be exercised with domain experts as well as

 22/50

by the development team. In order to achieve this, it is a good idea to use it
during discussions with stakeholders by formulating sentences using the
concepts in the meta model.

Component

Port
owns *

Interface
implements 1

Required Port Provided Port

provides
operations
defined by

provides access to operations defined by

Consider the example meta model above. When talking to stakeholders, use
sentences like

� A component owns any number of ports.

� Each port implements exactly one interface.

� There are two kinds of ports: required ports and provided ports.

� A provided port provides the operations defined by its interface.

� A required port provides access to operations defined by its interface.

As soon as you find that you cannot express something using sentences
based on the meta model, either a) you have to reformulate the sentence, b)
the sentence’s statement is just wrong, or c) you have to update the meta
model.

This technique is a well-known technique in domain modeling and relates to
the ubiquitous language pattern in Eric Evan’s book [Evans 2000]. The book
contains many other useful techniques – after all, meta-modeling is also some
kind of modeling.

ARCHITECTURE-CENTRIC META MODEL (P)

In case you cannot come up with a sophisticated, domain-specific meta
model you can represent the concepts of the technical platform directly in
the meta model. This results in architecture-centric model-driven
development and in relatively simple transformations. Over time, more and
more domain-specific concepts can be added to the meta model, making
models more expressive, less dependent on the technical platform, but
requiring more complex transformations.

 23/50

Tool Architecture

IMPLEMENT THE META MODEL **

You have a FORMAL META MODEL for your domain.

ÕÕÕ

Having a formally defined meta model for your domain is a good
thing; however, you need to use it efficiently when developing
applications that are part of the defined family. The meta model will
not be useful if it is only documented on paper somewhere – just as
any paper-only artifact.

Manually checking models against the underlying meta model is an error
prone and tedious task. Relying on off-the-shelf modeling tools typically
does not help, since they don’t “understand” your meta model (this may
change over time!). UML tools, even if they understood your meta model,
could only check UML based models.

However, to make sure your generator can actually generate and configure
your application, you have to make sure your model is “correct” in the sense
of the meta model.

Therefore:

Implement the meta model in some tool that can read a model and
check it against the meta model. This check needs to include
everything including declared constraints. Make sure the model is
only transformed if the model has been validated against the meta
model.

ÕÕÕ

This approach is in line with MDSD, since you want to make sure your
meta model is not „just a picture“, but instead a useful asset in your MDSD
process. You can generate the implementation for the meta model from the
meta model itself using an MDSD approach, or implement it manually.

The meta model implementation is typically part of the transformation
engine or code generator since a valid model is a precondition for successful
transformation.

ÕÕÕ

The b+m generator framework [GenFW] allows the implementation of
the domain meta model using Java classes. Each meta model element is
implemented as a Java class. When a model is read, the model is
represented as instances of the meta model elements. Since all meta
model classes can implement a CheckConstraints() operation that is

 24/50

called by the framework, it is easy to implement constraint checking.
The generator uses the UML meta model as a default, which can be
extended or replaced by the developer.

LANSA RUOM was designed to not only provide an OO modeling
capability, but also a limited degree of meta-modeling focussing on the
definition of architectural constraints. LANSA RUOM allows users to
define the allowable dependencies between different [user definable]
types of components, and then prevents illegal dependencies from being
defined in the RUOM modeling tool. This approach is distinctly
different from the approach of standard UML modeling tools, where
virtually no constraints are checked, and where only conformity with
UML syntax is checked. See [Bettin 2001] for an example of a situation
where conformity with standard UML syntax gets in the way of visually
expressing architectural structure. The RUOM meta modeling
capability has proved useful for many organisations.

The eGen generator from Gentastic allows visual meta-modeling, and
generates a design portal that enforces the constraints consistent with
the cardinalities in the meta-model. This approach is ideal for the
definition of domain-specific meta models. The main drawback in this
particular example is the quality of the generated design portal.

The current version of the GMT Fuutje tool allows limited soft-coded
meta-modeling along the lines of UML tagged values, i.e. meta model
elements can be extended with additional attributes. More extensive
meta-model changes need to be realized in the form of Java code,
probably somewhat similar to the approach taken in the b+m
generator.

The Codagen Architect generator is tied to the UML meta-model, and
relies on tagged values to be passed from standard UML tools to the
generator. This approach does not allow for any constraint checking at
design time in the UML tool, and any "invalid" tagged values in UML
models are detected only at generation time.

IGNORE CONCRETE SYNTAX **

You want to transform a model or generate code from a model.

ÕÕÕ

Every model must be represented in some concrete syntax (e.g. XMI
for MOF-based models). However, defining the transformations in
terms of the concrete syntax of the model makes your transformations
clumsy and cluttered with concrete syntax detail when you really want

 25/50

to transform instances of your meta model. How can you make sure
your transformations do not depend on concrete syntax?

Definition of transformations based on the concrete syntax is typically a
very error-prone an inefficient task. Consider using XMI. XMI is a very
complicated syntax. Defining transformations based on XMI (and maybe
XSLT) is not very efficient.

Also, in many cases several concrete syntaxes are useful for the same meta
model, for example if you are using different DSLs for different TECHNICAL

SUBDOMAINS. Defining the transformations based on concrete syntax
unnecessarily binds the transformation to one specific concrete syntax.

Therefore:

Define transformations based on the source and target meta models.
Make sure the transformer uses a three phase approach:

• first parse the input model into some in-memory representation
of the meta model (typically an object structure),

• then transforms the input model to the output model (still as
an object structure)

• and finally unparse the target model to a concrete syntax

Concrete
Syntax
Parser

Application
Model

(Concrete Syntax)

Source Model AST
(Instance of the

source metamodel)
Transformer

Target Model AST
(Instance of the

target metamodel)

Unparser/
PrettyPrinter

Target Model
(Concrete Syntax)

ÕÕÕ

This approach results in a much more efficient and productive way of
specifying transformations. It also makes the transformer much more
flexible, because it can work with any kind of concrete syntax. This is
particularly important in case of XMI-based concrete syntax, because the
details of XMI vary between UML tools. You don’t want to bind you
transformation to one specific tool (and maybe even tool version).

Code generators (transforming a model to code) often do not use the full
three phase approach, but directly generate textual output from the input
model instance; creating an output AST instance would be overly
complicated. Instead, templates are used that access the source meta model.

Note that this approach fits together neatly with the IMPLEMENT THE META

MODEL pattern. If done right, the same implementation can be used for both
purposes. The templates can then access the meta objects directly; properties
of the meta objects can be used to provide data for template evaluation as
shown in the following illustration.

 26/50

It is also worth pointing out that compilers have been using this approach
for a long time. They are structured into several phases, the first one parsing
the concrete syntax and building an abstract syntax tree in memory, on
which subsequent phases operate.

Name() : String

<<metaclass>>
UML::Class public class <<Name>>

 implements <<Name>>Interface {
 // more
}

Metamodel Template

ÕÕÕ

The diagram above is representative of most template language based
generators/transformers.

Revisiting the b+m generator framework, we already saw that it
represented the applicable meta model as Java classes. The
transformations are template-based (since it generates code directly).
These templates can contain statements that reference the meta model
and its properties. You do not see anything of the concrete syntax of the
model. A front-end is responsible for parsing the concrete syntax and
instantiating the meta model elements.

Just as the B+m generator, Fuutje GMT, Codagen Architect, eGen, and
LANSA RUOM all use a template language to shield the user from the
concrete syntax of the model. In LANSA RUOM the template language
is fairly weak, which is compensated by allowing fully user definable
pre-template processors, which perform the role of translating between
concrete model syntax and template variables at generation time. In
eGen the available template variables and navigation are a direct
reflection of the user definable meta model.

As far as we know, most of today's MDA tools rely on non-standard
template languages for the mapping of models to textual artifacts such
as code. Limitations of these template languages and issues with
proposed alternative approaches are sketched in [Bettin 2003b].

MODULAR, AUTOMATED TRANSFORMS (P)

In order to more easily reuse parts of a transformation, it is a good idea to
modularize a transform. Consider the following example. There we
generated J2EE code from a banking-specific model.

 27/50

Banking-
Metamodell

Bank /
OO OO Metamodel

J2EE Metamodel
Process

Metamodel
Bank /
Prozess

OO/
J2EE

Process/
J2EE

WLS
Metamodel

WebSphere
Metamodel

J2EE/
B

EA

J2EE/
IB

M
Java

Metamodel

BEA/
Java

IBM/
Java

Imagine now we want to generate J2EE code for call center applications.
Since the transformations are modular, we just have to exchange the first
part. All the work that went into the subsequent transformations can remain
unchanged.

CallCenter
Metamodel

CC /
OO OO Metamodel

Process
Metamodel

CC /
Prozess

...

...

...

Finally, if we want to port both software system families to .NET, we just
have to exchange the backend.

OO Metamodel

Process
Metamodel

OO/
.NET

Prozess/
.NET

.NET Metamodel .NET/
C# C# Metamodel

If you had a only one single, direct transformation, this kind of reuse would
not be possible. Note that in contrast to the OMG, we do not recommend
looking at, changing or marking the intermediate models. They are merely a
standardized format for exchanging data among the transformations. If we
need model markups to control or configure some or all of the
transformations, these should be supplied as EXTERNAL MODEL MARKINGS.

TRANSFORMATIONS AS FIRST-CLASS
CITIZENS (P)

Transformations are an important asset in MDSD. It is not appropriate to
consider them “second thought”. You have to refactor them, document
them, version them, think about how you can merge different branches, etc.
In short, you should consider transformations to be first class citizens and
treat them accordingly.

 28/50

ASPECT-ORIENTED METAMODELS (P)

If you implement the metamodel, make sure you don’t mix problem-domain
metamodel, stuff with solution-space utility functions. Separate them out of
the metamodel using AO techniques.

DESCRIPTIVE INFORMATION IN MODELS
(P)

In order to facilitate versioning and multi-version generators, you have to
make sure, the generator knows for which version of the DSL a particular
model has been built. To make this possible, embed this descriptive
information in the model; this might also include author, release status, etc.

In DSLs using custom syntax, adding this information is trivial. In UML it is
not as trivial, at least if you want to keep the approach portable. The
following approach works portably in all tools: add a class with a reserved
stereotype that has tagged values for the you want to represent. The
following is an example.

{Author=Markus,
DSLVersion=1.3}

<<ModelInfo>>
ThisIsTheModelname

Application Platform Development

TWO STAGE BUILD *

You are working in the context of a software system family and need to
design a model driven generator.

ÕÕÕ

It is often very complex to incorporate all product configuration steps
into one transformation run. Features might have dependencies
among each other. Different parts of the system are typically
specified using different means. How can you build a simple,
maintainable, and adaptable transformation process?

Consider the selection of a target platform. Depending on the platform,
different transformations must be executed. The selection of the platform
thus determines which transformations to execute. It is very hard to

 29/50

incorporate all alternatives into one set of transformations that takes care of
all possibilities.

Other such issues are the selection of certain libraries, or typical cross-
cutting concerns.

Therefore:

Separate the generation run into two stages: the first stage reads
some kind of configuration and prepares the actual generator for the
core transformation. The second stage is the execution of the
transformer and uses the preparations done in the first stage.

Stage 1
Tool

System
configuration

Generator
configuration

Application
Model

Transformer/
Generator

Generated
Application

ÕÕÕ

In many cases, the first stage uses a different tool (such as a batch file or an
ant script) to prepare the generator itself. Also, while the model for the
second phase often describes application functionality or structure, the
specification for the first step is actually more of a tool configuration
activity.

As a consequence of the fact that there is no well-proven paradigm for
transformation/template code management, each tool has its own
idiosyncrasies. Usually the approach taken is driven much more by the tool
architecture than the structure of the domain. Since many tools use a file-
based approach, the example given below is representative.

Note that this approach is also used in open source distributions, where make
install is used to prepare the makefile that in a second step builds the
application.

ÕÕÕ

In the small components project, an XML-based specification is used to
define the target platform, etc. Based on this, the ant tool is used to
prepare the environment in which the generator operates; specifically,
it copies the applicable set of template files to the locations from where
the generator will load them. In a second stage, the generator itself
processes the templates and thus generates code from the application
model, this one being a combination of UML and XML.

 30/50

As indicated earlier, in LANSA RUOM pre-template processors read
the model, and set up the template execution environment for each
template. The pre-template processors are also the place for model-
driven integration, as they may access meta-information about pre-
existing systems as required, and make this information available to
RUOM templates. Another interesting feature of LANSA RUOM is the
existence of post-template processors, which allow the replacement of
user definable tokens (post-template processor commands) with
arbitrary code. The tokens need not always be present in the template,
but may be part of the generated code—resulting from computations
with template variable content. Thus in LANSA RUOM the build
consists of three main stages. This feature would not be required in a
template language that fully supports recursive template execution.

In general there are significant differences in the way tools prepare and
coordinate template execution. In eGen for example, code that links
templates is physically separated from template code. In Codagen
Architect, the template execution sequence and relationships between
templates are indirectly specified via a classification scheme of
templates and via the ordering in the list of templates. The common
theme through all the tools is a "multi-stage" build.

SEPARATE GENERATED AND
NON-GENERATED CODE **

You are generating large portions of your application, but you still have to
program some aspects manually.

ÕÕÕ

If only parts of the application is generated, “blanks” must be filled-
in by manual programming. However, modifying generated files by
adding non-generated code creates problems in the areas of
consistency, build management, versioning and overwriting of
manually written code when regenerating.

If generated code is never ever modified, the whole generation result can
simply be deleted and regenerated if necessary. If the code is modified, there
must be special protected areas that the generator does not delete when
regenerating code; this requires the generator to actually re-read the
generated code before regeneration and to preserve the protected areas.
Consistency problems can arise (when the model is changed in ways that
make the non-generated parts incompatible).

 31/50

Also, versioning is more complicated, since the manually written code and
the code generated from the model are in the same file, although they should
be versioned independently.

Therefore:

Keep generated and non-generated code in separate files. Never
modify generated code. Design an architecture that clearly defined
which artifacts are generated, and which are not. Use suitable design
approaches to “join” generated and non-generated code. Interfaces as
well as design patterns such as factory, strategy, bridge, or template
method are good starting points (see [GHJV95]).

Connected by Patterns, etc.

GeneratorApplication
Model

Generated
Source

Manually
Written
Source

Compiler/
Build Tool

Complete
System

ÕÕÕ

As a consequence of using this pattern, the application is forced to have a
good design that clearly distinguishes different aspects. Generated code can
be considered a throwaway artifact that need not even be versioned in the
version control system. Consistency problems thus cannot arise.

There is another reason why this pattern is critical: Often the hand-crafted
code (that is not practical to generate) is also the code that needs to be
adapted when implementing a new variant of a product or a family member
of a product line. Thus separating generated from non-generated code is
critical for effective management of variants and helps to identify points of
variation.

On the downside, this approach sometimes requires a bit more elaborate
design or some more (manual) programming.

Sometimes, for performance reasons, there are situations when direct
insertion of manually written code into generated code is unavoidable, this
makes the introduction of protected areas mandatory.

This pattern can be generalized in the sense that in many cases, you have
several generators generating different parts of the overall system, for
example in the context of TECHNICAL SUBDOMAINS. Manually written code
can be seen as only a very special kind of generator (the programmer ☺).
The architecture clearly has to cater for these different aspects.

 32/50

ÕÕÕ

The following diagram shows, how generated and non-generated code
could be combined, using some of the patterns mentioned above.

a)

b)

c) d) e)

generated code non-generated code

First of all, generated code can call non-generated code contained in
libraries (case (a)). This is an important use, as it basically tells you to
generate as few code as possible and rely on pre-implemented
components that are used by the generated code. As shown in (b), the
opposite is of course also possible. A non-generated framework can call
generated parts. To make this more practicable, non-generated source
can be programmed against abstract classes or interfaces which the
generated code implements. Factories can be used to „plug-in“ the
generated building blocks, (c) illustrates this.

Generated classes can also subclass non-generated classes. These non-
generated base classes can contain useful generic methods that can be
called from within the generated subclasses (shown in (d)). The base
class can also contain abstract methods that it calls, they are
implemented by the generated subclasses (template method pattern,
shown in (e)). Again, factories are useful to plug-in instances.

RICH DOMAIN-SPECIFIC PLATFORM **

You are generating code from domain-specific models.

ÕÕÕ

In the end, application models must be transformed to a certain
target platform to be executed. The bigger the difference between the
domain concepts and the target platform, the more complex the
transformations have to be. With today’s tools this can become a
problem.

 33/50

Transformations should be as simple and straightforward as feasible. This is
mainly because of the fact that today’s development environments (IDEs,
Wizards, Debuggers, etc.) are much more elaborate for “traditional”
development. The more work can be done “the normal way”, the better.

A good example for the problem described here is object-relational mapping
tools. The impedance mismatch between the OO philosophy and the
relational data model is a major problem that is only now being solved really
well, although the problem has been around for a while.

Therefore:

Define a rich domain-specific application platform consisting of
libraries, frameworks, base classes, interpreters, etc. The
transformations will “generate code” for this domain-specific
application platform.

Domain
Platform

Technical
Platform/
Middleware

Operating System

Programming Language

- Persistence
- Transactions
- Distribution
- Scheduling
- Hardware Access
- ...

- Core Domain
 Classes (Entities,
 Value Types, ...)
- Business Rules
- Business Services
- ...

Generated Applications

ÕÕÕ

The code generated will not just consist of “real code”, but also of
configuration files, deployment information and other artifacts that can be
used by the DOMAIN-SPECIFIC PLATFORM. Incrementally grow the power of
your DOMAIN-SPECIFIC PLATFORM (frameworks, libraries) as the depth of
your understanding of the domain increases. This reduces the size and the
complexity of the “framework completion code” that needs to be generated
(and sometimes even hand-crafted). Transformations become less complex,
which is desirable, given the limitations of today’s tools.

Note that this pattern must not be overused, otherwise we are back to
normal development. You should still model your business logic as far as
possible with suitable DSLs and generate the implementation. Also, any
kind of glue code or configuration data that is specific to the modeled
application should be generated; LEVERAGE THE MODEL!

 34/50

Once the application platform grows near enough to the concepts in the
DSLs, the complexity of the transformations will decrease. The generator
can be limited to generating repetitive “glue code”. As long as tool support is
still limited, this approach is very practical. In the end, this approach will
allow you to use an ARCHITECTURE-CENTRIC META MODEL.

The key to application platform design is the iterative, incremental approach
in the context of ITERATIVE DUAL-TRACK DEVELOPMENT. Designing
elaborate frameworks up-front consistently leads to failure. Instead, small
frameworks combined with code generation provide a solid base for iterative
improvement. When generation gets hard to implement, usually the answer
lies in improving the frameworks. Conversely when implementing
framework features gets too hard, often generative techniques can provide an
elegant solution. Depending on your deepening of the understanding about
the system you will refactor back and forth between DSL/generator and
platform.

Note that as a consequence, you can use the core concepts of your
application platform in the domain meta model. In general, a DSL and a
framework/platform can be considered as the two sides of the same coin: the
framework provides core concepts and functionality, whereas the DSL is
used to “use” these concepts in an application-specific sense.

ÕÕÕ

The Time Conscious Objects (TCO) toolkit from SoftMetaWare [BH
2003] is a good example of how a framework and generative techniques
complement each other. In this case the framework provides support for
the concept of "time", and the meta model enables "time conscious
classes" to be tagged at a high level of abstraction with the appropriate
level of time consciousness.

Architecture centric MDSD as advertised by b+m and several other
pragmatic MDSD people explicitly aims at representing the core
concepts of the platform’s architecture in the domain meta model.

An example of a domain-specific language that heavily depends on a
rich domain-specific framework is provided in [Bettin 2002]. In this
example the DSL is a visual notation for the specification of behavior in
object-oriented user interfaces.

On the "Zemindar" project one of the authors used a DSL to enable
end-user programming of complex arithmetic and statistical functions
at run-time. In this case the DSL did not have to be invented, and a
third-party off-the-shelf Java spreadsheet component was used as the
DSL. The same project also used a model-driven generator, but it
would have been completely impractical to re-implement a framework

 35/50

for spreadsheet functionality from scratch—or even worse, to attempt to
"generate" such functionality.

TECHNICAL SUBDOMAINS **

You are building a large and complex software system family using MDSD

ÕÕÕ

Large systems typically consist of a variety of aspects they cover.
Describing all of these in a comprehensive model is a very complex
and daunting task. The model will become complicated and full of
detail for a variety of aspects. Also, the DSL used for one aspect
might not be suitable to describe some of the other aspects.

Consider using a UML-based DSL to describe the application functionality
(business logic). Now in addition you also have to describe persistence
aspects as well as GUI design and layout. You will have to indicate persistent
items in the DSL, such that appropriate code and table structures can be
generated for persistence. It is very hard to put all that into the same model.
A UML-based language is typically not suitable for those aspects. Trying to
model GUI layout with UML is practically impossible.

Also, having it all in the same model makes maintenance complicated and
prevents the efficient separation of work packages for different teams.

Therefore:

Structure your system into several technical subdomains. Each
subdomain should have its own meta model, and specifically, its own
suitable DSL. Define a small number of GATEWAY META CLASSES, i.e.
meta model elements that occur in several meta models to help you
join the different aspects together.

Technical Subdomain 1
(e.g. Business logic)

Metamodel
1

DSL 1

Technical Subdomain 2
(e.g. Persistence)

Metamodel
2

DSL 2

Technical Subdomain 3
(e.g. GUI)

Metamodel
3

DSL 3

ÕÕÕ

This pattern is especially useful if you IGNORE THE CONCRETE SYNTAX in
your transformation engine since it allows you to represent the gateway
meta model elements (those that occur in several subdomain meta models)
using the different concrete syntaxes of the different domains, while
representing them in the same way inside the transformer (and thus
providing a natural integration of the different meta models).

 36/50

Note that this pattern deals with the partitioning of the system into several
technical subdomains, not with structuring the whole system into different
functional packages. The latter is of course also useful and should be done
too.

A very specific TECHNICAL SUBDOMAIN is MODEL DRIVEN INTEGRATION.
Mapping and wrapping rules can be very nicely specified using a suitable
DSL. GENERATOR-BASED AOP can also be a way to handle cross-cutting
TECHNICAL SUBDOMAINS.

ÕÕÕ

The Time Conscious Objects (TCO) toolkit from SoftMetaWare is
explicitly designed to unobtrusively fit into existing architectures as a
technical subdomain. I.e. TCO assumes that a pre-existing system may
be based on an arbitrary object-oriented modeling language (which
could be UML or plain old Java code), and the very simple DSL of TCO
allows users to annotate the model with information about the level of
time consciousness of objects.

The small components project uses a UML based DSL for specifying
interfaces, dependencies, operations and components. It uses a
completely different DSL based on a suitable XML DTD to define
system configuration, component instance location and technical
aspects configuration such as remoting middleware.

The DSL for specification of behavior in object-oriented user interfaces
[Bettin 2002] can easily be used in combination with other modeling
languages such as standard UML to specify object structure.

MODEL-DRIVEN INTEGRATION *

You need to integrate your MDSD developed software with existing systems
and infrastructure.

ÕÕÕ

Green field software development projects are rare, mostly new
software is developed in the context of one or more existing systems
that will still be around for a while. Additionally, often there is a
desire to phase out some of the legacy systems over time, and to
incrementally replace them with an implementation that better
addresses business needs and that is based on a current technology
stack. Integration among different – new and legacy – systems is thus
part of many projects, model-driven or not.

Depending on the integration strategy the code may need to be generated in
the context of the current technology stack and/or the relevant technology
stack of the system to be integrated with. Generated artifacts may also

 37/50

include appropriate data-conversion scripts for one-off use. Typically,
integration revolves around mapping of APIs using a systematic approach,
including necessary data conversions.

Therefore:

Extend the model-driven software development paradigm to the
domain of integration among software systems. Mapping information
between systems is most valuable when captured in a model.
Approach integration as part of MDSD, not outside of MDSD. Define
a TECHNICAL SUBDOMAIN for MODEL-DRIVEN INTEGRATION. If it gets
complex, consider using one TECHNICAL SUBDOMAIN per system.
Define the DSLs in these domains that enable you to express the
mapping of relevant elements in your business domain model and the
existing legacy systems. Use automation to ensure that “switching-
off” of legacy systems is possible even after you've left the project.

ÕÕÕ

Integration with exiting systems is a strength and not—as sometimes
alleged—a weakness of a model-driven approach.

In case of integration between two separate model-driven systems, it may be
beneficial to split the integration code generation between both systems such
that the knowledge about the different technology stacks does not have to be
duplicated in template definitions etc.

For simple integration issues a TECHNICAL SUBDOMAIN may be overkill, and
it may be sufficient to use UML tagged-values or an equivalent concept in a
DSL to capture the mapping between relevant elements in your business
domain model and elements in existing systems. Only take this approach if
this information does not clutter up and detract from the domain model,
and only if the integration is between systems/sub-systems that are not
legacy systems that are due to be phased out.

In particular if a legacy is planned to be phased out, ensure that integration
code can easily be removed once it is no longer needed, otherwise dead code
leads to architectural degradation over time. Make use of an Anticorruption
Layer as described in [Evans]. Specify the mapping using EXTERNAL MODEL

MARKINGS.

Consider automating the gradual "switching-off" of legacy systems to the
degree where it amounts to identifying switched-off parts using the DSL in
the relevant subdomain model. Be a good citizen and make life easy for
coming generations—remember that the people who may be switching-off
the last parts of a legacy system in three years may know very little about
the integration code.

ÕÕÕ

 38/50

One of the authors has used this pattern many years ago in conjunction
with LANSA RUOM to integrate for example with legacy infrastructure
for security. The RUOM feature of pre-and post-template processors
was essential in this context.

GENERATOR-BASED AOP *

You are developing a software system (family) using MDSD techniques. You
generate implementation code using some kind of code generator.

ÕÕÕ

In many applications, cross-cutting concerns must be handled
consistently and in a well-localized manner. Programming languages
do not provide support to modularize these concerns; adding another
tool (i.e. an aspect weaver) is often not possible because of
insufficient support, tool availability or developer skills. How can you
still handle cross-cutting concerns in a consistent way?

In the case of a business application that should be made available to several
clients, it is often required to bill each client’s use to the respective client. It
is thus necessary to log the execution of each operation and determine the
cost associated with the invocation.

Another cross-cutting aspect that needs to be handled in this scenario—as
well as in many other scenarios—is authorization (checking whether a client
has the right to access specific functionality or to read, modify, or delete
specific information). A client may only be allowed to see data it "owns",
and it may also be restricted to usage of a subset of the overall application
functionality.

To ensure consistency, you want to make sure these aspects need not be
manually handled by application developers – rather, some form of AOP
should be used to handle these cross-cutting aspects in a centralized manner.

Therefore:

Implement the handling of cross-cutting concerns with the help of
the generator. You can either take advantage of the generator’s
integral features (e.g. consider that it generates many instances of a
meta model element with the help of one transformation/template) or
use the generator to implement proxies, interceptors and other AOP-
addressing design patterns in the generated system. Consider the
cross-cutting concern a TECHNICAL SUBDOMAIN and provide a
suitable DSL for it.

 39/50

anOperation(x): String
anotherOperationx,y):void

<<Service>>
SomeService

anOperation(x): String
anotherOperationx,y):void

SomeService

anOperation(x): String
anotherOperationx,y):void

SomeServiceOperations
delegate

manually
implemented
business logic

String anOperation(x) {
 checkSecurity(this, "anOperation", {x} ,
 someClientID);
 bill(this, "anOperation", someClientID);
 return delegate.anOperation(x)
}

generated

ÕÕÕ

As a consequence of applying this pattern, you don’t have to use an
additional tool (the aspect weaver) while still being able to handle cross-
cutting concerns. Of course it is not possible to address all kinds of cross-
cutting concerns; aspect-weavers that operate on language level such as
AspectJ are much more powerful and of more general-purpose applicability.
However, in many circumstances, the generator-based approach is sufficient.
In addition, you always have the freedom to adapt the structure of the
generator (and maybe of the application platform architecture) to allow
handling of the aspects you require.

ÕÕÕ

In an EJB project this approach was used to generate exactly the kind
of proxy mentioned above. Dynamic security checks were implemented,
as was very expressive auditing and logging.

PRODUCE NICE-LOOKING CODE …
WHEREVER POSSIBLE **

You generate application code from models.

ÕÕÕ

In many cases, the idea that developers never see generated code is
unrealistic. While developers never modify generated code, they will
probably see the generated code when debugging the application or
when verifying the transformation engine configuration. How can you
make sure developers actually understand generated code and are not
afraid of working with it?

The prejudice that “you cannot read/work with/debug generated code” is a
well established one. In some settings this is even the reason why code
generation, and model-driven development is not used at all. Fighting this
prejudice is thus crucial.

 40/50

Therefore:

PRODUCE NICE-LOOKING CODE … WHEREVER POSSIBLE! When
designing your code generation templates, also keep the developer in
mind who has to – at least to some extent – work with the generated
code.

ÕÕÕ

There are several things you can do to make your code look nice:

• You can generate comments; in the templates, you have most if not
all information available to add meaningful comments. Typically you
can even adapt comments to the generated code by templatizing
comments.

• Because of typically unsufficient “whitespace management support”
in many tools you have to decide whether you want to make your
templates look nice, or whether the generated code should look nice.
A good approach is to make sure the templates look nice and use a
pretty printer/formatter tool to reformat the generated code after it
has been generated. Such pretty printers are available basically for
every programming language, as well as for XML, etc.

• A third very useful aspect is to include a so-called “location string” to
the code generated by a particular template/transformation. This
describes the model element(s) from which the particular section of
code has been generated. It is good practice, especially for debugging
purposes, also to include the name of the template/transformation
and the "last changed" timestamp of the template/transformation
used to generate the code. An example could be GENERATED
FROM TEMPLATE SomeOperationStereotype [2003-10-04 17:05:36] FROM
MODEL ELEMENT aPackage::aClass::SomeOperation().

Using this pattern can make a big difference. It basically says that you
should stick to coding conventions and style guides also in generated code.
Especially, useful indenting is crucial!

Also note that if you templatize a "quality" prototype, you should already
have all the comments at hand.

This pattern should really apply to generated and to hand-crafted code. In
practice, all too often hand-crafted code is very messy. There is a small
caveat regarding the generation of optimized code that may be required in
some cases, where the results won't look nice. These cases should be
explicitly identified and described – and the respective code should be
separated from the rest.

ÕÕÕ

Is there a non-trivial example somewhere that says more than just “yes,
we also did it?”

 41/50

DESCRIPTIVE META OBJECTS **

You are developing a software system (family) using model driven de-
velopment techniques. You generate implementation code using some kind
of code generator.

ÕÕÕ

When using a RICH DOMAIN-SPECIFIC PLATFORM for your model-
driven development, the application often needs information about
some model elements at run time to control different aspects of the
application platform. How can you make model information available
at run time and associate it with generated artifacts? How can you
build the bridge between generated code and framework parts?

Consider you want to build an application that needs to provide domain-
specific logging mechanisms. The application will need to output the value
of the attributes of a generated class into the log file. To make this possible,
the logger needs to know the names and values of all attributes of a class.
Especially in languages that don’t feature reflection, you cannot easily
implement such a mechanism generically.

Another problem could be that you annotate object attributes with
additional information, such as a nice label, a regular expression for contents
checking or min/max values for number attributes. At run time you need to
be able to access this information e.g. to build a GUI dynamically. You
cannot easily embed this information in programming-language native
classes.

Therefore:

Use the information available at generation time to code-generate
meta objects that describe the generated artifacts. Provide a means to
associate a generated artifact with its meta object. Make sure the
meta objects have a generic interface that can be accessed by the
RICH DOMAIN-SPECIFIC PLATFORM.

 42/50

<<pk>> name : String
 {label="Nachname"}
firstname : String
 {label="Vorname"}
age : int
 {label="Alter",
 min=0, max=100}
zip : String
 {label="PLZ",
 regexp="99999"}

SomeClass

name : String
vorname : String
age : int
zip : String

SomeClass

attributeNames : String =
 {"name", "firstname",
 "age", "zip"}

:SomeClassMetaObject

getAttributeNames() : String[]
getAttribute(name:String):AttributeMetaObject

<<interface>>
ClassMetaObject

getName() : String
getValue() : Object
setValue(Object newVal) : void
getLabel()

<<interface>>
AttributeMetaObject

getRegexp() : String

<<interface>>
StringAttributeMetaObject

getMin() : int
getMax() : int

<<interface>>
NumAttributeMetaObject

meta

name : String = "zip"
label : String = "PLZ"

:StringAttributeMetaObject

name : String = "age"
label : String = "Alter"
min : int = 0
max : int = 100

:NumAttributeMetaObject

...

<<instanceof>>

<<instanceof>> <<instanceof>>

Generated
Code

Model

ÕÕÕ

This pattern makes selected parts of the model available in the application in
a native, efficient way. Another (theoretical) alternative would be to store
parts of the model with the application – however, access to a complex
model is typically slow, and therefore this approach is not feasible.

There are different ways of how a meta object can be associated with its
generated artifacts. If the artifact is completely generated, you add a getMeta
object() operation directly to the generated artifact. If this is not feasible (e.g.
if you want to keep your artifacts free of these things) you can also use a
central registry that provides a lookup function MetaRegistry.getMeta
objectFor(anArtefact). The implementation (i.e. the mapping) for the operations
will be generated, too.

The meta objects cannot just be used for describing a program element, but
also to work with it. This leads to a GENERATED META OBJECT PROTOCOL.

ÕÕÕ

One of the most well-known examples of this approach is JavaBeans,
where the BeanInfo class describes the Bean itself in the way described
above, mainly for use by GUI tools. The only difference is that
JavaBeans are note typically generated, but manually written.

 43/50

An early OR-Mapping framework called LPF has generated meta
objects that described generated relational table structures. These were
used at run time to manage persistence.

The LANSA 4GL environment, which goes back to 1987, is based on an
"active repository" that provides access to extensive meta-information
about LANSA objects. The LANSA RUOM model-driven generator
makes extensive use of the LANSA repository.

Another example is in the context of the Small Components project.
This is based on C++, and the descriptive meta objects are used to
“emulate” reflection. Note that direct model access would not be
possible since the infrastructure is intended for embedded systems
where performance and code size is critical.

FRAMEWORK/DSL COMBINATION (P)

A framework provides a set of services. These are often hard to use, since the
programming language does not “know” the framework, the compiler
cannot provide any support. A DSL that allows to “program against” the
framework can solve this problem.

EXTERNAL MODEL MARKINGS (P)

In order to allow the transformation of a source model into a target model
(or to generate code) it is sometimes necessary to provide “support”
information that is specific to the target meta model. Adding these to the
source model “pollutes” the source model with concepts specific to the target
model. MDA proposes to add “model markings”, but this currently
supported well by only very few tools. Instead, we recommend keeping this
information outside of the model (e.g. in an XML file); the transformation
engine would use this auxiliary information when executing the
transformations.

GENTIME/RUN TIME BRIDGE (P)

In many cases, a particular model feature or system configuration item
affects not only what is generated, but also the behavior at run time. For
example during the model-driven development of the ALMA data model, we
had several data encodings in the VOTable XML standard. Dependent on
the encoder definition in the EXTERNAL MODEL MARKING, we had to specify
the encoding format in the generated XML. Also, we had to do the encoding
of the actual values at run time, depending on the very same setting in the
markings. The solution to this is to have different encoder classes, one for

 44/50

each encoding strategy, and have the code generator generate the
instantiation of the respective object into the source code. Using the strategy
pattern can help to integrate with non-generated code (which needs to have
some kind of interface to use, independent of the specific encoding strategy
used).

GENERATED REFLECTION LAYER (P)

Metaobject protocols as described for example in [Kiczales et. al, 1991] are a
means to introspect, modify and reify metaobjects of a language. This is
typically done dynamically (e.g. in languages such as CLOS [Koschmann,
1990]). In the context of MDSD, you can provide at least a read-only-MOP
that allows you to introspect classes, as well as dynamically invoke
operations. A generic interface allows clients access to any kind of class:
public interface RClass {
 // initializer – associates with base-level object
 public setObject(Object o);
 // retrieve information about the object
 public ROperation[] getOperations();
 public RAttribute[] getAttributes();
 // create new instance
 public Object newInstance();
}
public interface ROperation {
 // retrieve information about op
 public RParameter[] getParams();
 public String getReturnType();
 // invoke
 public Object invoke(Object params)
}
public interface RAttribute {
 // retrieve information about op
 public String getName();
 public String getType();
 // set / get
 public Object get();
 public void set(Object data);
}

Since these operations are generic, workbenches or other dynamic tools can
use this kind if reflective interface to work with the data.

GATEWAY META CLASSES (P)

Using TECHNICAL SUBDOMAINS typically results in having different meta
models as well as different concrete syntax for the different subdomains. For
example, you can describe the workflow of an application using activity
diagrams and the layout of the presentation layer using a textual, XML-like
language. If you want to generate a useful system from these different
specifications, your generator needs a mechanism to get from one model to

 45/50

the other (such as moving from an activity to its associated UI form). To make
this possible, you need two things:

First, you need model elements that are present in the meta models of both
TECHNICAL SUBDOMAINS. If you IGNORE CONCRETE SYNTAX in your
generator, these GATEWAY META CLASSES can be represented with different
concrete syntax in the different TECHNICAL SUBDOMAINS.

The second thing you need is a common meta meta model. Since a generator
tool will always use some kind of (maybe implicit) meta meta model. In
order to represent both meta model elements in the same generator-internal
model representation, they need to use the same meta meta model. The b+m
generator, for example, requires Java classes to be used as the meta meta
model for all meta models.

THREE LAYER IMPLEMENTATION (P)

When generating code for object-oriented targets, you often have to mix
platform code, generated code and manually implemented code. A good
solution to this is: Have an abstract base class in the platform, generate a –
still abstract – subclass, and implement the app logic in yet another, now
non-abstract, subclass class. For example, this allows FORCED PRE/POST

CODE.

FORCED PRE/POST CODE (P)

In many situations, you need to make sure that some generated code is
always executed before/after some manually implemented code. You have to
make sure, it is not possible for developers to circumvent this. Consider an a
vehicle class, which has a drive(driver:Person) operation, whereas a driver’s
age needs to be over 18 years old. The following implementation idiom can
be used:
public interface IVehicle { // public interface for vehicles
 public void drive(driver: Person);
}

public abstract class VehicleBase implements IVehivle { // generated
 public final void drive(driver: Person) { // final; cannot redefine
 if (!(driver.age() >= 18)) throw new ConstraintViolated();
 driveImpl();
 }
 protected abstract void driveImpl(driver: Person);
 // protected; cannot be called by clients
}

public class VehicleImpl extends VehicleBase { // manually implemented
 protected void driveImpl(driver: Person) {
 // do whatever it takes…

 46/50

 }
}

BELIEVE IN RE-INCARNATION (P)

The final, implemented application should be built by a build process that
includes re-generation of all generated/transformed parts. As soon as there is
one manual step, or one line of code that needs to be changed after
generation, then sooner or later (sooner is the rule) the generator will be
abandoned, and the code will become business-as-usual.

INTER-MODEL INTEGRATION WITH
REFERENCES (P)

Often you have several sub-models that together constitute the complete
application model, for example because you use several DSL for different
application aspects or because you partition a big application into several
parts. To do this,

• Create proxy metaclasses for each metamodel element that should be
referenced

• Upon instantiation, the proxy automatically finds its referenced
object – or throws an exception, if it cannot find it.

• As usual, proxies are subclasses of their respective referenced type.
Operations forward to the operations of the referenced element.

• These proxies can be generated automatically.

• The generator does not see the difference between the proxies and the
actual element.

LEVERAGE THE MODEL (P)

The information captured in a model should be leveraged to avoid
duplication and to minimize manual tasks. Hence you may generate much
more than code: user guides, help text, test data, build script content, etc.
Find the right balance between the effort required for automating manual
tasks and the effort of repetitively performing manual tasks by considering
"sustainability" in the Extreme Programming sense. As a rule-of thumb:
compare the number of keyboard strokes and user gestures required to get to
a given result, and select the method that is the least painful and labor-
intensive. Make use of SELECT FROM BUY, BUILD, OR OPEN SOURCE in your
assessment. Often others have already done the hard work, and you can save

 47/50

a lot of typing—not to mention the thinking effort going into reinventing
the old wheel!

BUILD AN IDE (P)

Model-Driven approaches can result in accidental complexity for application
developers due to the fact that many artifacts are generated, and depend on
each other. This contradicts, to some extent, the goal to make domain
experts use this infrastructure. You have to make things easier for users of
the MDSD infrastructure. A proven approach in doing to is to implement a
project- or domain-specific IDE. Frameworks such as Eclipse provide an
excellent basis.

USE THE COMPILER (P)

When combining generated and non-generated code you can often run into
consistency problems between the (new version of the) generated code and
the (not-yet-adapted) non-generated code. In order to make sure
inconsistencies are detected, use the compiler to help you spot it. For
example,

• If you generate abstract classes with abstract methods, and overwrite
them in subclasses then the compiler will report an error in case the
signature is changed in the generated code (since the subclass does not
overwrite the method anymore)

• If you expect manually implemented classes to have certain
operations, and for some reason, you cannot enforce these operations
by providing a super-interface, etc. you can generate helper class calls
all these operations in some dummy method. This class will never be
used at runtime; it is just compiled with the rest of the system to
“raise” compiler errors.

SELECT FROM BUY, BUILD, OR OPEN
SOURCE (P)

Don't be blinded and ignore the potential of well-proven off-the-shelf
products and robust Open Source infrastructure that is used by thousands of
organizations! Software development organizations are famous for not-
invented-here syndrome. The selection between buying, building, and using
Open Source needs to be driven by sustainable economics in the same way as
LEVERAGE THE MODEL. I.e. don't compare costs over the short term, take
into account the longer-term picture, and factor the cost of capital into your
calculations. Considering the maintenance burden, is it really worth

 48/50

developing infrastructure and applications that don't constitute the unique
core of your business? However, do LEVERAGE THE MODEL and don't
compromise hard-earned domain knowledge that has gone into your
domain-specific frameworks and generators by replacing them with
unrefined and blunt off-the shelf tools.

Consciously differentiate between

• strategic software assets—the heart of your business, assets that grow
into an active human- and machine-usable knowledge base about your
business and processes,

• non-strategic software assets—necessary infrastructure that is prone to
technology churn and should be depreciated over two to three years, and

• software liabilities—legacy that is a cost burden.

Strive to evolve your core business systems into strategic assets that increase
in value over time through (re)use and refinement. Widely used and
respectable Open Source software should also be treated as a strategic asset—
in this case a public asset. Commercial 3rd party software largely falls into
the category of non-strategic assets: usually the software is not built entirely
on open standards, and you also cannot assume that the product will be
supported indefinitely. Hence investments in commercial software should be
treated as capital investments affected by depreciation.

• Be honest and don't portray all your legacy systems as strategic assets in
the sense described above, identify the liabilities and strive to replace
them by a combination of strategic assets and non-strategic assets.

• You need to differentiate between the 3rd party products and your
organizations' information that builds up in the databases of such
products. A subset of your information is a strategic software asset, and
needs to be treated as such. The same can be said about legacy software
that has become a liability: the applications have become a liability but
some of the information managed by these applications constitutes a
strategic asset.

Unless continuous attention is being paid to the quality of strategic software
assets, these can quickly degenerate into liabilities, hence refactor mercilessly.

As appropriate, use Open Source infrastructure to reduce risk exposure in
terms of vendor dependence. When evaluating Open Source software,
carefully consider the Open Source licensing model attached to the software:
some licenses allow Open Source software to be built into non-Open Source
commercial products, whereas others only allow usage in products bound to
the same Open Source license.

Note: a healthy mix of strategic and non-strategic assets may sometimes only
include a small core of strategic software assets. Non-strategic assets have a

 49/50

permanent role in supporting the business, in some respects they can be
considered as necessary consumables.

Acknowledgements
Thanks to Tom Stahl of b+m AG for inspiring some of the patterns and
providing known uses. Thanks to Joe Schwarz and Gianni Raffi for allowing
us to use the ALMA data model example. We also would like to thank Ghica
van Emde Boas for supplying several proto-patterns.

References
[Alexander 1977] Christopher Alexander, 1977, A Pattern Language: Towns, Buildings,

Construction, Oxford University Press

[Beck 2000] Kent Beck, 2000, Extreme Programming Explained: Embrace Change,
Addison-Wesley

[Bettin 2003] Jorn Bettin, 2003, Best Practices for Component-Based
Development and Model-Driven Architecture,
http://www.softmetaware.com/best-practices-for-cbd-and-
mda.pdf.

[Bettin 2003b] Jorn Bettin, 2003, Ideas for a Concrete Visual Syntax for Model-to-Model
Transformations,
http://www.softmetaware.com/oopsla2003/bettin.pdf and
http://www.softmetaware.com/oopsla2003/bettin.ppt.

[Bettin 2002] Jorn Bettin, 2002, Measuring the Potential of Domain-Specific Modeling
Techniques, http://www.cis.uab.edu/info/OOPSLA-
DSVL2/Papers/Bettin.pdf.

[Bettin 2001] Jorn Bettin, 2001, A Language to describe software texture in abstract design
models and implementation,
http://www.isis.vanderbilt.edu/OOPSLA2K1/Papers/Bettin.pdf.

[BH 2003] Jorn Bettin, Jeff Hoare, 2003, Time Conscious Objects: A Domain-Specific
Framework and Generator,
http://www.softmetaware.com/oopsla2003/pos06-bettin.pdf.

[Bosch 2000] Jan Bosch, 2000, Design & Use of Software Architectures, Adopting and
Evolving a Produt-Line Approach, Addison-Wesley

[Cleaveland 2001] Craig Cleaveland, 2001, Program Generators with XML and Java,
Prentice Hall

[CN 2002] Paul Clements, Linda Northrop, 2002, Software Product Lines, Practices
and Patterns, Addison Wesley

[Cockburn 1998] Alistair Cockburn, 1998, Surviving Object-Oriented Projects, Addison-
Wesley

[Codagen] Codagen Architect, http://www.codagen.com

[Eclipse GMT] Generative Model Transformer project, http://www.eclipse.org/gmt/

[Evans 2000] Eric Evans, 2003, Domain-Driven Design, Addison-Wesley

[GDP] b+m AG, Generatice Development Process,
http://www.architectureware.de/download/
b+m_Generative_Development_Process.pdf

 50/50

[GenFW] Sourceforge.net, openArchitectureWare,
http://architecturware.sourceforge.net

[Gentastic] Gentastic, eGen, http://www.gentastic.com

[GHJV95] Gamma, Helm, Johnson, Vlissdes, Design Patterns, Addison-Wesley
1995

[Kiczales et. al., 1991] Gregor Kiczales, The Art of the Metaobject Protocol, MIT Press, 1991

[Koschmann, 1990] Timothy D. Koschmann, The Common Lisp Companion, Wiley, 1990

[LANSA] LANSA Rapid User Object Method,
http://www.lansa.com/downloads/support/docs/v10/
lansa060.zip

[OMG MDA] Model-Driven Architecture, http://www.omg.org/mda/

[WL 1999] D. M. Weiss, C.T.R. Lai: Software Product Line Engineering, A Family-
Based Software Development Process, Addison-Wesley

