
 1

Patterns for Handling
Cross-Cutting Concerns

in Model-Driven Software
Development

Version 2.3, Dec 26, 2005

(c) 2005 Markus Völter, Heidenheim, Germany
voelter@acm.org, www.voelter.de

 NOTE:
copyright 2005 Markus Völter. Permission is hereby

granted to copy and distribute this paper for the
purposes of the EuroPLoP 2005 conference.

Abstract
Aspect Oriented Programming (AOP1, see [AOP]) as well as Model-Driven
Software Development (MDSD, see [MDSD]) are both becoming more and more
important in modern software engineering. Both approaches attack important
problems of traditional software development. AOP addresses the modularization
(and thus, reuse) of cross-cutting concerns (CCC). MDSD allows developers to
express structures and algorithms in a more problem-domain oriented language,
and automates many of the tedious aspects of software development.

But how do the two approaches relate? And how, if at all, can they be used
together? This paper looks at both of these questions. The first one – how AOP
and MDSD relate – is briefly discussed in the following paragraphs. How AOP
and MDSD can be used together is the subject of the main discussion, where the
paper presents six patterns of how MDSD and AOP can be used in conjunction.
All but one pattern focus on the code phase aspect of MDSD.

1 I always use the term AOP instead of differentiating between AO in general and AOP as
the AO approach to programming. Please see Appendix A for a differentiation between
AOP and AOSD

 2

Reader's Guide: Structure of this Paper
This paper is structured as follows. The Patterns Prologue section describes the
pattern form used in this paper, as well as the language-wide problem statement
and the forces applying to all the patterns. The Pattern Overview section provides
a first overview over the patterns – this section is continued in Pattern Overview
Pt. 2, the section that follows the patterns themselves. Relationship among the
Patterns provides some more detail about how some of the patterns interrelate.
Finally, the Concluding Remarks and Acknowledgements sections end the paper.

Readers who do not have a solid understanding of AOP or MDSD are
recommended to read the Appendix A, where I introduce the two techniques and
discuss a number of commonalities and differences.

For completeness, Appendix B, Introductions and Collaborations looks at two
AOP-relevant topics –introductions and collaborations – that are not considered in
the main part of the paper.

Patterns Prologue
This section contains a prologue to the patterns themselves. First, we declare the
overall problem of this pattern collection, then we list the forces that influence the
solutions the various patterns propose for the common problem.

General Problem statement

As we have seen in the previous sections, there are a number of commonalities
between AOP and MDSD. As a consequence, developers often don’t know
whether, or how they should relate AOP and MDSD. Should they use either AOP
or MDSD? Is AOP or MDSD a more general approach? Is MDSD a special case of
AOP? Or vice versa? Can/should both approaches be used together, or would that
just be “hype overkill”?

The following patterns are intended to answer some of these questions. As a
consequence of the authors’ experience and opinion, they are written from an
MDSD perspective, i.e. they solve the following problem in the context of
different forces:

How can cross-cutting concerns be handled effectively in an MDSD-
based development environment?

An author with a stronger background in the AOP domain might have written the
paper from the other perspective, addressing problems such as “how can domain-
specific notations used in AOP”, or “how can AOP address non-programming
language concerns”.

 3

General Forces

This section introduces a number of forces that influence the solution of the
patterns that follow. All the patterns described below are governed by the forces
listed in this section; however, they resolve those forces differently. As a
consequence, the various patterns presented below are applicably in different
contexts. All patterns include an evaluation of all of these forces in their respective
consequences section.

Applicability. We would like to be able to use the pattern’s solution to the
problem above in a many situations, environments and “technology environments”
as possible. The broader the applicability the better. The more we rely on
particular features of languages, architectures, technologies or environments, the
harder it is to use the solution in general.

Granularity. Handling CCC – as explained – is about specifying queries over the
execution of a program, and then doing something at (some of) these selected
points. Different approaches provide different levels of granularity, at which such
a query can be specified. For example, an approach might only allow to advice
calls to component operations, whereas other approaches might allow interception
of any method call in the system, thrown exceptions, field access, etc.

Performance/Footprint. As usual in software development, nothing comes for
free; each proposed solution has a more or less dramatic impact on system
performance or footprint. In some environments, such as embedded systems, this
can become a problem that deserves developers’ attention.

Complexity/Verbosity. Another well-known problem in software technology is,
that while a certain approach solves a specific problem, it creates additional
complexity – aka problems – in another area. For example, the requirement to use
additional languages or tools can be such an issue. Another issue in this respect
can be the readability of the generated code, or the verbosity of the things you
have to write/specify in order to use the pattern.

Flexibility. Different approaches to CCC handling have different consequences
with regards to (runtime) flexibility. Some approaches allow to turn on/off the
handling of a specific aspect at runtime or allow to change the behaviour at a
certain pointcut, while others don’t.

Pattern Thumbnails
The following list provides a thumbnail of each pattern. The more extensive
discussions below provide a lot of additional detail.

Template-IF: Exploit the inherent cross-cutting nature of code generation
templates by using simple if statements in templates to handle CCC.

AO Templates: An AO template engine allows you to “advice” code generation
templates, further modularizing CCC.

 4

AO Platforms: Exploit the architecture-based handling of CCC provided by the
platform by generating configuration files that control the platform.

Pattern-Based AOP: Use generated implementations of the proxy, factory and
interceptor patterns to address CCC.

Pointcut Generation: Use the code generator to generate pointcuts for pre-built
(abstract) aspects based on specifications in the model.

A Model per Concern: Use several models (on for each concern) to describe the
complete system, and let the generator weave the models together.

 TEMPLATE-IF
Exploit the inherent cross-cutting nature of code generation templates by
using simple if statements in templates to handle CCC.

Context

You are using a template-based code generator [MV03]. The templates contain
code that iterates over the model as well as textual output that should be created
for a certain part of the model. The CCC you need to handle can be well localized
in the templates.

Example. The following template generates code from UML models. Specifically,
it creates a method signature and skeleton implementation for each Operation in
the model.

«DEFINE OperationDef FOR Operation»
 public final «ReturnType» «Name» (
 «FOREACH Parameter AS p EXPAND USING SEPARATOR ", "»
 «p.Type.QualifiedJavaTypeName» «p.Name»
 «ENDFOREACH») {
 return «Name»Internal(
 «FOREACH Parameter AS p EXPAND USING SEPARATOR ", "»
 «p.Name»
 «ENDFOREACH»);
 }
«ENDDEFINE»

Solution

Use normal template-level if statements to address the CCC. Depending on the if
expression, a particular piece of code is either added to the generated code or not.

Example. The following example code uses an if statement to add security
checking in case security checks are enabled for the particular operation.

«DEFINE OperationDef FOR Operation»
 public final «ReturnType» «Name» (… as before …) {
 «IF checksRequired»
 if (!Security.check(“«Class.Name»”, “«Name»”))

 5

 throw new SecurityEx();
 «ENDIF »
 return «Name»Internal(… as before …);
 }
«ENDDEFINE»

Rationale & Discussion

A template is a meta program, a program that creates programs. As such, usually a
number of base-level artefacts (here: operations) are created from a single
template. If you need to handle concerns that cross-cut these locations, then a
template modularizes this cross cutting concern. A simple if on template level is
therefore enough to handle the CCC.

Note that you can also implement around advice using this pattern. The generated
code itself can contain an if statement, and call the original code only if the
condition is true; it also possible to modify the parameters.

By having several if statements in the template you can also advice advice,
although this can become complex quickly.

AOP purists may argue that the approach isn't AOP at all, since the code calls the
advice, and the advice is not "added" to the code. While this is true, the approach
is nevertheless very useful to handle CCC.

Consequences

Applicability. The approach requires no special features in the target language.
Also, it is not limited to programming language artefacts, the approach can be used
for any generated output. With regards to the necessary features of the generator,
only a simple if is necessary – which is available in basically all code generators.

Granularity. This approach can only be used if the pointcut is actually in a
section of the code that is generated. This means that the pointcuts are limited to
what is represented in the model, or to what can be derived by generation rules
from the model. If, for example, you wanted to advice pointcuts in the method
body (which you often don’t generate) this pattern is useless.

Performance/Footprint. There is no specific performance hit or footprint issue to
this approach in addition to the cycles and memory consumed by the advice itself.

Complexity/Verbosity. For simple CCC there is no complexity problem. If you
wanted to handle many CCCs at the same pointcuts, you would have a number of
such if statements, but still this is not a real problem. There are situations,
however, when the approach becomes complex. This happens when the same CCC
cross-cuts the templates and not the generated code. This requires checking the if
expression in multiple places in the template code, which could itself become a
verbosity issue.

A positive complexity consequence of this approach is that the generated code
shows no additional complexity, and that you do not need additional (aspect) tools.

 6

Flexibility. The approach is completely static. Nothing can be changed (i.e. woven
in/out) at runtime. If it should be possible to turn on/off the aspect at runtime, the
advice itself would need to contain a suitable (runtime) if.

Known Uses

From a tools perspective, every template-driven code generator can be used to
implement this approach. As well, all MDSD projects I know of have used some
form or another of this pattern to address CCC. This pattern is so ubiquitous, that
mentioning specific known uses is pointless.

Summary

While this approach seems rather trivial, it can be used to handle a surprisingly
large amount of CCC that arise in practical work. And the fact that you don’t need
any AOP tool, is an additional benefit.

 AO TEMPLATES
An AO template engine allows you to “advice” code generation
templates, further modularizing CCC.

Context

In some cases, especially if you’re building related families of code generators,
using TEMPLATE-IF becomes too unwieldy, because all kinds of concerns are
handled inside the templates. Typically, a few architecture-specific hot spots
inside the templates are affected by ifs that handle the various different CCC.
These hot spots become unmanageable rather quickly.

Also, the templates themselves contain the code for all the various concerns that
might need to be handled at the specific location in the template. This leads to the
typical CCC problem – now, however, on template level!

Example. Looking at the solution code of the TEMPLATE-IF pattern, you can see
such a typical hot spot. The code below shows how TEMPLATE-IF handles a
number of CCCs.

«DEFINE OperationDef FOR Operation»
 public final «ReturnType» «Name» (… as before …) {
 «IF checksRequired»
 // security code
 «ENDIF »
 «IF loggingRequired»
 // logging code
 «ENDIF »
 «IF billingRequired»
 // billing code
 «ENDIF »
 return «Name»Internal(… as before …);

 7

 }
«ENDDEFINE»

Solution

Use an AOP approach on template level. Rather that using template-level if
statements, use an “aspect template” that advices the standard code generation
templates with CCC-specific code. There are two ways how a pointcut can be
defined; implicit and explicit. The examples show details of this difference.

Example. The following piece of code (again the example from above) defines
two explicit join points: MethodBegin and MethodEnd.

«DEFINE OperationDef FOR Operation»
 public final «ReturnType» «Name» (… as before …) {
 «EXPAND HookMethodBegin»
 «ReturnType» res = «Name»Internal(… as before …);
 «EXPAND HookMethodEnd»
 return res;
 }
«ENDDEFINE»

After these hooks have been defined, another template can attach itself to this
hook. The following piece of code shows the logging aspect as an example.

«DEFINE LoggingMethodBegin FOR Operation AT HookMethodBegin»
 «IF loggingRequired»
 // entering method such and such
 «ENDIF »
«ENDDEFINE»

«DEFINE LoggingMethodEnd FOR Operation AT HookMethodEnd»
 «IF loggingRequired»
 // leaving method such and such
 «ENDIF »
«ENDDEFINE»

Other CCCs can be handled in the same way: by providing separate templates that
are “attached” to previously defined hooks.

The implicit scheme of defining join points basically means that “aspect
templates” can attach to before or after already defined templates. The following
piece of code shows an example.

«DEFINE OperationLogging BEFORE OperationDef»
 // logging stuff
«ENDDEFINE»

Note, however, that this means that you can only attach to template boundaries.
The example above, e.g., would contribute logging code to before the
OperationDef template – i.e. the logging code would be generated outside of the
method body. This is clearly not what is intended. Solving this problem with
implicit join point definitions would require to factor out the method body into a
separate template, and attaching the aspect to this body template.

 8

Rationale & Discussion

This pattern basically introduces AOP at the template level. TEMPLATE-IF uses
normal template programming to handle CCCs in the resulting generated code by
using ifs on template level. The pattern described in this section handles CCCs on
template level and uses AOP techniques to address those.

There is an interesting challenge lurking in the details of this pattern. Some code
generators use an AST implemented in a particular language (e.g Java, see Ignore
Concrete Syntax and Implement the Metamodel in [VB04]) as the basis for code
generation – the template effectively traverse the AST (aka Java objects),
generating code as they go along, accessing the AST objects to retrieve
information from the model to be added to the generated code. For example, the
following piece of code accesses the Name property of an Operation metaclass:

«DEFINE OperationDef FOR Operation»
 public void «Name» …
«ENDDEFINE»

Now, if we attach additional aspect templates to this existing template structure,
we can only access those properties that are already available on the current
metaclass. This is very limiting. For example, we could not access the
loggingRequired flag that determines, whether we need to generate logging code
or not, since it probably is not in the core metamodel classes. In order to solve this
problem, we have to be able to contribute additional properties (operations) to
existing metaclasses. Again, AOP comes to help: introductions can be used to add
these additional operations to existing metaclasses.

What about join point variables? In this pattern, the advice template has the same
context as the template it advices, i.e. it has access to the same information from
the model. Additional information that could be made available via a join point
variable could the name of the template that has been adviced; however, I haven't
see this feature in practice, nor have I felt the need to use it.

We only discussed before- and after advice style aspects. However, it is also
possible to extend the mechanism to also include around advice. To make this
work, a special keyword proceed would have to be added, as shown below:

«DEFINE AROUND SomeTemplate FOR Operation »
 // do something here…
 «IF someCondition»«PROCEED»«ENDIF»
 // do something else…
«ENDDEFINE»

While this is certainly possible, I have not seen support for this in a tool.
openArchitectureWare provides a related concept: template inheritance, meaning
that you can override the template defined before; but a call to super (which would
be similar in consequences as the proceed call above) is not possible at this time.

 9

Consequences

Applicability. The approach requires no special features in the target language.
Also, it is not limited to programming language artefacts, the approach can be used
for any generated output. However, the generator tool used to implement the
approach has to provide support for defining hooks and “attaching” templates to
them – implicitly or explicitly.

Granularity. Same as for TEMPLATE-IF.

Performance/Footprint. There is no specific performance hit or footprint issue to
this approach in addition to the cycles and memory consumed by the advice itself.

Complexity/Verbosity. The approach described in this pattern nicely factors out
CCC in templates, thereby reducing the verbosity in the templates. Whether
additional (accidental) complexity is created depends very much on the tool used.
AOP on the template-level is not very widespread and only a few tools support it –
some of them only more or less well.

Flexibility. See TEMPLATE-IF.

Known Uses

There are various tools that can be used to implement AO TEMPLATES. The
openArchitectureWare code generator [OAW] provides a feature called attached
templates that implements this pattern. It uses interceptors that can be configured
by the developer to contribute additional operations to the metaclasses.

Also, the XVCL frame processor [XVCL] allows to “contribute” frames (which
can be seen as a form of code generation templates) to previously defined hooks.

Summary

AOP on template level is very powerful. However, the generator and its templates
effectively become an AOP language. The tools I am aware of only support this
approach as an add-on, limiting the scalability of the approach. Specifically, the
IDE support that we are used to (such as AspectJ’s Eclipse integration) is not
available.

 AO PLATFORMS
Exploit the architecture-based handling of CCC provided by the platform
by generating configuration files that control the platform.

Context

You are generating code that is intended to run on a technical platform, usually
some kind of communication or component/container middleware. Such
middleware typically already supports factoring out some of the technical CCC
that occur in the domain for which the middleware has been developed. The

 10

middleware platform usually also provides some kind of configuration facility
(annotations (see [VSW02]), scripts, or descriptors) to control how the middleware
applies its CCC capabilities to the respective piece of application code.

Example. In EJB systems, a component encapsulates functional (or domain)
concerns. Technical concerns such as transactions, security, load balancing, or
pooling are taken care of by the container (which itself is embedded in the
application server). Deployment descriptors accompany the components and
control how the application server handles them.

Solution

Use the CCC-handling capabilities of the middleware as far as possible. Use the
code generator to generate the annotations (see [VSW02]) that control how the
middleware handles the (manually written, or generated) application code. The
information needed to generate the configuration is extracted from the model.

This pattern does not just recommends to use a platform’s CCC-handling
capabilities in case it happens to provide these. Rather, the pattern suggests to
actively build (or select) platforms that provide hooks to handle the typical CCC in
the respective domain.

Example. Many MDSD tools in the context of EJB require developers to develop
POJOs that contain the business logic. The generator then creates “EJB wrappers”
that make sure the POJOs conform to the constraints defined by EJB. The
generator also creates a deployment descriptor to control the EJB container.

Rationale & Discussion

This pattern basically suggests to leave the handling of the CCC to the target
architecture – the MDSD infrastructure does not have to deal very too much with
handling CCC. A couple of comments are in order, though.

First, in order to generate the configuration for the middleware platform, the
model from which the code is generated needs to contain all the information
(explicitly, or in a way that allows the generator to derive it) that goes into the
configuration. We need to make sure this information does not clutter the
“business” model described with our DSL. A MODEL PER CONCERN is a good way
to keep the core model clean.

Consequences

Applicability. The approach requires that the environment in which the generated
code is intended to run provides means to handle CCC. This is not always the case,
although it is usually possible to build a platform that handles the CCCs of your
domain. In resource-constrained systems this is sometimes a problem, though.

Also, the approach only allows to handle those CCCs that the platform supports. In
case you build the platform for your domain, this is not a problem, since you’ll
build it to handle the CCCs you need. In case you use an off-the-shelf platform

 11

such as EJB, this can become a problem. To solve this problem, use PATTERN-
BASED AOP or POINTCUT GENERATION.

Granularity. The granularity is limited to the granularity provided by the
middleware platform. Again, if you build it yourself, this is often not a problem,
since you can make it fit. In case it’s not you who builds the platform, you cannot
do much about it.

Performance/Footprint. Platforms that support the handling of CCCs will almost
always2 imply some overhead. The reason is that if a platform can generically
handle (certain) CCCs, then it will always use some dynamic, generic, or reflective
mechanism to achieve that. Such an approach always implies overhead in
performance, and often also footprint. How big this overhead is depends on the
implementation. And whether this overhead is a problem for you depends on your
scenario and use case, but there is an overhead.

Complexity/Verbosity. The approach described in this pattern nicely factors out
CCC into the platform. If the platform handles the CCC you need, this approach is
unbeatable in simplicity, because you just generate configuration files and don’t
really need to care about generating code that handles the CCC. Specifically, your
generator becomes much simpler – considering today's mainstream generator
tools, this is a nice effect.

Flexibility. In case the platform handles CCC, it is usually possible to turn on/off
a specific CCC during runtime, or change the way how the CCC is handled.
Whether it is actually possible to do this, depends on the implementation of the
platform. If you build it yourself, there is no technical reason why having that
flexibility would be a problem.

Known Uses

EJB provides a platform where (some) CCC can be handled by specifying how
they should be handled in the deployment descriptors [VSW02]. The CORBA
component model (CCM) provides a similar feature. Plain CORBA allows
developers to add interceptors to remote objects (or groups of remote objects, see
[VKZ04]. However, there are no default interceptors which can be configured by
generating a configuration. Many other distributed object middleware systems or
web service platforms provide the same features, this is actually a pattern in
distributed object middleware [VKZ04].

Summary

Non-trivial systems developed using MDSD will almost always include a rich,
domain-specific platform, specific to the domain for which you build (generate)

2 You can only avoid this overhead if you custom-generate the platform to the specific
scenario. While this is a worthwhile approach especially in embedded systems [MV03b],
we then don’t handle the CCCs with a predefined platform anymore, moving that scenario
out of the focus of this particular pattern.

 12

applications [VB04]. From a reuse perspective, it is a good idea to move as much
(generic, domain-wide) functionality into this platform because you can use it
from within the generated code. CCC are primary candidates for functionality in
such a platform.

 PATTERN-BASED AOP
Use generated implementations of the proxy, factory and interceptor
patterns to address CCC.

Context

In some scenarios the platform you are required to use does not provide services
that handle CCC, or it does not handle the CCC you need to address. You still
need to have the flexibility to change at runtime the CCCs handled by the system.
You maybe even don’t know the CCCs you need to handle at generation time.
However, the pointcuts are accessible to the generation process.

Example. Consider again an EJB based system. Consider also, that you need to
implement so-called dynamic (or data driven) security. This means, you cannot use
EJBs default (static) security model. However, you also don’t want to bother
application (component) developers with handling the security concerns.

Solution

Use a selection of the well-known patterns to generate an infrastructure that allows
for custom CCC-handlers to be plugged in. Typically, this consists of generating
proxies [GoF] for application components that can hook-in interceptors [POSA2].
Use a factory to instantiate the proxies if necessary.

So, consider the situation, where a client accesses a component through a specific
interface I1 as in the following diagram:

Client Some
Component

I1

Then replace this setup by a setup that includes the proxy to host interceptors as
well as a factory that creates the component and the proxy, and “wires” the two
accordingly:

 13

InterceptorInterceptor

Some
Component

Proxy

I1

Some
Component

I1

Client

Interceptor

I-Int

Factory

createscreates

delegates
to

From a client’s perspective, nothing has changed, the client still uses the interface
I1. However, the client actually talks to a proxy that handles CCC, and then
forwards to the real object.

Typically, you will make sure the join points are method calls. This makes life
simple for the proxy. The interceptor interface is then the typical method call
interceptor interface, outlined in Java below:

public interface Interceptor {
 public void beforeInvoke(Object target,
 String methodName,
 Object[] params);
 public void afterInvoke(Object target,
 String methodName,
 Object[] params,
 Object retValue);
}

The proxy will then be implemented along the following lines:

public class SomeComponentProxy implements I1 {
 private SomeComponent delegate;
 private Interceptor interceptor; // can also be a list
 // of interceptors
 public String someOperation(String p1, int p2) {
 Object target = delegate;
 String opName = “someOperation”;
 Object[] params = {p1, p2};
 Interceptor.beforeInvoke(target, opName, params);
 String res = delegate.someOperation(p1, p2);
 Interceptor.afterInvoke(target, opName, params, ret);
 return res;
 }
 // more operations of I1
}

The factory uses some kind of configuration to determine, which interceptors are
necessary for which component/object. In case no interceptors are necessary, the
proxy can be left away, and we have an overhead-free configuration where the
client directly talks to the target object.

Example. In the EJB scenario introduced above, the generated proxy would be the
bean implementation class from the perspective of the application server, the real

 14

bean implementation would be an “implementation detail” of this class. So,
whenever the container wants to instantiate a bean of a specific type, it will
automatically instantiate the generated proxy class. This will in turn instantiate the
real bean implementation.

At runtime, the bean implementation that plays the role of the interceptor proxy
will use some kind of configuration to find out which interceptors should be used,
if any.

This makes it possible to introduce any kind of “CCC handler interceptor” into the
EJB container.

forwards
invocations

A Bean

Bean Impl
Class

Remote
Interface

Home
Interface

Session
Bean

Container
Invoker

Lifecycle
Manager

controls lifecycle

uses

forwards
invocations

Bean Impl
Proxy

The implementation of the interceptor would use EJB APIs to find out about the
current security principal, and then use it, as well as the bean’s identity, and
operation parameters to decide whether to allow the call or not. Not that using the
afterInvoke() callback, you can also apply security checks based on the result of
the call!

For details of this example, see [MV04]

Rationale & Discussion

The approach here works whenever (a) you can influence object creation so that
the proxy is created instead of the real object, and (b) if method call-level
pointcuts are acceptable.

While this rather coarse granularity seems like a limitation, in practice, it typically
isn't. The reason is that in well-designed component based systems it is not just
practical, it is even desirable to apply aspects to component boundaries to keep the
system manageable and understandable. Thus, components continue to be the
smallest architecturally relevant building block and cannot be "undermined" by
aspects.

 15

This approach is not really specific to MDSD, you can in principle use the same
approach in the context of normal, non-generative software development.
However, since you would have to manually implement all the proxies, this is
impractical, and thus hardly ever done. In the context of MDSD, where you
generate stuff anyway, it is trivial to generate the necessary proxies automatically
during build, making sure that the proxy interface and implementations are in line
with last-minute interface changes of the application component.

Consequences

Applicability. The approach can be applied quite generally, at least in object-
oriented systems. The only real precondition is that you are able to “tweak in” the
proxy, which means generally, that you have to be able to control object creation.
No specific features are required of the generator.

Granularity. The approach only works for join points on method call level.

Performance/Footprint. There is a considerable impact on performance and on
footprint. First of all, you will have an additional object (the proxy) for each
domain object. Second, for each method call, the method data has to be reified and
the interceptor(s) called. As a consequence, the approach does not really make
sense for fine grained CCC. Using it on component level (as in the EJB example)
is perfectly ok, though.

Complexity/Verbosity. The approach does add complexity, since you have the
proxies, the factories and the interceptors to deal with. However, once you have
the respective generators built, you just have to deal with the factory
configuration, specifying, which object (or class) should have which interceptors.
Thus in practice, the complexity added by the approach is tolerable.

Flexibility. Depending on whether the interceptors are configured at runtime or
not, it is possible to add, remove or change “aspects” at runtime.

Known Uses

The approach to dynamic security in EJB has been used in several projects, some
of which I have been directly involved with. A component infrastructure for small
(mobile) devices implemented in Java uses the same approach. Java’s Dynamic
Proxy API uses the same idea, but based on reflection as opposed to static code
generation.

Summary

I have used this approach in various projects on component level and it works
nicely. Particularly the EJB example above is useful (since it is completely
portable and does not depend on and application server-specific features). Building
the necessary generator (if you work with an MDSD approach anyway) is almost
trivial.

 16

 POINTCUT GENERATION
Use the code generator to generate pointcuts for pre-built (abstract)
aspects based on specifications in the model.

Context

In some scenarios all the approaches described above don’t work – performance is
not sufficient, the platform does not support your needs, or the granularity offered
by the solution is too coarse. Is there still hope?

Example. In a component infrastructure for embedded systems [MV03b], where
the component container is generated specifically for the scenario at hand, you
want to be able to add a tracing mechanism, primarily for debugging and timing
checking purposes. Since resource consumption and (near) real time behaviour is
an important consideration, you cannot use generic solutions. Cluttering the
templates with all kinds of if statements is also not acceptable, because you need to
trace different things at different times – this would result in if’s all over the place.
For the same reason, AO TEMPLATES don’t work, since you would have to adapt
the template structures continually.

Solution

Integrate an AOP language into the MDSD software development infrastructure.
Specifically, define a number of prebuilt advice as part of the platform, and then
generate the pointcut based on specifications in the model. Use the AOP
language’s standard weaver to integrate the aspects with the generated code – the
code generator can stay untouched, it just has to be extended (not modified!) to
generate the necessary pointcuts.

Example. The following piece of XML is a part of the model that specifies a node
in the distributed, embedded system3, as well as a component container running on
it [VKS05]. You can see the tracing option to be set to app which means that we
want all application level operations (as opposed to container-internal calls) to be
traced. This specification is actually a DSL-specific pointcut definition.

<node name=”outside”>
 <container name=”sensorsOutside” tracing=”app”>
 …
 </container>
</node>

Now, as part of the platform (the library of reusable artefacts used for all members
of the software system family), you define the following abstract aspect (using the
AspectJ language). It does not define a pointcut, it is thus “pure advice”.

package aspects;

3 Actually, a weather station – thanks to Danilo Beuche for the example ☺

 17

public abstract aspect TracingAspect {
 abstract pointcut relevantOperationExecution();
 before(): relevantOperationExecution() {
 // use some more sophisticated logging,
 // in practice
 System.out.println(System.currentTimeMillis()+”::”+
 thisJointPoint.toString());
 }
}

In addition to this abstract aspect, the code generator is supplied with a template
that, for every container that has tracing set to app, generates a concrete aspect
that adds the necessary pointcut. The result could be the following:

package aspects;
public aspect SensorsOutsideTrace extends TracingAspect {
 pointcut relevantOperationExecution() :
 execution(* manual.comp.temperatureSensor..*.*(..))
 ||
 execution(* manual.comp.humiditySensor..*.*(..));
}

This generated aspect can now be woven with the rest of the (generated, or
manually written) code, and thus add tracing to the required parts. For
completeness, see below for the code generation template that generates the
concrete aspects for the containers.

«DEFINE TracingAspect FOR System»
 ...
 «FOREACH Container AS c EXPAND»
 «IF c.Tracing == "app"»
 «FILE "aspects/”c.Name”Trace”»
 package aspects;
 public aspect «c.Name»Trace extends TracingAspect {
 pointcut relevantOperationExecution() :
 «FOREACH c.UsedComponent AS comp
 EXPAND USING SEPARATOR “||”»
 execution(* manual.comp.«comp.Name»..*.*(..))
 «ENDFOREACH»
 ;
 }
 «ENDFILE»
 «ENDIF»
 «ENDFOREACH»
 ...
«ENDDEFINE»

Annotation-based weaving is another possible – and simpler – solution for this
pattern. If your base language as well as the AOP language extension support
metadata annotations (for example, a combination of Java 5 and AspectWerkz)
you can use the following approach: The prebuilt aspect includes an pointcut
definition that tests the presence of a certain metadata attribute. If it is present, the
artefact is selected by the pointcut, and the advice is added. The code generator
simply has to add the metadata attribute to the artefact, if it wants the artefact to be

 18

affected by the advice. Note that in languages that don't support annotations, you
can alternatively use marker interfaces – although this only works for advicing
classes, and not other artefacts such as fields or operations.

Rationale & Discussion

Using an aspect language such as AspectJ to add tracing to a system is rather
trivial, and, at first glance, might not deserve mentioning. However, the question
remains when it is worth using such a (additional) language in the context of an
MDSD project, where CCCs can also be handled differently (see all the other
patterns above).

Also, the question is, how to integrate it efficiently. Providing advice as part of the
platform and then generating the pointcuts is a very useful approach indeed. Of
course, it requires that the domain developer decides which advice might be
necessary. However, this is required anyway, since the DSL has to have a feature
to control where to apply the aspect, and where not.

In the above example, the fact that developers can specify a tracing option for
containers in considered so important in the context of the domain, that the
necessary specification is done as part of the domain’s core DSL. If that were not
the case, one could also specify the tracing concern in a separate model –
effectively applying the A MODEL PER CONCERN pattern shown below. Example:

<trace-config>
 <trace container=”sensorsOutside” level=”app”/>
 <trace container=”sensorsInside” level=”all”/>
</trace-config>

It is also interesting to see that this pattern suggests using an AOP language such
as AspectJ as an implementation technology in MDSD projects. The aspectual
nature of the tracing concern does not show up in the DSL. Rather, AOP is used to
keep the implementation of the tracing feature small and fast. I think that this is
the primary use case for languages like AspectJ in the context of MDSD. For more
patterns on using AspectJ efficiently see [SH03].

Consequences

Applicability. The approach can be applied only if, for the respective target
language, an AOP extension is available. For Java, AspectJ is a good candidate,
for C++, AspectC++ [AC] can be used (although it is not as powerful as AspectJ).
As of early 2005, AOP extensions are available for many languages, although their
maturity and power varies significantly. Note that some aspect languages require
runtime support libraries – which might be a problem in some production
environments.

There are no special requirements for the generator.

 19

Granularity. The achievable granularity depends on the join point model of the
aspect language used. In most cases, the granularity offered by these language is
fine enough.

Performance/Footprint. Again, this depends very much on the implementation of
the aspect language, specifically, when the weaving occurs (statically before
runtime, at load time, or at runtime). Static weavers such as AspectJ have, in most
scenarios, a neglectable overhead in footprint and performance.

Complexity/Verbosity. Complexity can raise significantly using this approach,
since it opens up a “whole new can of worms”. Domain developers have to master
the underlying aspect language and integrate it suitably with the MDSD
infrastructure. On the positive, application developers (those using the MDSD
infrastructure to build applications) do not need to see (and thus, understand) the
use of the aspect language under the hood (unless they start the debugger, that is)

Flexibility. Again, this depends on the aspect language used for the
implementation.

Known Uses

The small components prototype [MV03b] uses this approach to handle CCCs that
cannot be handled using PATTERN-BASED AOP. In the context of mobile phone
software, the pattern has been used to generate static aspects (aspects that produce
compile time errors) to check developer conformance to programming guidelines.

Summary

This approach is certainly the most powerful. However, it requires the use of an
aspect language in addition to all the generator and modelling tools that are
necessary for MDSD anyway. This can be a huge problem in practice. Also, in
contrast to the MDSD approach, most AOP language extensions require runtime
support libraries. In some production environments (such as in large companies)
this can be a showstopper.

 A MODEL PER CONCERN
Use several models (on for each concern) to describe the complete
system, and let the generator weave the models together.

Context

Up to now, we were mainly concerned with handling CCC in the resulting
application, which would be built using an MDSD approach. The application is
described using models, and model transformations and code generation is used to
create the final application. In many scenarios, however, it is necessary to separate
concerns in the application models, too!

 20

Example. Consider you are building a web application. Such a web application
typically consists of (a) a business object model, (b) the persistence mapping of
this model, (c) the web pages, forms and the workflow, and (d) the layout of these
forms and pages. You have to specify all this in the model in order to be able to
generate a complete application.

Solution

Create several models, one for each
aspect. Each model uses a DSL (i.e.
concrete syntax and metamodel) suitable
for the expression of the particular
aspect. The code generator reads all these
models, weaves them, and then generates
the complete application from it. Join
points are defined on the metamodels, for
example, by using a specific metaclass in
more than one aspect’s metamodel,
thereby building up links between the
models.

Example. In the example above, you could use (a) a UML class diagram (of
course, with suitable stereotypes) to describe the business object model, (b) an
XML document to describe tables and the mapping, (c) another class diagram
(with other stereotypes) to describe pages, forms and the workflow, and finally, (d)
another XML document to describe form layout.

This approach would result in four models for each described application, all of
which need to be connected suitably to describe a complete and consistent system.
For this to work, the metamodels must be related, as shown in the next illustration.
Note how associations cross the various aspect metamodels.

Many Models or One Model

In this context, I consider a model a
self-consistent "sentence" described in a
certain DSL (and based on a certain
metamodel, respectively). I.e. a
complete system is described by several
models, each using a certain DSL to
describe an aspect of the overall system.
An alternative naming convention would
be to call each of the models "partial
models" or something the like, and call
the overall thing that describes the
system "model".

 21

Form Layout

Entity Attribute*

Key
Attribute

TableColumn
Type

type

*

Mapping

*

Business Objects

Page Form

FormField

*

*

maps

Button

target

Pages, Forms and Workflow

represents
represents

Form
Layout

Tabular
Layout

Simple
Layout

[...]

[...]

Persistence

The code generator has to be able to read the various models – although they are
rendered in different concrete syntaxes! – and perform the weaving according to
the relationships shown above.

Note this pattern is a reformulation of the Technical Subdomains and Gateway
Metaclasses patterns from [VB04]

Rationale & Discussion

This pattern effectively suggests to have a separate model for each aspect. The
challenge of this approach lies in the fact that the generator tool must be able to:

• read the various models: this requires that the generator can use different
forms of concrete syntax (UML, XML, …) as input.

• check for consistency: the generator must make sure that the relationships
among the metamodels are realized correctly, i.e. that for example each Form
has a FormLayout, each Entity has a PersistenceMapping, etc. If
inconsistencies are detected, the models must not be accepted for code
generation, and an error has to be reported to the developer.

• weave the models: in order to weave the models, the models must be
represented uniformly, once they are “inside” the generator. A good idea is to
use an object graph based on the metamodel as the standard representation for
models (see [VB04]).

Note that you cannot have separate generators for the different aspects, since the
metamodels (and thus, also the models) are related. For example, the persistence
generator, has to know the entity structure. This “aspectual” separation of models
is therefore fundamentally different from model partitioning, where a large model

 22

is broken down into several smaller ones. It is essential that the generator can
perform the weaving process.

Note that implementing this weaving process is much easier inside a generator
compared to a tool like AspectJ. The reason is, that your domain metamodels are
usually vastly simpler than the metamodel (i.e. abstract syntax) of a language like
Java, and that you define the join point model yourself – as part of the domain
metamodel specification. In practice, weaving simply requires the association of
runtime objects, based on some matching criteria such as name equivalence.

The above mentioned consistency check is also a critical ingredient, since
otherwise, the generated system will be incomplete (in case specifications are
missing), or your models will fill up with garbage (in the case when you still have
specifications that reference model elements that already have been deleted.)

Note that the above discussion focussed on specifically defined pointcuts (such as
“use this layout for Entity XYZ”) and did not use quantification. However, this is
merely a detail, since it is easily possible to quantify parts of the model in another
part, and then let the generator still do the weaving.

Aspect-Oriented Modelling is currently a hot research topic. Behind the buzzword
you can find such diverse things like adding an aspect notation to UML or
describing (conceptual) frameworks for weaving models. Further examples can be
found, for example, at an ECOOP workshop called “First Workshop on Models
and Aspects - Handling Crosscutting Concerns in MDSD”, [MaA]

Consequences

Applicability. The approach can be applied only if the generator can handle
various models with different concrete syntaxes and is able to perform the
weaving.

Granularity. The achievable granularity is completely under the control of the
developer, since the join point model is part of the (custom) metamodel definition.

Performance/Footprint. This pattern has no consequences for runtime
performance and footprint, since it is applied at generation time.

Complexity/Verbosity. At first glimpse, the solution proposed by this pattern
might seem overly complex. And in fact, if you use an unsuitable generator tool,
the solution can be complex. However, if your generator really represents all
models as objects in the implementation language once they are parsed, the
implementation of this pattern becomes almost trivial. As a benefit, your
application models will be well focused on a specific aspect, easier to maintain,
and better usable in larger teams, since various developers can care of only
selected aspects, and need not care too much about others.

Flexibility. This issue does not apply here, since the pattern has no runtime
consequences.

 23

Known Uses

All MDSD projects that I am or was involved in have used this approach, this
includes a C-based component model for embedded real time systems, web
applications and components for mobile devices.

The documentation of the openArchitectureWare generator [OAW] shows an
extensive practical example of using more than one model as generator input.

Summary

In non-trivial scenarios, A MODEL PER CONCERN is absolutely necessary to keep
(large) models managable. Make sure you use a tool where this approach can be
implemented painlessly, before you use the generator tool on larger projects.

Pattern Overview – Pt.2
The following illustration shows where in an MDSD infrastructure the respective
CCC-handling approach will take effect. For example, AO TEMPLATES handle the
cross-cutting concerns in the templates, while the generator tool has to support it
by providing the AOP support for template files.

This section provides a summary of the consequences in the form of a chart. The
more grey in the box, the better. The rationale for the length of the bars is derived
from the consequences sections of the respective patterns.

 24

Where is the loom?

An important question is: where and when does the weaving happen? I have not
included this question as a differentiator/consequence directly in the patterns,
because in some way it is irrelevant – nobody cares where the weaving happens, as
long as it happens as expected. However, from the perspective of the AO-minded
reader the question is important, so I want to discuss it briefly in this section:

Pattern Weaving Location

TEMPLATE-IF No weaving happens – the advice are inlined into
the template code.

AO TEMPLATES The weaving is handled by the template engine,
typically dynamically during template execution.

AO PLATFORMS The platform takes care of weaving, typically at
load time or runtime.

PATTERN-BASED AOP The generator creates the proxies during system
generation. Adding the interceptors (i.e. defining
pointcuts) can happen during system startup or at
any time during runtime.

POINTCUT GENERATION The pointcuts are generated statically. The
weaving happens in a separate weaving phase, at
load time or at runtime, depending on the used
AOP tool.

A MODEL PER CONCERN The weaving is done by the code generator
(acting as a model weaver) before code
generation.

 25

Relationships among the patterns
Some of the patterns in this paper are closely related or can be used together
nicely. This section provides some detail.

PATTERN-BASED AOP and AO PLATFORMS

PATTERN-BASED AOP basically combines a couple of design patterns to implement
an interception framework. The necessary proxies are created using code
generation. You can "morph" this pattern to become an AO PLATFORM in the
following way:

 use runtime code generation (see [CGLIB] for an example byte code
modification library) to add the necessary proxies (or more general, hooks) to
the system, for example during class load time.

 use a configuration file to define which interceptors should be used for a
certain class.

You can then use this infrastructure as the AO PLATFORM for your application
code.

AO PLATFORM and POINTCUT GENERATION

The boundaries between AO PLATFORMS and POINTCUT GENERATION seems to
blur. In both cases, you use information from the model and generate artefacts that
control the "aspect weaving" of some other tool; POINTCUT GENERATION generates
the pointcut code for an abstract aspect of the platform. AO PLATFORMS use a
platform's CCC handling techniques and generate the corresponding configuration
files. While both approaches are conceptually very similar, they are quite different
in practice with regards to granularity and other consequences.

There are clearly the two extremes:

 AspectJ is an AOP language extension for Java. Using it is definitely an
instance of the POINTCUT GENERATION pattern.

 EJB 2.x are a – quite limited – AO PLATFORM. Deployment descriptors allow
you to handle certain predefined CCC.

JBoss AOP are not as readily categorized into one of these two categories. You
can define arbitrary advice (basically, by implementing interceptors) and then
define a pointcut definition in a separate XML file. On the one hand it is POINTCUT

GENERATION: you generate a pointcut (the XML file) that determines where to
weave in prebuilt advice (the interceptors). On the other hand it is an AO

PLATFORM, since it also comes with a set of predefined advice that are typically
used in the relevant domain (enterprise systems).

 26

The special case of A MODEL PER CONCERN

A MODEL PER CONCERN plays a somewhat special role in that it can be used
together with any of the other patterns, since it takes care of CCC on the "input
side" of the MDSD process. You cannot substitute this pattern by using an AOP
language extension in the generated code.

Concluding Remarks
This paper presented a collection of patterns on how to handle cross-cutting
concerns in the context of model-driven software development. The paper showed
that using AOP language extensions is one way to do this, but not the only one –
and considering the implications, the other approaches are sufficient in many
environments. However, I don’t want to create the impression that I consider AOP
useless in the context of MDSD. There are scenarios, where combinations of
MDSD and AOP can be very useful. Considering the added complexity of an AOP
tool, however, I think the other approaches are worth considering.

If you just remember one of the patterns in this paper for your day to day work,
then this should be A MODEL PER CONCERN. This has probably the farthest
reaching (positive!) implications for MDSD.

Acknowledgements
I have received feedback for this paper from many people. These include Arno
Haase, Danilo Beuche, Alexander Schmid, Eberhard Wolff. There re two people I
want to thank specifically: Arno Schmidmeier (who was my shepherd for
EuroPLoP 2005) and Christa Schwanninger. Both provided really good feedback
that improved the paper substantially! I also want to thank my EuroPLoP 2005
workshop.

References
[AC] AspectC++, http://www.aspectc.org

[AJ] Eclipse.org, AspectJ homepage,
http://www.eclipse.org/aspectJ

[AOP] aosd.net, http://aosd.net

[CGLIB] Sourceforge.net, CGLIB Code Generation Library, http://cglib.sourceforge.net/

[CME] Eclipse.org, The Concern Manipulation Environment, http://www.eclipse.org/cme

[FF04] Filman, Friedman, Aspect-Oriented Programming is Quantification and
Obliviousness in Filman, Elrad, Clarke, Aksit, Aspect-Oriented Software
Development, Addison-Wesley, 2004

[GoF] Gamma, Helm, Johnson, Vlissides; Design Patterns,
elements of reusable software design, Addison-Wesley 1995

[LV04] Martin Lippert, Markus Völter. Die 5 Leben des AspectJ, JavaSpektrum 04/2004 und
http://www.voelter.de/publications/articles.html

 27

[MaA] Groher, Schwanninger, Völter, First Workshop on Models and Aspects - Handling
Crosscutting Concerns in MDSD, ECOOP 2005, http://www.st.informatik.tu-
darmstadt.de:8080/ecoop2005/maw/

[MDSD] mdsd.info, http://www.mdsd.info

[MO03] Mira Mezini, Klaus Ostermann, Conquering Aspects with Caesar, n (M. Aksit ed.)
Proceedings of the 2nd International Conference on Aspect-Oriented Software
Development (AOSD), 2003, ACM Press

[MV03b] Markus Völter, A Generative Component Infrastructure for
Embedded Systems, http://www.voelter.de/data/pub/SmallComponents.pdf

[MV03] Markus Völter, Patterns for Program Generation, Proceedings of EuroPLoP 2003 and
http://www.voelter.de

[MV04] Markus Völter, Self Made EJB AOP, http://www.voelter.de/
data/articles/SelfMadeEJBAOP.pdf

[OAW] The openArchitectureWare Generator Framework,
http://www.openarchitectureware.org

[POSA2] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-Oriented Software
Architecture - Patterns for Concurrent and Distributed Objects. Wiley and Sons
Ltd., 2000

[SH03] Arno Schmidmeier, Stefan Hanenberg, AspectJ Patterns, proceedings of EuroPLoP
2003

[VB04] Völter, Bettin, Patterns for Model-Driven Software Development, Proceedings of
EuroPLoP 2004 and http://www.voelter.de

[VKS05] Völter, Kircher, Salzmann, Model Driven Software Development in the Context of
Embedded Component Infrastructures, Springer, to be published

[VKZ04] Völter, Kircher, Zdun, Remoting Patterns, Wiley 2004

[VSW02] Völter, Schmid, Wolff, Server Component Patterns, Wiley 2002

[XVCL] Sourceforge, XML Variant Configuration Language
fxvcl.sourceforge.net/

 28

Appendix A: AOP and MDSD
Before we actually look at the patterns of how to combine AOP and MDSD in
practice, let us first define, what we understand by AOP and MDSD, respectively,
and outline the commonalities as well as the differences of the two approaches.

What is MDSD

Model-Driven Software Development is about making models first class
development artifacts as opposed to “just pictures”. Various aspects of a system
are not programmed manually; rather they are specified using a suitable modelling
language. These models are significantly more abstract than the implementation
code that would have to be developed manually otherwise – the language for
expressing these models is specific to the domain for which the models are
relevant. The modelling languages used to describe such models are called
domain-specific languages (DSL).

Models themselves are not useful in the final application, however. Rather, models
have to be translated into executable code for a specific platform. Such a
translation is implemented using model transformations. A model is transformed
into another, typically more detailed (and thus, less abstract) model; a series of
such transformations results in executable code, since the last transformation is
typically a model-to-code transformation. Because of today’s somewhat limited
tool support, many MDSD infrastructures use just one generation step, directly
from the models to code. Model transformation tools using the latter approach are
often referred to simply as model-driven code generators.

As can be seen from this introduction, I am primarily looking the generative
approach of MDSD where models are translated into more concrete artefacts.
Alternatively, models could be interpreted at runtime. However, in industrial
practice, the interpretative approach is a niche; I will ignore it for the rest of this
paper.

Also, all but the last patterns look at handling cross-cutting concerns in the context
of the last of the transformation steps, namely code generation.

What is AOP

Aspect Orientation is about modularizing cross-cutting concerns (CCC) in
software systems. CCCs are features of a system, that cannot easily be localized as
a single module in a software system, because the abstractions and modularization
facilities provided by the respective programming language (or system) do not
allow such a modularization. Aspect Orientation uses various approaches to allow
the modularization (and thus, localization) of such CCC. Aspect Oriented
Programming (AOP) aims at introducing programming language constructs to
handle the modularization of CCC.

 29

The above explanation of AOP is what the mainstream considers AOP to be. There
are, however, two additional "aspects" of AOP which I don't want to leave
unmentioned: introductions and collaborations. Note that these two aspects are not
ass well known in industrial practice, and several AOP tools don't even support
them. This paper will not address these two aspects in detail; at the end of a paper,
there is a small section that provides some detail.

Note that, in order to simplify the discusssion, throughout the paper I use AOP
instead of differentiation when its really about AOP and when the more general
AO or AOSD terms should have been used.

Commonalities of the two approaches

Separating Concerns. Both approaches can be used to separate concerns in a
software system. AOP typically modularizes CCC by separating them into aspects
and later weaving them into the “normal” code (source or binary). MDSD works
by specifying system functionality in a more abstract, and domain specific DSL
and the transformations are used to add those concerns that can be derived from
the model’s content.

Technical Aspects. Both approaches are often used to factor out (and then later,
reintegrate) repetitive, often technical aspects. In both cases it is also possible to
factor out function (or domain-specific) aspects, although this is not widely used –
usually, because technical aspects are more obvious and well-understood
candidates.

Mechanics. Technically, both approaches work with queries and transformations4
(see [FF04]). In AOP you use pointcuts to select a number of relevant points (join
points) in the execution of a program (or in its code structure) and “contribute”
additional functionality called advice at these points. In MDSD, a model
transformation selects a subset (or pattern) of the model, and transforms this
subset into some other model.

Metamodels. Metamodels play an important role in both approaches. In MDSD,
the metamodel5 is clearly evident, as it forms the foundation of the model that is
being transformed. In model-2-model transformations, the metamodel of the
transformation target is also relevant, whereas model-2-code transformations
typically use textual templates to generate the target code. In AOP, the metamodel
is not so readily obvious. However, the join point model of the particular AOP
system is also a metamodel. A specific program (or program execution) is an

4 Quantification is an important concept in both approaches. Statements like “foreach
model element of type X generate the following code” or “whenever the method X is
called by a class in package Y” allow to quantify over a number of things, as opposed to
addressing each occurrence specifically. This is what makes both approaches so powerful.
5 The metamodel is a model that describes a model. Instances of metamodel elements are
the elements of a model. A model is related to its metamodel via an instanceof
relationship. In the context of a DSL, the metamodel plays the role of the abstract syntax.
In addition, like any other language, a DSL also has a concrete syntax and semantics.

 30

instance of this metamodel by exhibiting the occurrence (or instantiations) of the
respective join points.

Selective Use. An important concept in both approaches is the fact that the
handling of CCC can be turned of or off for a specific system. In AOP, you can
decide at weaving time whether you want to have a certain aspect included in the
system6. In MDSD, you can select the transformation you want to use for a
specific system – the chosen transformation may or may not address a certain
concern.

Differences

Dynamic vs. Static. MDSD works by transforming static models7. That means,
MDSD transformations work before the system is run at generation time
(remember that we ignore the runtime interpretation of models in this paper),
MDSD has no relevance during the execution of the system – you cannot tell that a
system has been built by using MDSD by examining the finished system. AOP, on
the other hand, contributes behaviour to points in the execution of a system. In
many systems it is therefore possible, to consider dynamic aspects in the
definitions of pointcuts (such as the current call stack; an example is AspectJ,
[AJ])8.

Invasiveness. MDSD needs to be used during the development of the software
system, since the (finished) system is obtained by transforming models into code.
It is not possible to benefit from MDSD after a system has been developed9. With
AOP, however, it is (in most systems) possible to introduce behaviour after the
base system has been developed completely. This non-invasiveness is a key
advantage of AOP, since aspects can be added to a system after the fact10.

Abstraction Level. A fundamental concept of MDSD is that it allows developers
to express their intent with regard to the software system on a higher abstraction
level, more closely aligned with the problem domain. The specifications are thus
more appealing to domain specialist, compared to 3GL code. A DSL serves
exactly this purpose. AOP, on the other side, is basically bound to the abstraction

6 … which can be at runtime if you use an AOP system with dynamic weaving.
7 Of course these models can describe behaviour. Also, the generated code can include
behavioural aspects. However, the model itself is always a static structure, and the
transformations transform this static structure into a different static structure.
8 Note that this dynamic behaviour has nothing to do with when the weaving is done.
Weaving can be done before runtime, at load time and at runtime. The latter is called
dynamic weaving. In case weaving is done before runtime ("static weaving") the dynamic
nature of aspects is achieved by statically generating code!
9 MDSD can be used to create wrappers for or adapters to legacy systems. In that case,
however, the legacy system itself is untouched.
10 Of course, if you want to take full advantage of AOP, you have to design for it.
Applying aspects after the fact is an interesting and important use case (for adapting
existing systems), but the full potential of AO can only be exploited if you use aspects
from the very beginning. See [LV04]

 31

level of the system for which it handles the CCC; in AOP, this is the base
programming language. While AOP can of course be used to more concisely
express relationships, collaborations or other concerns of the underlying base
program, there is no fundamental change to the level of abstraction of the domain
specific-ness of the constructs.

Non-Programming Language Artifacts. In MDSD, it is easily possible to also
generate non-programming language artefacts such as configuration files, build
scripts or documentation; this is because in model-2-code transformations, any
textual artefact can be created. AOP however works on the running system
(remember it is dynamic in nature), and as such it cannot affect things that are not
relevant at runtime11 (or said differently: things that are not expressed in the
programming language).

11 In the context of the CME project [CME], it will be possible to work with concerns
outside of the running program, for example in ant build files.

 32

Appendix B: Introductions and Collaborations
This paper has looked at AOP primarily at a way to contribute advice to join
points during program execution. As mentioned in the introduction of the paper,
there are, however, two additional aspects of AOP for which I want to provide
some detail in this section.

Introductions/Open Classes

Introductions are used to "inject" artefacts into an existing system statically (as
opposed to dynamic advice in join points). For example, additional fields or
operations can be introduced into existing classes. Typically, the pointcut query
language (specifically, its static subset) is used to determine, where to inject
artefacts. An example could be "for all classes that implement interface X, add the
following methods:"). Some AOP languages also allow to change static class
features, such as changing the superclass, or adding an additional implemented
interface; this is called open classes. The following table provides some detail, on
how this relates to the above patterns.

Pattern Introductions Open Classes

TEMPLATE-IF Using a template-IF, it is easy to conditionally inject code
into the generated artefacts.

AO TEMPLATES It is possible to add
template code to existing
templates. The explicitly
defined hooks shown
above can be considered
to be an introduction.

N/A

AO PLATFORMS Depends on the platform, not widely supported. Some allow
it by using tools such as byte-code modification (Spring is
an example).

PATTERN-BASED

AOP
Not possible.

POINTCUT

GENERATION
Depends on the AOP tool used. If you use AspectJ, for
example, both features are possible.

A MODEL PER

CONCERN
Using on the fly model
modifications, it is
common practice to add
additional features to
model elements.

N/A

 33

Collaborations

The idea of considering a collaboration between artefacts an aspect that is worth
modularizing is very appealing. Using this approach, a collaboration becomes a
type, in the same way as classes or aspects (as we know them traditionally) are
types. This "kind" of AOP is very important for handling functional aspects as
opposed to technical aspects but is still subject for research and not widely used in
practice. The CAESAR [MO03] language is an example of a research project in
this direction.

The idea of this approach is basically, that you define a collaboration (for example,
the Observer pattern) as a type. The collaboration type describes the various roles
that are required for the collaboration (in the example, Subject and Observer). In a
concrete system, pointcuts are used to instantiate the collaboration by binding
concrete artefacts to the instantiated collaboration (for example, in a drawing
programm, the class Figure plays the role of the subject, while the Canvas plays
the role of the Observer).

The collaboration also defines, which features artefacts must have in order to be
able to play a role (for example, they must implement the ISubject interface, or
have an operation registerObserver(). Traditional AOP introductions and advice
can be used to enhance the concrete artefacts in order for them to play the role.

Using this approach, you can capture large portions of collaboration code in well-
separated aspects and then simply bind concrete artefacts to instances of these
collaborations. "Traditional" AOP mechanics are used to fill in the required
"magic".

What is the relationship of the patterns introduced above to collaboration aspects?
It is safe to say, that the patterns do not address this aspect, with two exceptions:

 You can extend the POINTCUT GENERATION pattern so that you generate
collaboration bindings in case the underlying AOP language supports this.

 In the A MODEL PER CONCERN pattern, you can use markup in models (such as
tagged values in UML models) to mark certain artefacts as playing a certain
role in a collaboration. The generator can then make sure the model artefact
has all the required features, or use model modifications to actually add them.
Later stages can make sure the generated code can play the collaboration role.

