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Abstract
Software product line engineering aims to reduce 

development time, effort, cost, and complexity by tak-
ing advantage of the commonality within a portfolio of 
similar products. The effectiveness of a software prod-
uct line approach directly depends on how well feature 
variability within the portfolio is implemented and 
managed throughout the development lifecycle, from 
early analysis through maintenance and evolution. This 
paper presents an approach that facilitates variability 
implementation, management and tracing by integrat-
ing model-driven and aspect-oriented software devel-
opment. Features are separated in models and com-
posed by aspect-oriented composition techniques on 
model level. Model transformations support the transi-
tion from problem to solution domain. Aspect-oriented 
techniques enable the explicit expression and modu-
larization of variability on model, code, and template 
level. The presented concepts are illustrated with a 
case study of a home automation system.

1 Introduction and Motivation

Most high-tech companies provide products for a 
specific market; thus the products have many things in 
common. An increasing number of these companies 
realize that product line development [1,2] fosters reuse 
at all stages of the lifecycle, shortens development time 
and helps staying competitive.

The effectiveness of a software product line ap-
proach directly depends on how well feature variability 
within the portfolio is managed from early analysis to 
implementation and through maintenance and evolu-
tion. Commonalities, as well as the flexibility to adapt 
to different product requirements are captured in core 
assets. Those reusable assets are created during domain 
engineering. During application engineering, products 
are either automatically or manually assembled, using 
the assets created during the domain engineering proc-
ess and completed with product-specific artifacts. 
Products usually differ by the set of features they in-
clude in order to fulfill customer requirements. A fea-
ture is an increment in functionality provided by one or 
more members of a product line [3].

Variability management is the activity concerned 
with identifying, designing, implementing, and tracing 
flexibility in software product lines (SPLs). Variability 
of features often has widespread impact on multiple 
artifacts in multiple lifecycle stages, making it a pre-
dominant engineering challenge in software product 
line engineering (SPLE).

In traditional SPLE approaches, variability is
mainly handled using either mechanisms provided by 
the implementation language, such as patterns, frame-
works, polymorphism, reflection, and pre-compilers or 
using configuration and build tools to set compile time 
variables and select variants of assets. The approach 
described in this paper facilitates variability implemen-
tation, management, and tracing from architectural 
modeling to implementation of product lines by inte-
grating both model-driven (MDSD) and aspect-oriented 
software development (AOSD). For companies that are 
already building product lines, MDSD and AOSD can 
further increase productivity because:
 Variability can be described more concisely since 

in addition to the traditional mechanisms, variabil-
ity is also described on model level.

 The mapping from problem to solution domain can 
be formally described automated using model-to-
model transformations.

 Aspect-oriented techniques enable the explicit ex-
pression and modularization of crosscutting vari-
ability on model, code, and generator level.

 Fine grained traceability is supported since tracing 
is done on model element level rather than on the 
level of code artifacts.

The presented concepts are illustrated with a case 
study of a home automation system. The case study is 
based on real-world system requirements from Siemens 
AG and demonstrates the benefits of the presented ap-
proach.

The rest of the paper is organized as follows: Sec-
tion 2 introduces model-driven and aspect-oriented 
development and explains the building blocks of the 
approach. Section 3 describes the case study. Section 4 
looks at tool support. Related work is discussed in Sec-
tion 5, while Section 6 summarizes the paper and pro-
vides an outlook on future work.



2 Concepts and Building Blocks

Model-driven software development (MDSD) [4] 
improves the way software is developed by capturing 
key features of a system in models which are developed 
and refined as the system is created. During the sys-
tem’s lifecycle, models are synchronized, combined and 
transformed between different levels of abstraction and
different viewpoints. In contrast to traditional model-
ling, models do not only constitute documentation but 
are processed by automated tools. Thus models have to 
be formal, whereas every model is an instance of a meta 
model. The meta model defines the vocabulary and 
grammar, i.e. the abstract syntax, used to build models. 
In order to be useful for MDSD, models have to be 
complete regarding the abstraction level or viewpoint 
they describe.

A Domain Specific Language (DSL) [4] is a formal-
ism for building models: It encompasses a meta model 
as well as a definition of a concrete syntax that is used 
to represent the models. The concrete syntax can be 
textual, graphical or using other means, such as tables, 
trees or dialogs. Different DSLs can use the same meta 
model while varying in their concrete syntax. The mod-
els built with these DSLs will look different, but will all 
have the same meaning. The meta model is what the 
tools care about, whereas the concrete syntax is what 
the DSL users care about. It is essential, that the con-
crete syntax can sensibly represent the concepts the 
DSL is intended to describe.

Aspect-oriented software development (AOSD) 
[5,6] improves the way software is developed by pro-
viding means for modularizing crosscutting concerns. 
They are encapsulated as aspects and powerful mecha-
nisms support their subsequent composition with other 
software artefacts. Aspects interfere with other artefacts 
at so called join points, well defined points in the struc-
ture or execution flow of an artefact or a program. 
Pointcut expressions quantify over the join points to 
select the set of actual composition points for a specific 
aspect. An aspect weaver automatically composes as-
pects with the rest of the system, either statically during 
compilation, dynamically at runtime, or at load-time.

While MDSD and AOSD are different in many 
ways – MDSD adds domain specific abstractions and 
AOSD offers concern modularization and composition 
mechanisms – they also have many things in common. 
Existing research has investigated ways of combining 
the two paradigms [7,8,9,10] to achieve the comple-
mentary benefits of both MDSD and AOSD.

This paper explores an approach that integrates 
model-driven and aspect-oriented techniques in order to 
facilitate variability implementation, management and 
tracing in SPLE.

The general approach we are going to propose is as 
follows:
 Express as many artifacts as possible using models

as this allows for processing these artifacts using 
model transformations.

 Mappings from problem to solution domain are
implemented as model-to-model (M2M) transfor-
mations. This enables to formally describe map-
pings and automate their execution.

 Variable parts of the resulting system are either 
assembled from pre-build assets generated from 
models or implemented via interpreters. This is 
more efficient and less error-prone than manual 
coding in a third generation language (3GL).

 Aspect-oriented modeling (AOM) [8,11] is used to 
implement variability in models. This supports the 
selective adaptation of models.

 Aspect-oriented programming (AOP) [12,13] is 
used to implement crosscutting features on code 
level that cannot easily be modularized in the gen-
erator.

 Certain parts of a product will still be implemented 
manually because, for economic reasons, develop-
ing a custom generator is too costly. The manually 
written code is integrated with the generated code 
in well-defined ways.

In the following sections we will describe these 
steps in more detail.

2.1 Kinds of Variability
In the context of product line engineering, DSLs are 

used to bind variability. We distinguish between two 
kinds of variability: structural and non-structural. Struc-
tural variability is described using creative construction 
DSLs, whereas non-structural variability can be de-
scribed using configuration languages. Figure 1 illus-
trates the spectrum of languages commonly used for 
expressing and binding variability.

Figure 1. Expressive power of DSLs

Figure 2 shows the meta model of a creative con-
struction DSL. Any number of models can be defined, 
by instantiating meta model elements. Figure 3 presents 
an example using the familiar concrete syntax of UML.

Figure 4 shows a feature model of a weather station
using the notation defined in [15]. The feature model
expresses a certain configuration space, i.e. the model 
is an expression of configurative variability. A specific 



configuration is described by selecting a valid subset of 
those features.

Figure 2. Creative construction meta model

To align feature modeling with general MDSD ter-
minology, it is useful to consider the feature model a 
meta model and the concrete configurations models.

Figure 3. Example models

2.2 Problem/Solution Domain Mapping
In SPLE, two areas of concern can be distinguished: 

the problem domain and the solution domain. The for-
mer is concerned with end-user understandable con-
cepts while the latter deals with the implementation of 
the product features using software technologies.

Figure 4. Weather station feature model

When using MDSD for implementing product lines, 
we use DSLs in both domains to express the respective 
variability. Often, we use configuration DSLs in the 
problem domain and creative construction DSLs in the 
solution domain, although there are also examples to 
the contrary.

Central to SPLE is the specification of product fea-
tures in the problem domain, and their subsequent 
mapping to corresponding solution domain features.
Since we use DSLs in both domains, we can use model-
transformations to automate this mapping. A model 
transformation takes a source model M and transforms 
it into a target model K. M and K are typically in-
stances of different meta models and reside at different 
levels of abstraction. The source model M is not modi-
fied during the transformation. In the context of SPLE, 
M is typically the problem domain model and K is the 
solution domain model. 

The problem domain model might not contain all 
the information necessary for the transformation to 
populate the solution domain model. Hence we use so-

called mixin models to parameterize the transformation 
or to provide the additional data required.

2.3 Expressing Variability in Models
We have shown that there are two fundamentally 

different kinds of variability, and consequently, two 
different kinds of DSLs: creative construction DSLs 
and configuration DSLs. We have also shown that in 
MDSD-based SPLE, models are used to represent 
products in the problem and solution domain. Conse-
quently, a solution domain model often needs to be 
adapted based on a product configuration in the prob-
lem domain. In other words, we want to use a configu-
ration model to define variants of a model built with a 
creative construction DSL.

Figure 5. Negative (a), positive (b) variability

There are two fundamentally different ways of ap-
proaching this problem: One can either use negative 
variability or positive variability (see Figure 5).

Negative variability selectively takes away parts of 
a creative-construction model based on the presence or 
absence of features in the configuration models. The 
“overall” model is built manually, and model elements 
in that model are connected to features in the configura-
tion model. Figure 6 shows an example.

Figure 6. Model variants

The second alternative uses positive variability. We 
start with a minimal core and selectively add additional 
parts. For this to work, one has to specify where the 
new parts should be attached. Here aspect weaving on 
model level comes into play: Optional parts are woven 
into the core. A pointcut expression defines the “con-



nection points”. We call this approach model weaving, 
an example of aspect-oriented modeling. We elaborate 
on tool support for model weaving in Section 4.

2.4 Tracing
An important concern in SPLE is traceability as

stakeholders want to be able to trace how a given re-
quirement results in a certain software configuration. 
Using MDSD-SPLE, this is relatively easy to do. Since 
mappings between abstraction levels are based on for-
mal model transformations, we can make sure the map-
pings are made persistent in a trace model. It can either 
be built automatically by the transformation engine, or 
it can be built manually by the transformation devel-
oper (by calling some kind of createT-
race(fromElement, toElement, traceKind) function in 
the transformation script at the appropriate locations). 
We prefer the second approach since it allows develop-
ers to control trace granularity.

Two things are worth mentioning here:
 Since we trace between model elements, the trace 

is finer grained than in current approaches, where 
tracing happens between artifacts [16,17].

 Since problem domain concepts are also repre-
sented as models, we gain traceability from the 
problem domain over to the solution domain.

Additionally, we need to trace down to code level. 
Specific regions of code need to be associated with 
model elements. For generated code, this is straight 
forward since the generator knows which model ele-
ments are “in scope” when a given region of code is 
generated. For manually written code it is more chal-
lenging, since a piece of hand-written code may imple-
ment any number of requirements. This problem can be 
mitigated to some extent by clearly defining the loca-
tions where manually written code can be integrated. 
An alternative approach is to specify the trace from 
code to models manually.

On the other end of the spectrum we also need to 
trace requirements. These are different from problem 
domain models as requirements are typically plain Eng-
lish. To make them traceable, we need to somehow 
integrate them into the “modeling world”. This can be 
done in various ways, depending on the tool that is used 
to capture the requirements. For example, it would be 
possible to create an EMF model [24] based on re-
quirements managed with the DOORS [40] tool and use 
the EMF model for tracing purposes.

Finally, we need to trace to library components. 
This is relatively easy to do if we assume that every 
library component has some kind of representation on 
model level. We can then trace via model element rela-
tionships (more on this in the next section).

2.5 Library Components
Core assets are reusable artifacts that can be utilized 

in some or all products in the product line. We distin-
guish core assets from library components. The former 
includes generators, meta models and other artifacts 
involved in the construction of the products, the latter 
are strictly part of the products themselves. This section 
focuses on library components only.

Based on the information in the models, we can de-
termine whether a given library component is part of a 
product. Library components can come in three flavors: 
implemented purely in code, as pure models and im-
plemented in code, but accompanied by models. 
 If the facet of the PL that is covered by the library 

component is not supported generatively, the com-
ponent has to be pre-built and included as code. 
The production process for the product will simply 
include/link/instantiate/deploy the component if it
is required. Example: An optional SNMP monitor-
ing agent running on a system node.

 The other extreme is that the SPL contains genera-
tors that can completely generate the component 
implementation. Here it is preferable to include 
only the model into the library because, if the gen-
erator changes, the library component’s implemen-
tation is automatically adapted (since it’s regener-
ated). Example: A reusable business process com-
ponent specified as a component with an associated 
state machine.

 A mix of the two approaches is appropriate if some 
facet of a component can be represented via a 
model, while another facet cannot. For example, in 
a component-based architecture, one might have a 
logging component pre-manufactured and imple-
mented. In order to be able to instantiate and con-
nect it, there has to be a model for the component.
In that case, the library contains the implemented 
component (or at least those parts that are not gen-
erated and have to be manually implemented) as 
well as the model fragment that describes it (typi-
cally its external interfaces, etc.).

2.6 Target Code Variability
In a generative environment (as opposed to an in-

terpreted world) it is the generated code that ultimately 
counts. At some point we have to leave the “modeling
world” and use code generation templates (or some 
other code generation technology [18]) to generate the 
product source code. There are two extremes as to 
when to leave the modeling world and generate code: 
 Direct model-to-code generates code from the 

model the user created (in our case the problem 
domain model). The code generation tool must be 



quite powerful, since the abstraction gap is large 
and has to be bridged in one step, using the code 
generator only.

 The other extreme is to consider source code a 
model, and use M2M transformations to instantiate 
the abstract syntax tree of the target language. 
Code generation is then extremely simple, since it 
is only a form of un-parsing (or pretty printing). 
This approach results in complex M2M transfor-
mations. 

In our experience, the truth lies somewhere in the 
middle and based on experience rather than hard facts. 
Typically, we stay on model level as long as structural 
variability in the models has to be taken care of. Once 
the only remaining variability is with respect to the 
generated text (e.g. code, configuration files) we will 
handle the remaining variability in the templates. 

In order to address this kind of variability, a means 
of handling variability in templates is necessary. Using 
AO on templates, we can isolate template-based vari-
ability into template aspects. We will elaborate on tool 
support for AO on template level in Section 4.

2.7 Architectural (Meta) Models
MDSD also helps with the representations of archi-

tectures in SPLE. We distinguish between two kinds of 
architectures:
 The product line architecture is the overall archi-

tecture of all the software involved in building the 
products. It also includes the “meta artifacts” (gen-
erators, DSLs, transformers etc.).

 The target architecture describes the architecture of 
the products built with the product line architec-
ture.

In this section we want to focus on the target archi-
tecture only. 

Figure 7. Meta model for type viewpoint

It is often said colloquially, that, during domain en-
gineering an architecture is defined that is instantiated
during application engineering. This instantiation step 
can be understood literally in the context of MDSD-
SPLE. During domain engineering an architectural 
meta model is created for use in the solution domain. In 

application engineering this meta model is instantiated 
to represent the concrete architecture of a given prod-
uct. Figure 7 illustrates a simple meta model for the 
type viewpoint of a hierarchical component architec-
ture. Based on this architectural meta model, a (simplis-
tic) product architecture can be defined (see Figure 8). 

Figure 8. Example product architecture

The architectural meta model defined during do-
main engineering defines a (formal) vocabulary that can 
be used for defining product architectures.

2.8 Runtime Variability
The discussions above assume that the binding time 

for the variability is during code generation.
However, not all variability in a product line can or 

should be bound at generation time. Deployment-time, 
load-time and runtime variability need to be considered 
as well. The mechanisms for achieving these are well-
known: frameworks, dynamic instantiation, parameteri-
zation, reflection and interpreters together with some 
kind of data that shall be consumed by frameworks and 
interpreters.

There are two important connections to MDSD-
SPLE that need to be made here. The “data” is of 
course a model. Instead of feeding (some of the) mod-
els describing the product into the code generator, we 
include the model into the product and feed it into 
frameworks and interpreters. We also provide a means 
to edit the models while the application runs.

The runtime variability needs to be configured con-
sistently with the overall requirements and the product. 
The parameterization needs to be derived somehow 
from the models. This means that configuration files for 
frameworks are typically generated. This approach is 
especially relevant for 3rd-party frameworks that expect 
some kind of (often XML-based) configuration file.

2.9 AOP on code level
In the preceding paragraphs we mainly discussed 

models. We also discussed AOSD in the context of 
models, i.e. model weaving. In this section we focus on 
AO on code level in the context of MDSD-SPLE.

Of course we can simply generate code in an AO 
language as opposed to a traditional 3GL. After the 
code generation, the compiler/weaver builds the binary 
program. A particularly useful approach uses abstract 
aspects (aspects whose pointcuts are not fully speci-
fied). The core assets of the product line contain a 
manually written abstract aspect. Based on the product
configuration, the generator generates concrete sub-



aspects. These contain generated pointcuts, deciding if 
and where to weave the advice. Since an AO language 
provides greater expressive power than a traditional 
language, the code generation templates become sim-
pler. Architects need to decide on the tradeoff between 
simpler templates and introducing the additional com-
plexity of an AO language.

Another way of using AO on code level is to gener-
ate configurations for AO frameworks, such as a Spring 
configuration file [19] or a POA configuration using 
CORBA interceptors [20]. While this is conceptually 
similar to generating pointcuts, it is technically different 
and thus deserves separate mentioning.

Finally, there is a third and maybe most important 
way of exploiting AOP in MDSD-SPLE. A product line 
architecture needs to have predefined variation points 
(or hooks) in all the locations where product specific 
variation can occur. However, for a given new product, 
the product line architecture may not provide the re-
quired configuration or customization hooks. There are 
two ways out of this dilemma: Either one has to manu-
ally tweak the generated code to accommodate the vari-
ant, or the product line architecture has to be adapted to 
include the additional hook(s). The latter approach is 
desirable, but for reasons of versioning, coordination or 
time pressure it is often not realistic. Here is where 
AOP comes into play. Using AO languages such as 
AspectJ [12], one can hook into generated (or manually 
written library) code at places where the product line 
architecture does not provide hooks. Thus the necessary 
change can be accommodated without changing the 
product line architecture and without manually chang-
ing the generated code – the change is “external” in the 
aspect. In some sense this is still a tweaking of the gen-
erated system, and it is a good idea to subsequently 
refactor the product line architecture to include proper 
hooks.

2.10 Meta-Product Lines
It is also possible to build product lines of product 

line architectures. This may sound strange, but is a very 
useful thing (we will illustrate this in our case study). 
So what does this actually mean? If a product line ar-
chitecture uses meta models, transformations, genera-
tors and DSLs including custom editors, then a meta
product line builds variants of these artifacts.

In order to do this the following has to be done:
 Variants of meta models have to be built (e.g. us-

ing the techniques introduced in Section 2.3).
 Corresponding variants of editors have to be de-

fined. Editors are often defined using models, too, 
so this task is again one of model variation.

 Reusable generator components, also known as 
cartridges, have to be built.

 The generator has to be configured, e.g. the trans-
formation steps it executes. Again, AO can be used 
on generator level, i.e. AO on template and on 
model transformation level.

An example of (meta) model customization is the 
meta model in Figure 7. The model elements with the 
grey background are those necessary for hierarchical 
components as opposed to flat ones. Expressing hierar-
chical components is thus an optional feature of the 
component architecture. The necessary additional 
model elements can be woven into the meta model.

3 Case Study: Home Automation

The case study to illustrate our approach is a home 
automation system (see also [1]), called Smart Home. 
In homes you will find a wide range of electrical and 
electronic devices such as lights, thermostats, electric 
blinds, fire and smoke detection sensors, white goods 
such as washing machines, as well as entertainment 
equipment. Smart Home connects those devices and 
enables inhabitants to monitor and control them from a
common UI. The home network also allows the devices 
to coordinate their behavior in order to fulfill complex 
tasks without human intervention.

Sensors are devices that measure physical properties 
of the environment and make them available to Smart 
Home. Controllers activate devices whose state can be 
monitored and changed. All installed devices are part of 
the Smart Home network. The status of devices can 
either be changed by inhabitants via the UI or by the 
system using predefined policies. Policies let the system 
act autonomously in case of certain events. For example
in case of smoke detection windows get closed and the 
fire brigade is called. Varying types of houses, different 
customer demands, the need for short time-to-market 
and saving of costs drive the need for a Smart Home 
product line and are the main causes of variability.

In the remainder of this section we will explain how 
to use the techniques introduced in Section 2 to imple-
ment the Smart Home product line. We will first dis-
cuss the concrete product line of building smart home 
systems. Then we will look at a meta product line 
which varies the way we build Smart Home systems in 
the first place. Please note that this section can only 
provide an overview of the case study; subsequent pub-
lications will provide more details.

3.1 Problem Domain Modeling
In the problem space, we formally describe Smart 

Home systems. We define a meta model that contains
entities such as buildings, floors, rooms, the various 
kinds of sensors, actuators etc. In the problem domain 
we do not talk about anything concerned with software 



or computing hardware.
Using this meta model, we build a DSL with which 

we can model Smart Home systems from the perspec-
tive of the building architect or a home owner. The syn-
tax is graphical and custom editors are built.

While the DSL for describing Smart Home systems 
is a creative construction DSL, we also use configura-
tion DSLs as a part of it. Each of the entities (sensors, 
actuators, policies) needs to be configured with various 
options. Feature models are used for this purpose.

3.2 Solution Domain Modeling
The solution domain comprises a component-based 

architecture. Its meta model is similar to the one shown 
in Figure 7. Additional viewpoints are defined to ex-
press component instances, their connections, hardware 
structure as well as the mapping of software component 
instances onto hardware nodes. We do not provide a 
sophisticated concrete syntax for that domain, since the 
models are created by model transformations from 
problem domain models. 

To a large extent Smart Home systems consist of a 
specific arrangement of pre-built sensors and actuators 
(although a specific system can have custom devices). 
It therefore makes sense to keep a library of software 
components that control certain types of hardware. We 
use a combination of manually written code and models 
to represent these components in order to be able to use 
them to define a given system. Based on the problem 
domain model, the transformation instantiates, wires
and deploys those library software components.

3.3 Solution Domain Implementation
In realistic scenarios, there will be several target im-
plementation technologies. For example, computing 
platforms and networking/bus technologies will change 
depending on the level of sophistication of a product. In 
our case study we do not deal with sensor hardware and 
device drivers, so we implement all the software com-
ponents in Java. However, we still implement the sys-
tem with different implementation technologies to real-
istically address this kind of variability. One implemen-
tation alternative uses OSGi [21]. Another implementa-
tion uses the CAM-DAOP aspect-oriented component 
infrastructure [22]. A third implementation technology 
is based on CaesarJ [13].

These different platforms provide different levels of 
sophistication in one dimension or another. For exam-
ple, CaesarJ comprises a very expressive and powerful 
AO language, whereas OSGi provides advanced modu-
larization and deployment facilities.

3.4 The Meta Product Line
The previous discussion focused on building con-

crete Smart Home systems (i.e. products in the product 
line) using a given set of DSLs, transformers and gen-
erators. The user of this kind of system is the building 
architect, creating products for home owners.

Our meta product line addresses the vendor who 
develops systems for building architects to enable them 
to build Smart Homes for home owners. Vendors have 
a product line of “Smart Home design tools”. Various 
Smart Home Designer editions – economic home, safe 
home, and healthy home – can be purchased by build-
ing architects. They differ in the kinds of supported 
devices, the level of integration with third parties (such 
as security firms or medical facilities) as well as the 
sophistication of the interaction between the different 
devices and their policies.

Figure 9. Staged SPL for Smart Home

Consequently, the meta model and DSL for describ-
ing Smart Home systems in the problem domain should 
be configurable to adapt to the different editions of the 
DSL. For example, we want to support systems with or 
without fire extinguishing equipment. This requires 
weaving of the domain meta model, as well as adapting 
the models that describe the graphical editors. Also, 
since the problem domain DSL changes, we now need 
to adapt the transformations to the solution domain 
models. We need to be able to configure transforma-
tions based on the features that describe the edition of 
the Smart Home system currently in use. Again, aspect 
weaving on transformation level is very helpful at this 
point.

Figure 9 shows our approach to the case study. It is 
a staged product line where the first stage customizes 
the product that will be used in the second stage for 



building other products. All of the techniques discussed 
in Section 2 are employed.

4 Tool Support

This section outlines some of the tools that are 
available for implementing the approach described in 
this paper. The tool chain we use in our case study is 
based on Eclipse [23] as a tool platform, Ecore [24] as 
the meta meta model and openArchitectureWare [25] as 
the generation, validation and transformation toolkit. 
While we provide a general overview over the existing 
tools here, subsequent publications will provide more 
details on the actual tool chain implemented in our case 
study.

4.1 Building DSLs
Several tools for feature modelling are available on 

the market [26,27,28]. Exporting feature models and 
configuration models as instances of EMF’s Ecore [24] 
will be available for pure::variants [28] soon.

For building creative construction DSLs, there are 
several tools available in the MDSD space. The sim-
plest approach is to define a UML profile [14] and use 
profiled UML models as a graphical DSL. UML tools 
are becoming more powerful with respect to customiz-
ing diagrams and the UI for specific DSLs. 

For building custom graphical editors, Eclipse GMF 
[29] is an obvious candidate. Based on an Ecore do-
main meta model, graphical editors can be defined that 
instantiate the meta model. The editors themselves are 
defined using models.

There are also tools for building custom textual edi-
tors including syntax highlighting, custom outline views 
and code completion, EMF-based examples include
oAW’s xText [25] and INRIA’s TCS [30].

4.2 Transformations and Generation
For mapping problem domain models to solution 

domain models we need M2M transformation lan-
guages and tools. Although these kinds of languages are 
a relatively new breed, there are solutions available 
today. Based on Eclipse, there is INRIA’s ATL [31] 
and oAW’s Xtend [25]. As part of the Eclipse M2M 
project, a QVT [14] implementation will be provided in 
due course [32].

Different template languages have different levels 
of support for variability. oAW’s Xpand [25] supports 
AO on templates. A given variant, e.g. code for a cer-
tain target platform, can be modularized, even if the 
changes are scattered through the template structure.

It is not yet possible to bind the applicability of 
these template aspects to some global configuration 
model. This is something we will also work on in the 

future.

4.3 Expressing variability in models
Connecting structural models with variability mod-

els for negative variability has been demonstrated [33].
A feature model is connected to a UML model via 
stereotypes. Depending on the selected features, the 
UML model changes. Another less sophisticated proto-
type has been built based on oAW [25]. A generic EMF 
based solution is not yet available. We will develop 
such a solution as part of our future work. 

For positive variability, i.e. model weaving, several 
model weavers are available. INRIA’s AMW [34] can 
be used to weave EMF models as well as oAW’s 
xWeave [35]. Other model weavers are available (e.g.
C-SAW [36]), but since the term “model weaving” is 
not clearly defined in the community, each of the tools 
does something slightly different. 

4.4 Tracing
Tracing on model level is not very complicated. For 

example, oAW has a library to build traces of  M2M
transformations. Traces are EMF models themselves.
Tracing into source code is not yet available. The re-
spective features will be integrated into oAW in the 
near future.

4.5 Variability on Code Level
For “tweaking” generated and manually written 

code and the definition of abstract aspects as part of the 
core assets, we use existing aspect languages, such as 
AspectJ [12] and CaesarJ [13].

4.6 Meta Product Lines
In order to implement meta product lines as ex-

plained above, several additional capabilities are 
needed, none of which exists in our tooling yet:
 Configure the generator workflow based on a con-

figuration model.
 Use AO for M2M transformation languages. 

We will develop these missing tools as part of our 
future work.

5 Related Work

The main focus of research on AOSD in SPLE is 
targeted towards variability implementation using AOP 
languages. In [37] it is demonstrated how CaesarJ helps 
to overcome the deficiencies of feature-oriented pro-
gramming (FOP) and AOP for implementing variability
by supporting both multi-abstraction modules and join-
point interception. The approach in [38] describes As-
pectual Mixin Layers (AML), which integrate both 
AOP and FOP by introducing aspects into mixin layers



and providing aspect refinement. In [39] a generative 
approach called framed aspects is proposed. Framed 
aspects combine AOP with frame technology to modu-
larize crosscutting feature implementations and im-
prove evolution of SPLs. Our approach utilizes AOP in 
order to deal with unexpected variability. AO concepts 
are introduced at template and model-transformation 
level. We deal with variability mainly on model level.

In [7] several patterns are presented that deal with 
effectively handling crosscutting concerns in MDSD-
based development environments. In our approach 
some of the patterns are used such as AO templates and 
generation of pointcuts for pre-built abstract aspects.

[41] shows an approach that uses aspect-oriented 
modelling to handle model evolution. A modelling lan-
guage, called AspectM, has been defined that allows to 
express aspects either on UML model level or in XML.
A model editor and a model compiler are provided that 
enable the creation of different versions of models. The 
work uses model weaving similar to our approach but is 
very much targeted towards UML and Model-Driven 
Architecture (MDA) [44].

[42] contains a study that compares object-oriented 
and AO modelling with respect to modelling product 
line variability. A pacemaker product line is modelled 
using both techniques and compared. In our case study 
we focused on MDSD and AOSD only; we did not 
compare the results with traditional approaches for 
variability implementation and management.

In [43] feature-based model templates are pre-
sented. They consist of feature models and annotated 
models implementing the features. Annotations refer to 
features in the feature model and can either be presence 
conditions, iteration directives, or meta expressions. 
The approach is a form of negative variability on model 
level. In contrast, our approach uses model weaving to 
implement positive variability on model level.

6 Summary and Future Work

In this paper we have shown how our integrated 
MDSD-AOSD approach supports variability implemen-
tation, management and tracing throughout the product 
line development lifecycle. We have presented the con-
cepts and main building blocks of our approach; de-
tailed results of the case study and capabilities of the 
developed tools will be presented in subsequent publi-
cations.

Our intent is to express as many artifacts as possible 
using models. Configuration DSLs as well as creative 
construction DSLs are used in the problem and solution 
domains. During application engineering, models de-
scribe products using the two different kinds of DSLs.
AOM and especially model weaving allow to imple-

ment positive variability in models. This enables to 
selectively add model parts to a minimal core reducing 
the complexity of the overall model.

Expressing product line artifacts using models has 
the advantage that they can be processes using model 
transformations; we implement the mapping from prob-
lem to solution domain as M2M transformations. This 
enables to formally describe the mapping and automate 
its execution.

AOP is used on both code and generator level. Ab-
stract aspects are part of the core assets. Based on a 
configuration concrete subaspects are generated. Addi-
tionally, unexpected variability can be implemented 
using AOP as it allows to hook into code at locations
that have not been planned for variability. Handling 
variability in code generation templates is done using 
AO for template languages.

In our approach tracing happens on model element 
level which allows for fine grained traceability. Due to 
the use of models, tracing from problem to solution 
domain is also easily possible.

In the future we will finish the development of the 
tools. This includes tools for configuration of the gen-
erator workflow and AO for M2M transformations. We 
will also support negative variability for EMF models, 
i.e. changing an existing model based on a configura-
tion. Code generation templates will be bound to con-
figuration models to control the applicability of the 
templates based on feature selection. Tracing is cur-
rently available on model level; we will integrate trac-
ing into source code. Additionally we will apply our 
approach in a larger case study to further validate the 
developed concepts.
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