
Product Line Implementation using
Aspect-Oriented and Model-Driven Software Development

Markus Voelter1, Iris Groher2

1 Independent Consultant, Heidenheim, Germany
2 Siemens AG, CT SE 2, Munich, Germany

voelter@acm.org, iris.groher.ext@siemens.com

Abstract
Software product line engineering aims to reduce

development time, effort, cost, and complexity by tak-
ing advantage of the commonality within a portfolio of
similar products. The effectiveness of a software prod-
uct line approach directly depends on how well feature
variability within the portfolio is implemented and
managed throughout the development lifecycle, from
early analysis through maintenance and evolution. This
paper presents an approach that facilitates variability
implementation, management and tracing by integrat-
ing model-driven and aspect-oriented software devel-
opment. Features are separated in models and com-
posed by aspect-oriented composition techniques on
model level. Model transformations support the transi-
tion from problem to solution domain. Aspect-oriented
techniques enable the explicit expression and modu-
larization of variability on model, code, and template
level. The presented concepts are illustrated with a
case study of a home automation system.

1 Introduction and Motivation

Most high-tech companies provide products for a
specific market; thus the products have many things in
common. An increasing number of these companies
realize that product line development [1,2] fosters reuse
at all stages of the lifecycle, shortens development time
and helps staying competitive.

The effectiveness of a software product line ap-
proach directly depends on how well feature variability
within the portfolio is managed from early analysis to
implementation and through maintenance and evolu-
tion. Commonalities, as well as the flexibility to adapt
to different product requirements are captured in core
assets. Those reusable assets are created during domain
engineering. During application engineering, products
are either automatically or manually assembled, using
the assets created during the domain engineering proc-
ess and completed with product-specific artifacts.
Products usually differ by the set of features they in-
clude in order to fulfill customer requirements. A fea-
ture is an increment in functionality provided by one or
more members of a product line [3].

Variability management is the activity concerned
with identifying, designing, implementing, and tracing
flexibility in software product lines (SPLs). Variability
of features often has widespread impact on multiple
artifacts in multiple lifecycle stages, making it a pre-
dominant engineering challenge in software product
line engineering (SPLE).

In traditional SPLE approaches, variability is
mainly handled using either mechanisms provided by
the implementation language, such as patterns, frame-
works, polymorphism, reflection, and pre-compilers or
using configuration and build tools to set compile time
variables and select variants of assets. The approach
described in this paper facilitates variability implemen-
tation, management, and tracing from architectural
modeling to implementation of product lines by inte-
grating both model-driven (MDSD) and aspect-oriented
software development (AOSD). For companies that are
already building product lines, MDSD and AOSD can
further increase productivity because:
 Variability can be described more concisely since

in addition to the traditional mechanisms, variabil-
ity is also described on model level.

 The mapping from problem to solution domain can
be formally described automated using model-to-
model transformations.

 Aspect-oriented techniques enable the explicit ex-
pression and modularization of crosscutting vari-
ability on model, code, and generator level.

 Fine grained traceability is supported since tracing
is done on model element level rather than on the
level of code artifacts.

The presented concepts are illustrated with a case
study of a home automation system. The case study is
based on real-world system requirements from Siemens
AG and demonstrates the benefits of the presented ap-
proach.

The rest of the paper is organized as follows: Sec-
tion 2 introduces model-driven and aspect-oriented
development and explains the building blocks of the
approach. Section 3 describes the case study. Section 4
looks at tool support. Related work is discussed in Sec-
tion 5, while Section 6 summarizes the paper and pro-
vides an outlook on future work.

2 Concepts and Building Blocks

Model-driven software development (MDSD) [4]
improves the way software is developed by capturing
key features of a system in models which are developed
and refined as the system is created. During the sys-
tem’s lifecycle, models are synchronized, combined and
transformed between different levels of abstraction and
different viewpoints. In contrast to traditional model-
ling, models do not only constitute documentation but
are processed by automated tools. Thus models have to
be formal, whereas every model is an instance of a meta
model. The meta model defines the vocabulary and
grammar, i.e. the abstract syntax, used to build models.
In order to be useful for MDSD, models have to be
complete regarding the abstraction level or viewpoint
they describe.

A Domain Specific Language (DSL) [4] is a formal-
ism for building models: It encompasses a meta model
as well as a definition of a concrete syntax that is used
to represent the models. The concrete syntax can be
textual, graphical or using other means, such as tables,
trees or dialogs. Different DSLs can use the same meta
model while varying in their concrete syntax. The mod-
els built with these DSLs will look different, but will all
have the same meaning. The meta model is what the
tools care about, whereas the concrete syntax is what
the DSL users care about. It is essential, that the con-
crete syntax can sensibly represent the concepts the
DSL is intended to describe.

Aspect-oriented software development (AOSD)
[5,6] improves the way software is developed by pro-
viding means for modularizing crosscutting concerns.
They are encapsulated as aspects and powerful mecha-
nisms support their subsequent composition with other
software artefacts. Aspects interfere with other artefacts
at so called join points, well defined points in the struc-
ture or execution flow of an artefact or a program.
Pointcut expressions quantify over the join points to
select the set of actual composition points for a specific
aspect. An aspect weaver automatically composes as-
pects with the rest of the system, either statically during
compilation, dynamically at runtime, or at load-time.

While MDSD and AOSD are different in many
ways – MDSD adds domain specific abstractions and
AOSD offers concern modularization and composition
mechanisms – they also have many things in common.
Existing research has investigated ways of combining
the two paradigms [7,8,9,10] to achieve the comple-
mentary benefits of both MDSD and AOSD.

This paper explores an approach that integrates
model-driven and aspect-oriented techniques in order to
facilitate variability implementation, management and
tracing in SPLE.

The general approach we are going to propose is as
follows:
 Express as many artifacts as possible using models

as this allows for processing these artifacts using
model transformations.

 Mappings from problem to solution domain are
implemented as model-to-model (M2M) transfor-
mations. This enables to formally describe map-
pings and automate their execution.

 Variable parts of the resulting system are either
assembled from pre-build assets generated from
models or implemented via interpreters. This is
more efficient and less error-prone than manual
coding in a third generation language (3GL).

 Aspect-oriented modeling (AOM) [8,11] is used to
implement variability in models. This supports the
selective adaptation of models.

 Aspect-oriented programming (AOP) [12,13] is
used to implement crosscutting features on code
level that cannot easily be modularized in the gen-
erator.

 Certain parts of a product will still be implemented
manually because, for economic reasons, develop-
ing a custom generator is too costly. The manually
written code is integrated with the generated code
in well-defined ways.

In the following sections we will describe these
steps in more detail.

2.1 Kinds of Variability
In the context of product line engineering, DSLs are

used to bind variability. We distinguish between two
kinds of variability: structural and non-structural. Struc-
tural variability is described using creative construction
DSLs, whereas non-structural variability can be de-
scribed using configuration languages. Figure 1 illus-
trates the spectrum of languages commonly used for
expressing and binding variability.

Figure 1. Expressive power of DSLs

Figure 2 shows the meta model of a creative con-
struction DSL. Any number of models can be defined,
by instantiating meta model elements. Figure 3 presents
an example using the familiar concrete syntax of UML.

Figure 4 shows a feature model of a weather station
using the notation defined in [15]. The feature model
expresses a certain configuration space, i.e. the model
is an expression of configurative variability. A specific

configuration is described by selecting a valid subset of
those features.

Figure 2. Creative construction meta model

To align feature modeling with general MDSD ter-
minology, it is useful to consider the feature model a
meta model and the concrete configurations models.

Figure 3. Example models

2.2 Problem/Solution Domain Mapping
In SPLE, two areas of concern can be distinguished:

the problem domain and the solution domain. The for-
mer is concerned with end-user understandable con-
cepts while the latter deals with the implementation of
the product features using software technologies.

Figure 4. Weather station feature model

When using MDSD for implementing product lines,
we use DSLs in both domains to express the respective
variability. Often, we use configuration DSLs in the
problem domain and creative construction DSLs in the
solution domain, although there are also examples to
the contrary.

Central to SPLE is the specification of product fea-
tures in the problem domain, and their subsequent
mapping to corresponding solution domain features.
Since we use DSLs in both domains, we can use model-
transformations to automate this mapping. A model
transformation takes a source model M and transforms
it into a target model K. M and K are typically in-
stances of different meta models and reside at different
levels of abstraction. The source model M is not modi-
fied during the transformation. In the context of SPLE,
M is typically the problem domain model and K is the
solution domain model.

The problem domain model might not contain all
the information necessary for the transformation to
populate the solution domain model. Hence we use so-

called mixin models to parameterize the transformation
or to provide the additional data required.

2.3 Expressing Variability in Models
We have shown that there are two fundamentally

different kinds of variability, and consequently, two
different kinds of DSLs: creative construction DSLs
and configuration DSLs. We have also shown that in
MDSD-based SPLE, models are used to represent
products in the problem and solution domain. Conse-
quently, a solution domain model often needs to be
adapted based on a product configuration in the prob-
lem domain. In other words, we want to use a configu-
ration model to define variants of a model built with a
creative construction DSL.

Figure 5. Negative (a), positive (b) variability

There are two fundamentally different ways of ap-
proaching this problem: One can either use negative
variability or positive variability (see Figure 5).

Negative variability selectively takes away parts of
a creative-construction model based on the presence or
absence of features in the configuration models. The
“overall” model is built manually, and model elements
in that model are connected to features in the configura-
tion model. Figure 6 shows an example.

Figure 6. Model variants

The second alternative uses positive variability. We
start with a minimal core and selectively add additional
parts. For this to work, one has to specify where the
new parts should be attached. Here aspect weaving on
model level comes into play: Optional parts are woven
into the core. A pointcut expression defines the “con-

nection points”. We call this approach model weaving,
an example of aspect-oriented modeling. We elaborate
on tool support for model weaving in Section 4.

2.4 Tracing
An important concern in SPLE is traceability as

stakeholders want to be able to trace how a given re-
quirement results in a certain software configuration.
Using MDSD-SPLE, this is relatively easy to do. Since
mappings between abstraction levels are based on for-
mal model transformations, we can make sure the map-
pings are made persistent in a trace model. It can either
be built automatically by the transformation engine, or
it can be built manually by the transformation devel-
oper (by calling some kind of createT-
race(fromElement, toElement, traceKind) function in
the transformation script at the appropriate locations).
We prefer the second approach since it allows develop-
ers to control trace granularity.

Two things are worth mentioning here:
 Since we trace between model elements, the trace

is finer grained than in current approaches, where
tracing happens between artifacts [16,17].

 Since problem domain concepts are also repre-
sented as models, we gain traceability from the
problem domain over to the solution domain.

Additionally, we need to trace down to code level.
Specific regions of code need to be associated with
model elements. For generated code, this is straight
forward since the generator knows which model ele-
ments are “in scope” when a given region of code is
generated. For manually written code it is more chal-
lenging, since a piece of hand-written code may imple-
ment any number of requirements. This problem can be
mitigated to some extent by clearly defining the loca-
tions where manually written code can be integrated.
An alternative approach is to specify the trace from
code to models manually.

On the other end of the spectrum we also need to
trace requirements. These are different from problem
domain models as requirements are typically plain Eng-
lish. To make them traceable, we need to somehow
integrate them into the “modeling world”. This can be
done in various ways, depending on the tool that is used
to capture the requirements. For example, it would be
possible to create an EMF model [24] based on re-
quirements managed with the DOORS [40] tool and use
the EMF model for tracing purposes.

Finally, we need to trace to library components.
This is relatively easy to do if we assume that every
library component has some kind of representation on
model level. We can then trace via model element rela-
tionships (more on this in the next section).

2.5 Library Components
Core assets are reusable artifacts that can be utilized

in some or all products in the product line. We distin-
guish core assets from library components. The former
includes generators, meta models and other artifacts
involved in the construction of the products, the latter
are strictly part of the products themselves. This section
focuses on library components only.

Based on the information in the models, we can de-
termine whether a given library component is part of a
product. Library components can come in three flavors:
implemented purely in code, as pure models and im-
plemented in code, but accompanied by models.
 If the facet of the PL that is covered by the library

component is not supported generatively, the com-
ponent has to be pre-built and included as code.
The production process for the product will simply
include/link/instantiate/deploy the component if it
is required. Example: An optional SNMP monitor-
ing agent running on a system node.

 The other extreme is that the SPL contains genera-
tors that can completely generate the component
implementation. Here it is preferable to include
only the model into the library because, if the gen-
erator changes, the library component’s implemen-
tation is automatically adapted (since it’s regener-
ated). Example: A reusable business process com-
ponent specified as a component with an associated
state machine.

 A mix of the two approaches is appropriate if some
facet of a component can be represented via a
model, while another facet cannot. For example, in
a component-based architecture, one might have a
logging component pre-manufactured and imple-
mented. In order to be able to instantiate and con-
nect it, there has to be a model for the component.
In that case, the library contains the implemented
component (or at least those parts that are not gen-
erated and have to be manually implemented) as
well as the model fragment that describes it (typi-
cally its external interfaces, etc.).

2.6 Target Code Variability
In a generative environment (as opposed to an in-

terpreted world) it is the generated code that ultimately
counts. At some point we have to leave the “modeling
world” and use code generation templates (or some
other code generation technology [18]) to generate the
product source code. There are two extremes as to
when to leave the modeling world and generate code:
 Direct model-to-code generates code from the

model the user created (in our case the problem
domain model). The code generation tool must be

quite powerful, since the abstraction gap is large
and has to be bridged in one step, using the code
generator only.

 The other extreme is to consider source code a
model, and use M2M transformations to instantiate
the abstract syntax tree of the target language.
Code generation is then extremely simple, since it
is only a form of un-parsing (or pretty printing).
This approach results in complex M2M transfor-
mations.

In our experience, the truth lies somewhere in the
middle and based on experience rather than hard facts.
Typically, we stay on model level as long as structural
variability in the models has to be taken care of. Once
the only remaining variability is with respect to the
generated text (e.g. code, configuration files) we will
handle the remaining variability in the templates.

In order to address this kind of variability, a means
of handling variability in templates is necessary. Using
AO on templates, we can isolate template-based vari-
ability into template aspects. We will elaborate on tool
support for AO on template level in Section 4.

2.7 Architectural (Meta) Models
MDSD also helps with the representations of archi-

tectures in SPLE. We distinguish between two kinds of
architectures:
 The product line architecture is the overall archi-

tecture of all the software involved in building the
products. It also includes the “meta artifacts” (gen-
erators, DSLs, transformers etc.).

 The target architecture describes the architecture of
the products built with the product line architec-
ture.

In this section we want to focus on the target archi-
tecture only.

Figure 7. Meta model for type viewpoint

It is often said colloquially, that, during domain en-
gineering an architecture is defined that is instantiated
during application engineering. This instantiation step
can be understood literally in the context of MDSD-
SPLE. During domain engineering an architectural
meta model is created for use in the solution domain. In

application engineering this meta model is instantiated
to represent the concrete architecture of a given prod-
uct. Figure 7 illustrates a simple meta model for the
type viewpoint of a hierarchical component architec-
ture. Based on this architectural meta model, a (simplis-
tic) product architecture can be defined (see Figure 8).

Figure 8. Example product architecture

The architectural meta model defined during do-
main engineering defines a (formal) vocabulary that can
be used for defining product architectures.

2.8 Runtime Variability
The discussions above assume that the binding time

for the variability is during code generation.
However, not all variability in a product line can or

should be bound at generation time. Deployment-time,
load-time and runtime variability need to be considered
as well. The mechanisms for achieving these are well-
known: frameworks, dynamic instantiation, parameteri-
zation, reflection and interpreters together with some
kind of data that shall be consumed by frameworks and
interpreters.

There are two important connections to MDSD-
SPLE that need to be made here. The “data” is of
course a model. Instead of feeding (some of the) mod-
els describing the product into the code generator, we
include the model into the product and feed it into
frameworks and interpreters. We also provide a means
to edit the models while the application runs.

The runtime variability needs to be configured con-
sistently with the overall requirements and the product.
The parameterization needs to be derived somehow
from the models. This means that configuration files for
frameworks are typically generated. This approach is
especially relevant for 3rd-party frameworks that expect
some kind of (often XML-based) configuration file.

2.9 AOP on code level
In the preceding paragraphs we mainly discussed

models. We also discussed AOSD in the context of
models, i.e. model weaving. In this section we focus on
AO on code level in the context of MDSD-SPLE.

Of course we can simply generate code in an AO
language as opposed to a traditional 3GL. After the
code generation, the compiler/weaver builds the binary
program. A particularly useful approach uses abstract
aspects (aspects whose pointcuts are not fully speci-
fied). The core assets of the product line contain a
manually written abstract aspect. Based on the product
configuration, the generator generates concrete sub-

aspects. These contain generated pointcuts, deciding if
and where to weave the advice. Since an AO language
provides greater expressive power than a traditional
language, the code generation templates become sim-
pler. Architects need to decide on the tradeoff between
simpler templates and introducing the additional com-
plexity of an AO language.

Another way of using AO on code level is to gener-
ate configurations for AO frameworks, such as a Spring
configuration file [19] or a POA configuration using
CORBA interceptors [20]. While this is conceptually
similar to generating pointcuts, it is technically different
and thus deserves separate mentioning.

Finally, there is a third and maybe most important
way of exploiting AOP in MDSD-SPLE. A product line
architecture needs to have predefined variation points
(or hooks) in all the locations where product specific
variation can occur. However, for a given new product,
the product line architecture may not provide the re-
quired configuration or customization hooks. There are
two ways out of this dilemma: Either one has to manu-
ally tweak the generated code to accommodate the vari-
ant, or the product line architecture has to be adapted to
include the additional hook(s). The latter approach is
desirable, but for reasons of versioning, coordination or
time pressure it is often not realistic. Here is where
AOP comes into play. Using AO languages such as
AspectJ [12], one can hook into generated (or manually
written library) code at places where the product line
architecture does not provide hooks. Thus the necessary
change can be accommodated without changing the
product line architecture and without manually chang-
ing the generated code – the change is “external” in the
aspect. In some sense this is still a tweaking of the gen-
erated system, and it is a good idea to subsequently
refactor the product line architecture to include proper
hooks.

2.10 Meta-Product Lines
It is also possible to build product lines of product

line architectures. This may sound strange, but is a very
useful thing (we will illustrate this in our case study).
So what does this actually mean? If a product line ar-
chitecture uses meta models, transformations, genera-
tors and DSLs including custom editors, then a meta
product line builds variants of these artifacts.

In order to do this the following has to be done:
 Variants of meta models have to be built (e.g. us-

ing the techniques introduced in Section 2.3).
 Corresponding variants of editors have to be de-

fined. Editors are often defined using models, too,
so this task is again one of model variation.

 Reusable generator components, also known as
cartridges, have to be built.

 The generator has to be configured, e.g. the trans-
formation steps it executes. Again, AO can be used
on generator level, i.e. AO on template and on
model transformation level.

An example of (meta) model customization is the
meta model in Figure 7. The model elements with the
grey background are those necessary for hierarchical
components as opposed to flat ones. Expressing hierar-
chical components is thus an optional feature of the
component architecture. The necessary additional
model elements can be woven into the meta model.

3 Case Study: Home Automation

The case study to illustrate our approach is a home
automation system (see also [1]), called Smart Home.
In homes you will find a wide range of electrical and
electronic devices such as lights, thermostats, electric
blinds, fire and smoke detection sensors, white goods
such as washing machines, as well as entertainment
equipment. Smart Home connects those devices and
enables inhabitants to monitor and control them from a
common UI. The home network also allows the devices
to coordinate their behavior in order to fulfill complex
tasks without human intervention.

Sensors are devices that measure physical properties
of the environment and make them available to Smart
Home. Controllers activate devices whose state can be
monitored and changed. All installed devices are part of
the Smart Home network. The status of devices can
either be changed by inhabitants via the UI or by the
system using predefined policies. Policies let the system
act autonomously in case of certain events. For example
in case of smoke detection windows get closed and the
fire brigade is called. Varying types of houses, different
customer demands, the need for short time-to-market
and saving of costs drive the need for a Smart Home
product line and are the main causes of variability.

In the remainder of this section we will explain how
to use the techniques introduced in Section 2 to imple-
ment the Smart Home product line. We will first dis-
cuss the concrete product line of building smart home
systems. Then we will look at a meta product line
which varies the way we build Smart Home systems in
the first place. Please note that this section can only
provide an overview of the case study; subsequent pub-
lications will provide more details.

3.1 Problem Domain Modeling
In the problem space, we formally describe Smart

Home systems. We define a meta model that contains
entities such as buildings, floors, rooms, the various
kinds of sensors, actuators etc. In the problem domain
we do not talk about anything concerned with software

or computing hardware.
Using this meta model, we build a DSL with which

we can model Smart Home systems from the perspec-
tive of the building architect or a home owner. The syn-
tax is graphical and custom editors are built.

While the DSL for describing Smart Home systems
is a creative construction DSL, we also use configura-
tion DSLs as a part of it. Each of the entities (sensors,
actuators, policies) needs to be configured with various
options. Feature models are used for this purpose.

3.2 Solution Domain Modeling
The solution domain comprises a component-based

architecture. Its meta model is similar to the one shown
in Figure 7. Additional viewpoints are defined to ex-
press component instances, their connections, hardware
structure as well as the mapping of software component
instances onto hardware nodes. We do not provide a
sophisticated concrete syntax for that domain, since the
models are created by model transformations from
problem domain models.

To a large extent Smart Home systems consist of a
specific arrangement of pre-built sensors and actuators
(although a specific system can have custom devices).
It therefore makes sense to keep a library of software
components that control certain types of hardware. We
use a combination of manually written code and models
to represent these components in order to be able to use
them to define a given system. Based on the problem
domain model, the transformation instantiates, wires
and deploys those library software components.

3.3 Solution Domain Implementation
In realistic scenarios, there will be several target im-
plementation technologies. For example, computing
platforms and networking/bus technologies will change
depending on the level of sophistication of a product. In
our case study we do not deal with sensor hardware and
device drivers, so we implement all the software com-
ponents in Java. However, we still implement the sys-
tem with different implementation technologies to real-
istically address this kind of variability. One implemen-
tation alternative uses OSGi [21]. Another implementa-
tion uses the CAM-DAOP aspect-oriented component
infrastructure [22]. A third implementation technology
is based on CaesarJ [13].

These different platforms provide different levels of
sophistication in one dimension or another. For exam-
ple, CaesarJ comprises a very expressive and powerful
AO language, whereas OSGi provides advanced modu-
larization and deployment facilities.

3.4 The Meta Product Line
The previous discussion focused on building con-

crete Smart Home systems (i.e. products in the product
line) using a given set of DSLs, transformers and gen-
erators. The user of this kind of system is the building
architect, creating products for home owners.

Our meta product line addresses the vendor who
develops systems for building architects to enable them
to build Smart Homes for home owners. Vendors have
a product line of “Smart Home design tools”. Various
Smart Home Designer editions – economic home, safe
home, and healthy home – can be purchased by build-
ing architects. They differ in the kinds of supported
devices, the level of integration with third parties (such
as security firms or medical facilities) as well as the
sophistication of the interaction between the different
devices and their policies.

Figure 9. Staged SPL for Smart Home

Consequently, the meta model and DSL for describ-
ing Smart Home systems in the problem domain should
be configurable to adapt to the different editions of the
DSL. For example, we want to support systems with or
without fire extinguishing equipment. This requires
weaving of the domain meta model, as well as adapting
the models that describe the graphical editors. Also,
since the problem domain DSL changes, we now need
to adapt the transformations to the solution domain
models. We need to be able to configure transforma-
tions based on the features that describe the edition of
the Smart Home system currently in use. Again, aspect
weaving on transformation level is very helpful at this
point.

Figure 9 shows our approach to the case study. It is
a staged product line where the first stage customizes
the product that will be used in the second stage for

building other products. All of the techniques discussed
in Section 2 are employed.

4 Tool Support

This section outlines some of the tools that are
available for implementing the approach described in
this paper. The tool chain we use in our case study is
based on Eclipse [23] as a tool platform, Ecore [24] as
the meta meta model and openArchitectureWare [25] as
the generation, validation and transformation toolkit.
While we provide a general overview over the existing
tools here, subsequent publications will provide more
details on the actual tool chain implemented in our case
study.

4.1 Building DSLs
Several tools for feature modelling are available on

the market [26,27,28]. Exporting feature models and
configuration models as instances of EMF’s Ecore [24]
will be available for pure::variants [28] soon.

For building creative construction DSLs, there are
several tools available in the MDSD space. The sim-
plest approach is to define a UML profile [14] and use
profiled UML models as a graphical DSL. UML tools
are becoming more powerful with respect to customiz-
ing diagrams and the UI for specific DSLs.

For building custom graphical editors, Eclipse GMF
[29] is an obvious candidate. Based on an Ecore do-
main meta model, graphical editors can be defined that
instantiate the meta model. The editors themselves are
defined using models.

There are also tools for building custom textual edi-
tors including syntax highlighting, custom outline views
and code completion, EMF-based examples include
oAW’s xText [25] and INRIA’s TCS [30].

4.2 Transformations and Generation
For mapping problem domain models to solution

domain models we need M2M transformation lan-
guages and tools. Although these kinds of languages are
a relatively new breed, there are solutions available
today. Based on Eclipse, there is INRIA’s ATL [31]
and oAW’s Xtend [25]. As part of the Eclipse M2M
project, a QVT [14] implementation will be provided in
due course [32].

Different template languages have different levels
of support for variability. oAW’s Xpand [25] supports
AO on templates. A given variant, e.g. code for a cer-
tain target platform, can be modularized, even if the
changes are scattered through the template structure.

It is not yet possible to bind the applicability of
these template aspects to some global configuration
model. This is something we will also work on in the

future.

4.3 Expressing variability in models
Connecting structural models with variability mod-

els for negative variability has been demonstrated [33].
A feature model is connected to a UML model via
stereotypes. Depending on the selected features, the
UML model changes. Another less sophisticated proto-
type has been built based on oAW [25]. A generic EMF
based solution is not yet available. We will develop
such a solution as part of our future work.

For positive variability, i.e. model weaving, several
model weavers are available. INRIA’s AMW [34] can
be used to weave EMF models as well as oAW’s
xWeave [35]. Other model weavers are available (e.g.
C-SAW [36]), but since the term “model weaving” is
not clearly defined in the community, each of the tools
does something slightly different.

4.4 Tracing
Tracing on model level is not very complicated. For

example, oAW has a library to build traces of M2M
transformations. Traces are EMF models themselves.
Tracing into source code is not yet available. The re-
spective features will be integrated into oAW in the
near future.

4.5 Variability on Code Level
For “tweaking” generated and manually written

code and the definition of abstract aspects as part of the
core assets, we use existing aspect languages, such as
AspectJ [12] and CaesarJ [13].

4.6 Meta Product Lines
In order to implement meta product lines as ex-

plained above, several additional capabilities are
needed, none of which exists in our tooling yet:
 Configure the generator workflow based on a con-

figuration model.
 Use AO for M2M transformation languages.

We will develop these missing tools as part of our
future work.

5 Related Work

The main focus of research on AOSD in SPLE is
targeted towards variability implementation using AOP
languages. In [37] it is demonstrated how CaesarJ helps
to overcome the deficiencies of feature-oriented pro-
gramming (FOP) and AOP for implementing variability
by supporting both multi-abstraction modules and join-
point interception. The approach in [38] describes As-
pectual Mixin Layers (AML), which integrate both
AOP and FOP by introducing aspects into mixin layers

and providing aspect refinement. In [39] a generative
approach called framed aspects is proposed. Framed
aspects combine AOP with frame technology to modu-
larize crosscutting feature implementations and im-
prove evolution of SPLs. Our approach utilizes AOP in
order to deal with unexpected variability. AO concepts
are introduced at template and model-transformation
level. We deal with variability mainly on model level.

In [7] several patterns are presented that deal with
effectively handling crosscutting concerns in MDSD-
based development environments. In our approach
some of the patterns are used such as AO templates and
generation of pointcuts for pre-built abstract aspects.

[41] shows an approach that uses aspect-oriented
modelling to handle model evolution. A modelling lan-
guage, called AspectM, has been defined that allows to
express aspects either on UML model level or in XML.
A model editor and a model compiler are provided that
enable the creation of different versions of models. The
work uses model weaving similar to our approach but is
very much targeted towards UML and Model-Driven
Architecture (MDA) [44].

[42] contains a study that compares object-oriented
and AO modelling with respect to modelling product
line variability. A pacemaker product line is modelled
using both techniques and compared. In our case study
we focused on MDSD and AOSD only; we did not
compare the results with traditional approaches for
variability implementation and management.

In [43] feature-based model templates are pre-
sented. They consist of feature models and annotated
models implementing the features. Annotations refer to
features in the feature model and can either be presence
conditions, iteration directives, or meta expressions.
The approach is a form of negative variability on model
level. In contrast, our approach uses model weaving to
implement positive variability on model level.

6 Summary and Future Work

In this paper we have shown how our integrated
MDSD-AOSD approach supports variability implemen-
tation, management and tracing throughout the product
line development lifecycle. We have presented the con-
cepts and main building blocks of our approach; de-
tailed results of the case study and capabilities of the
developed tools will be presented in subsequent publi-
cations.

Our intent is to express as many artifacts as possible
using models. Configuration DSLs as well as creative
construction DSLs are used in the problem and solution
domains. During application engineering, models de-
scribe products using the two different kinds of DSLs.
AOM and especially model weaving allow to imple-

ment positive variability in models. This enables to
selectively add model parts to a minimal core reducing
the complexity of the overall model.

Expressing product line artifacts using models has
the advantage that they can be processes using model
transformations; we implement the mapping from prob-
lem to solution domain as M2M transformations. This
enables to formally describe the mapping and automate
its execution.

AOP is used on both code and generator level. Ab-
stract aspects are part of the core assets. Based on a
configuration concrete subaspects are generated. Addi-
tionally, unexpected variability can be implemented
using AOP as it allows to hook into code at locations
that have not been planned for variability. Handling
variability in code generation templates is done using
AO for template languages.

In our approach tracing happens on model element
level which allows for fine grained traceability. Due to
the use of models, tracing from problem to solution
domain is also easily possible.

In the future we will finish the development of the
tools. This includes tools for configuration of the gen-
erator workflow and AO for M2M transformations. We
will also support negative variability for EMF models,
i.e. changing an existing model based on a configura-
tion. Code generation templates will be bound to con-
figuration models to control the applicability of the
templates based on feature selection. Tracing is cur-
rently available on model level; we will integrate trac-
ing into source code. Additionally we will apply our
approach in a larger case study to further validate the
developed concepts.

7 Acknowledgments

This work is supported by AMPLE Grant IST-
033710. The authors would like to thank Christa
Schwanninger, Andrew Jackson, Uwe Zdun, Michael
Kircher and Rick Rabiser for their valuable comments
on earlier drafts of this paper.

8 References

[1] K. Pohl, G. Böckle, and F. v. d. Linden, Software Product
Line Engineering Foundations, Principles, and Techniques.
Berlin: Springer, 2005.
[2] P. Clements, and L. M. Northrop, Software Product
Lines: Practices and Patterns: Addison Wesley, 2001.
[3] P. Zave, “FAQ Sheet on Feature Interaction”:
http://www.research.att.com/~pamela/faq.html
[4] T. Stahl, and M. Voelter, Model-Driven Software Devel-
opment: Wiley & Sons, 2006.
[5] R.E. Filman, T. Elrad, S. Clarke, and M. Aksit, Aspect-
Oriented Software Development. Amsterdam: Addison-

Wesley Longman, 2004.
[6] AOSD website, http://www.aosd.net
[7] M. Voelter, “Patterns for Handling Cross-cutting Con-
cerns in Model-Driven Software Development”, In Proceed-
ings of the 10th European Conference on Pattern Languages
of Programs (EuroPLoP). Irsee, Germany, July, 2005.
[8] Aspect-Oriented Modelling Workshops website,
http://www.aspect-modeling.org/
[9] First Workshop on Models and Aspects – Handling
Crosscutting Concerns in MDSD, ECOOP, Glasgow, UK,
July, 2005.
[10] Second Workshop on Models and Aspects – Handling
Crosscutting Concerns in MDSD, ECOOP, Nantes, France,
July, 2006.
[11] S. Clarke and E. Baniassad, Aspect-Oriented Analysis
and Design. The Theme Approach. Amsterdam: Addison-
Wesley Longman, 2005.
[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J.
Palm, and W. Griswold, "Getting started with ASPECTJ,"
Communications of the ACM, vol. 44, pp. 59 - 65, October
2001.
[13] I. Aracic, V. Gasiunas, K. Ostermann, and M. Mezini,
"An Overview of CaesarJ" in Transactions on AO Software
Development I. vol. 3880/2006 Berlin/Heidelberg Springer,
2006, pp. 135-173.
[14] OMG Query/Views/Transformations (QVT) specifica-
tion, http://www.omg.org/cgi-bin/doc?ptc/2005-11-01
[15] K. Czarnecki and U. W. Eisenecker, Generative Pro-
gramming. Methods, Tools, and Applications. Amsterdam:
Addison-Wesley Longman, 2000.
[16] P. Maeder, M. Riebisch, and I. Philippow, “Traceability
for Managing Evolutionary Change - A Roadmap”, In Pro-
ceedings of the 15th International Conference on Software
Engineering and Data Engineering (SEDE). Los Angeles,
USA, July, 2006.
[17] K. Mohan and B. Ramesh, “Managing Variability with
Traceability in Product and Service Families”, In Proceed-
ings of the 35th Hawaii International Conference on System
Sciences (HICCS). Hawaii, January, 2002.
[18] M. Voelter, “A Collection of Patterns for Program Gen-
eration”, In Proceedings of the 8th European Conference on
Pattern Languages of Programs (EuroPLoP). Irsee, Ger-
many, July, 2003.
[19] Spring Framework website,
http://www.springframework.org/
[20] CORBA website, http://www.corba.org/
[21] OSGi Alliance website, http://osgi.org
[22] M. Pinto, L. Fuentes, and J. M. Troya, "A Component
and Aspect Dynamic Platform", The Computer Journal, vol.
48(4), pp. 401-420, 2005.
[23] Eclipse Foundation website, http://eclipse.org
[24] Eclipse Modeling Framework (EMF) website,
http://eclipse.org/emf
[25] openArchitectureWare (oAW) website,
http://www.eclipse.org/gmt/oaw/
[26] XFeature Feature Modelling Tool website,
http://www.pnp-software.com/XFeature/
[27] M. Antkiewicz and K. Czarnecki, “FeaturePlugin: Fea-
ture Modeling Plug-in for Eclipse”, In Proceedings of the
2004 OOPSLA Workshop on Eclipse Technology eXchange,

OOPSLA, Vancouver, British Columbia, Canada, Pages 67 -
72, ACM Press, 2004.
[28] pure::variants Variant Management Tool website,
http://www.pure-systems.com/3.0.html
[29] Eclipse Graphical Modeling Framework (GMF) website,
http://eclipse.org/gmf
[30] F. Jouault and J. Bézivin, “On the Specification of Tex-
tual Syntaxes for Models”, In Proceedings of the Eclipse
Summit Europe (Eclipse Modeling Symposium), Esslingen,
Germany, October, 2006.
[31] ATL Model Transformation Language website,
http://www.eclipse.org/m2m/atl/
[32] Eclipse M2M project website,
http://www.eclipse.org/m2m/
[33] K. Czarnecki and M. Antkiewicz, “Mapping features to
models: A template approach based on superimposed vari-
ants”, In Proceedings of the 4th International Conference on
Generative Programming and Component Engineering
(GPCE), Tallinn, Estonia, September, 2005, pp. 422 - 437,
Springer, 2005.
[34] M. Didonet del Fabro, J. Bézivin and P. Valduriez,
“Weaving Models with the Eclipse AMW plugin”, In Pro-
ceedings of the Eclipse Summit Europe (Eclipse Modeling
Symposium), Esslingen, Germany, October, 2006.
[35] I. Groher and M. Voelter, “XWeave – Models and As-
pects in Concert”, In Proceedings of the 10th Workshop on
AO Modeling, Vancouver, Canada, March, 2007.
[36] C-SAW project website, http://www.gray-
area.org/Research/C-SAW/
[37] M. Mezini and K. Ostermann, “Variability Management
with Feature-Oriented Programming and Aspects”, In Pro-
ceedings of the 12th International Symposium on Foundations
of Software Engineering (FSE), Newport Beach, CA, USA,
2004, pp. 127-136.
[38] S. Apel, T. Leich, and G. Saake, “Aspectual Mixin Lay-
ers: Aspects and Features in Concert”, In Proceedings of the
28th International Conference on Software Engineering
(ICSE), Shanghai, China, 2006, pp. 122-131.
[39] N. Loughran and A. Rashid, “Framed Aspects: Support-
ing Variability and Configurability for AOP”, In Proceedings
of the 8th International Conference on Software Reuse
(ICSR), Madrid, Spain, 2004.
[40] DOORS Requirements Management Tool website,
http://www.telelogic.com/products/doors/
[41] N. Ubayashi, S. Sano, Y. Maeno, S. Murakami, and T.
Tamai, “Model Evolution with Aspect-Oriented Mecha-
nisms”, In Proceedings of the 8th International Workshop on
Principles of Software Evolution (IWPSE), Lisbon, Portugal,
2005, pp. 187-194.
[42] J. Liu, R. Lutz, and H. Rajan, “The Role of Aspects in
Modeling Product Line Variabilities”, In Proceedings of the
1st Workshop on Aspect-Oriented Product Line Engineering
(AOPLE), GPCE, Portland, Oregon, October, 2006.
[43] K. Czarnecki, M. Antkiewicz, C.H.P. Kim, S. Lau, and
K. Pietroszek, “Model-Driven Software Product Lines”,
Poster Session, OOPSLA, San Diego, California, October,
2005.
[44] Model-Driven Architecture (MDA) website,
http://www.omg.org/mda/

