
Language Engineering as an Enabler for Incrementally Defined Formal
Analyses

Daniel Ratiu∗, Markus Voelter†, Bernhard Schaetz∗, Bernd Kolb‡
∗ ForTISS, Munich, Germany, {ratiu | schaetz}@fortiss.org
† independent / itemis, Stuttgart, Germany, voelter@acm.org

‡ itemis, Stuttgart, Germany, kolb@itemis.de

Abstract—There is a big semantic gap between
today’s general purpose programming languages on
the one hand and the input languages of formal verifi-
cation tools on the other hand. This makes integrating
formal analyses into the daily development practice
artificially complex. In this paper we advocate that
the use of language engineering techniques can sub-
stantially improve this situation along three dimen-
sions. First, more abstract and thus more analyzable
domain specific languages can be defined, avoiding the
need for abstraction recovery from programs written
in general purpose languages. Second, restrictions
on the use of existing languages can be imposed
and thereby more analyzable code can be obtained
and analyses can be incrementally defined. Third, by
expressing verification conditions and the verification
results at the domain level, they are easier to define
and the results of analyses are easier to interpret by
end users. We exemplify our approach with three
domain specific language fragments integrated into
the C programming language, together with a set
of analyses: completeness and consistency of decision
tables, model-checking-based analyses for a dialect
of state machines and consistency of feature models.
The examples are based on the mbeddr stack, an
extensible C language and IDE for embedded software
development.

I. Introduction

A. Problem Context

Formal verification techniques have great potential and
have reached levels of scalability that makes them suit-
able for real-world systems. However, they are not used
by mainstream developers, even though many could
benefit. There are several reasons for this situation,
one of them being the perception by practitioners that
formal methods are only for experts, and require the
use of sophisticated tools and languages. Another more
technical reason is nicely described in [5]. We cite:

The transfer of [formal verification techniques] from
research to practice has been much slower for software.
One reason for this is the model construction problem: the
semantic gap between the artifacts produced by software
developers and those accepted by current verification
tools. Most development is done with general-purpose
programming languages (e.g., C, C++, Java, Ada), but

most verification tools accept specification languages de-
signed for the simplicity of their semantics (e.g., process
algebras, state machines). In order to use a verification
tool on a real program, the developer must extract an
abstract mathematical model of the program’s salient
properties and specify this model in the input language
of the verification tool. This process is both error-prone
and time-consuming.

Although this has been written in the year 2000, the
statements made in this paragraph are fundamentally
still valid. The conceptual gap between the language in
which programs are expressed and the language of the
formal analysis tool needs to be overcome.

One way to address this problem is to generate
the input to verification tools from higher-level, more
”friendly” descriptions of the functionality of the system.
This approach is used by modeling tools such as Simulink
or Statemate. However, this approach has problems as
well. One problem is the integration between those parts
of the system expressed in higher-level models and the
rest of the system that is typically still written in a
general purpose language (GPL). Another problem is
the limited support for incrementally adding formal
verification to parts of the system as the need arises:
the respective part has to be removed from the GPL
code and redescribed completely in the modeling tool.
The situation gets even worse if different parts of the
system have to be verified and/or modeled in different
ways, with different tools.

In essence, developers have to make a back-and-white
decision: either use a GPL and thereby lose much of the
verifiability of domain abstractions, or use specialized
tools, and suffer from the lack of integration with ex-
isting code bases. We claim that this decision can be
made smoother and more nuanced by using incremental
language extensions on the basis of a GPL, C in our case.

B. The mbeddr Approach

In mbeddr we investigate a different approach that
can be considered a middle ground between the two
approaches described above (Figure 1). mbeddr uses lan-
guage engineering in two ways: (a) to incrementally add

GPL Code

Challenge:
bridging the abstraction gap,
identifying useful invariants,

dealing with intricacies of GPLs

Program
Abstraction

GPL-based Analyses

Abstract
Models

Models based Analyses

Formal Analysis Tools – e.g. model chekers, SMT solvers

Challenge:
Integrate with existing

systems, for many system
parts the models at hand

are not expressive enough

Abstraction Generation

Analyses in mbeddr

Challenge:
Find adequate language fragments
and their corresponding analyses

GPL Code

Clean,
easily analyzable

DSLs

C Code

DSL1 DSL2 ...

Ab
st

ra
ct

io
n

le
ve

l M2M
transf.

Code
gen.

Figure 1. Analyses approaches at a glance

abstractions to an existing base language and thereby
make the programs easier to verify, or, (b) to restrict
the language to subsets that are easier to analyze.

As a consequence, an end user can make a decision
whether a program fragment should be verifiable or not:
if it should be verifiable, it must be expressed with
language abstractions that facilitate verification. How-
ever, the end user does not have to change the tool and
remodel everything: he simply includes the additional
language module and iteratively refactors his code to
use the more suitable abstractions. The transition is
seamless.

This incremental approach also works for the language
and verification developer as opposed to the end user. If
a new verification approach should be supported, the
existing base language (C in our case) can be extended
with the necessary additional language concepts. The
extensions live in a separate module and require no
changes to the base language. The developer then creates
a transformation from the new abstractions back to C
(for implementation) and to the input language of the
verification tool. He also has to define how the output of
the verifier relates back to the abstractions.

We believe this is a promising approach because it
supports incremental integration of formal analyses into
(existing) programs and it does not require the end user
to leave the code-centric development environment.

C. Structure of the Paper

In Section II we present an overview over the mbeddr
technology stack that represents the basis for our ap-
proach to define languages that are easier to analyze.
We then present examples of domain specific extensions
on top of C and the analyses performed based on them
in Section III. In Section IV we sketch a methodology
for performing formal analyses, and Section V discusses
different variability points of our approach. We conclude
the paper by discussing related work in Section VI and
provide an outlook on future work in Section VII.

II. The mbeddr Technology Stack

mbeddr is an open source project (hosted at
http://mbeddr.com) that enables embedded software de-
velopment based on an extensible version of the C
programming language. It supports the incremental,
modular domain-specific extension of C. In addition to
language extension, the approach also supports language
restriction, in order to create subsets of existing lan-
guages. In this section we describe the stack in more
detail. Figure 2 shows an overview.

JetBrains Meta Programming System

C

mbeddr core

Error Reporting Build Support

Pr
od

uc
t L

in
es

Va

ria
bi

lit
y

R
eq

ui
re

m
en

ts

mbeddr default extensions

Components State-machines

Physical Units Decision Tables

mbeddr default extensions

Unit-tests

Figure 2. The mbeddr technology stack rests on the MPS language
workbench. The first language layer contains an extensible version
of the C programming language plus special support for log-
ging/error reporting and build system integration. On top of that,
mbeddr comes with a set of default C extensions (components,
state machines, unit tests and physical units) plus cross-cutting
support for requirements, traceability and product line variability.

A. JetBrains Meta-Programming System

As the foundation, the mbeddr stack is built on top
of the JetBrains Meta Programming System. MPS is a
language workbench, a tool that supports the definition,
composition and use of languages. MPS supports the def-
inition of abstract syntax, concrete syntax, type systems,
transformations and generators as well as advanced IDE
features such as refactorings, quick fixes and debuggers.

What distinguishes MPS from other, similar tools
is that it uses a projectional editor. This means that,
although a concrete syntax may look textual, it is in
fact not text. In a projectional editor, a user’s editing
actions lead directly to changes in the abstract syntax
tree. No grammar or parser is involved. Projection rules
render a concrete syntax from the abstract syntax tree.
As a consequence, MPS can work with non-textual nota-
tions such as tables, and it also supports unconstrained
language composition and extension — no parser ambi-
guities can ever result from combining languages.

This ability to combine arbitrary languages is what we
exploit in mbeddr. We use mainly language extension,
i.e. additional languages are extensions of existing ones.
The semantics of a language extension E that extends a
base language B, is given by translating E back to B.

B. An Extensible C

The next layer in mbeddr is an implementation of the C
programming language in MPS. As a consequence of how

MPS works, our C implementation is easily extensible.
The implementation of C is faithful to the C99 standard,
with a couple of changes that have been chosen mainly
to make the C core more easily analyzable. For example,
we have introduced a native boolean type, we force users
to use the C99 integral types (int8 t, etc.) and we have
banned the preprocessor and replaced it with first class
support for its major uses such such as constants, macros
and product line variability.

C. Default Extensions

While a particular domain always requires particular
abstractions (realized in mbeddr with language exten-
sions), there are many extensions that are relevant to
a large subset of embedded systems. These have been
implemented in a library of reusable language modules.
Exploiting MPS’ facilities, this means that a user, as he
writes a program, can decide which language extensions
he needs and import them into his program. The follow-
ing extensions are available:

• Decision tables extend conditional expressions with
a tabular representation for nested if -statements.

• Test cases provide first class support for test driven
development.

• Interfaces with pre- and postconditions support
the specification of functionality. Components which
provide and require interfaces through ports enable
modular implementation of interface functionality.
Stubs and mocks support testing.

• State machines with in and out events that can be
bound to C functions

• Data types with physical units and an extended type
checker support first-class use of physical quantities.

D. Process Support

The mbeddr stack provides support for two important
aspects of software engineering: requirements traceabil-
ity and product line variability. Both are implemented
in a generic way that makes them reusable with any
mbeddr-based language.

• Requirements traces are annotations on program
elements that contain a typed relation to a require-
ment. This way, a program element can be made
to express for example an implements or a tests
relationship with one or more requirements.

• Feature models support the expression of product
line variability. Presence conditions can be attached
to any program element to express a dependency on
a particular combination of features. The program
can be edited in product line mode, with the op-
tional parts in the code annotated with the presence
conditions, or it may be edited as a specific variant
with those parts of the program not in the variant
removed.

E. Integration of Verification Tools

mbeddr provides an integration with two verification
tools. The NuSMV model checker [3] is used for model
checking state machines (discussed in Section III-B). The
Yices SMT solver [1] is used for checking the consistency
and completeness of decision tables (Section III-A) and
to verify the absence of conflicts in feature models as
well as the compliance of defined configurations to the
feature models (Section III-C).

III. Extensions and Analyses on Top of C

Each of the next subsection describe a language ex-
tension and a set of analyses that we implemented for
the extension. In each subsections we first present the
extension, then we present conceptually the analyses
that are interesting for this fragment, and finally look
at the implementation of these analyses.

A. Consistency and Completeness for Decision Tables

Decision tables exploit MPS’ projectional editor in or-
der to represent two-level nested if statements as a
table. Figure 3 shows an example. Decision tables [9]
let users describe different actions that can be taken for
different combinations of input conditions. The rationale
for tabular expressions is to let developers define the
conditions more easily and to allow reviewers to directly
gain an overview of varied sets of input conditions.
Decision tables are translated into C essentially as an
if/else if/else for the column headers, and nested in each
branch, an if/else if/else for the row headers.

Figure 3. An example decision table

Analyzing Decision Tables: For a two-dimensional
decision table, there are two obvious possible analyses:

• Completeness: requires that every behavior of the
system is explicitly modeled and no case is omit-
ted: this enforces explicitly listing all the possible
combinations of the input conditions in the table.

• Consistency: check whether there are input condi-
tions overlap, meaning that several cases are appli-
cable for a single input value (non-determinism).

As long as the language used for expressing the deci-
sions is kept ”simple” (i. e.,logical and linear arithmetic
expressions), the above analyses can be reduced to sim-
ple SMT problems. For example, given a table with n
rows (ri) and m columns (cj), we can check its com-
pleteness by checking the satisfiability of the following
formula (if satisfiable, then the table is incomplete).

¬
n,m∨
i,j=1

(ri ∧ cj)

A very useful feature of SMT solvers is the generation
of evidence for satisfiable formula. This evidence is useful
to the user to understand the cases he missed while
defining the table.

Figure 4. Checking the completeness of decision tables

Figure 4 shows an example decision table with ri =
{y < 0, y ≥ 0} and cj = {x < 0, x > 0}. On the right
hand side of this figure is given the evidence presented
to the mbeddr user about the missed cases.

Similarily, the consistency of decision tables can be
expressed as checking whether the following conjunctions
are satisfiable. If they are satisfiable, then an inconsis-
tency was found.

∀i, k = 1..n, j, l = 1..m :

i 6= k ∧ j 6= l⇒ ri ∧ cj ∧ rk ∧ cl

Restricting Decision Tables: Decision tables in
mbeddr generally allow arbitrary conditions. These may
contain function calls, or not be in the subset of linear
arithmetics, which makes them not analyzable with
Yices. If a user wants a decision table to be verifiable, he
must restrict the expressions to this analyzable subset,
essentially linear expressions. Note that the IDE reports
an error in case a decision table that is marked as
verifiable contains expressions that are not in this subset
(Figure 5). This always keeps the user informed as to
whether his code is verifiable or not.

Figure 5. Defining the analyzable fragment of decision tables

B. Model-checking Statemachines

State machines are top level concepts, i.e. they reside at
the same level in C programs as function or structs. State
machines act as types and can be instantiated. Figure 6
shows an example, where c1 and c2 are instances of the
same state machine Counter. The trigger statement can
be used to feed events into state machine instances.

State machines have in-events, out-events, states and
transitions as well as local variables. Each transition is

Figure 6. A state machine embedded in a C program; it resides
alongside global variables and functions.

triggered by an in-event. Transitions also have guard
expressions that have to be true in order for the transi-
tion to fire if its triggering event arrives into the state
machine. The guard can refer to state machine local vari-
ables as well as to in-event parameters. A state has entry
and exit actions, and transitions have transition actions.
As part of actions, local variables can be assigned and
out-events can be fired. As a way of interacting with the
remaining C program, an out-event can be bound to a
C function call (as illustrated in Figure 6).

Analyzing State Machines: Model-checking based
analyses are the most suitable for the state machine lan-
guage. There are numerous works (e. g.,[4]) about model-
checking different dialects of state machines; mbeddr
support two kinds of analyses:

• Default analyses are checked automatically for every
state machine. These uncover typical bugs that can
occur when working with state-machines: unreach-
able states, transitions that cannot be ever fired
(”dead-code”), sets of nondeterministic transitions,
and over-/underflow detection for integer variables.

• User-defined analyses are defined by users specifi-
cally for a given state machine. In order to address
the expectations of our users (typically not experts
in formal verification), we support specifications
expressed with the well-known set of specification
patterns1 described in [6].

In part a) of Figure 7 we present an example of a
state machine and the analyses that are run. Only one
user-defined verification condition is specified (bottom-
left). This condition is an example of the temporal logics
verification pattern ”Response - After”: after the state
machine is in state Counting, if the Stop event occurs,
then the state-machine will change to state Standby.

1http://patterns.projects.cis.ksu.edu

The verification can be started directly from the
IDE, in which case the state-machine is compiled into
a NuSMV model, NuSMV is run, and the results are
parsed back and lifted to the DSL level. Part b) of
Figure 7 shows the result. At the top we have the list
of executed checks and their results, at the bottom we
illustrate the lifted counter example for the (failed) cus-
tom verification condition. By clicking on a state of the
counter example, the IDE highlights the corresponding
state in the program.

a) b)

Figure 7. Model-checking the Statemachines:

Restricting the State Machines Language: By mark-
ing a statemachine as verifiable, a set of constraints
and type-checking rules are performed that make sure
that only the state machine language fragment is used
that can be verified. Examples of constraints include: 1)
we allow a maximum of one update of a local variable
inside a transition; 2) support for only range and boolean
types in local variables and input events and prohibiting
integers, doubles or structured data types; 3) external
functions may only be called via out-event bindings (the
code inside these external functions is not part of the
verification and we decouple it via the bindings).

The purpose of these restrictions is to enable straight-
forward transformation (of the state machine to NuSMV
input) and result interpretation (of the NuSMV result
at the DSL level). As with the decision tables, users of
mbeddr can now choose between using a highly expres-
sive variant of state-machines (and thereby losing the
analyzability of their code) or using a restricted language
that is verifiable.

C. Consistency Checking of Feature Models

Feature models are a well-known formalism for ex-
pressing product line variability at the domain level, i.e.
independent of implementation artifacts (in the problem
space as opposed to the solution space) [10]. A feature
is essentially a configuration option. A feature model
is a hierarchical collection of features, with constraints
among them. Constraints include mandatory (a feature
must be in each product configuration), optional (it may
be in a product), or (one or more features of a set of
features must be in a product) and xor (exactly one from
a set of features must be in a product). In addition,
there may be arbitrary cross-constraints between any
two features (requires-also and conflicts-with). Feature
models are often expressed via feature diagrams. In
mbeddr we use a textual notation.

A configuration of a feature model is a valid selection
of the features in a feature model. A valid configuration
may not violate any of the constraints expressed in the
referenced feature model.

Analyzing Feature Models: There are two obvious
analysis in this context. The first one is checking feature
model for consistentency, i.e. checking whether the set of
constraints allows the definition of valid configurations
at all. Conflicting constraints may prevent this (A re-
quires B, B conflicts with A). The second analysis checks
a specific configuration for compliance with its feature
model. Both of these analyses are easy to perform with
the help of SAT solvers [12] such as Yices.

Figure 8 shows an example of a feature model (a),
of its translation to Yices (b), of the results of running
Yices (c) and of the analysis results lifted to the domain
level (d). Each of the assert ids from the unsat core given
by Yices corresponds to a constraint from the feature
model. Thereby we are able to present the mbeddr user
directly with a list of those constraints that are violated.

IV. Methodology for Defining the Analyses

We propose an agile approach for combining domain
specific languages and language extensions with formal
analyses. Our methodology takes advantage of language
engineering techniques provided by state-of-the-art lan-
guage workbenches and has the following main charac-
teristics:

1) Create language fragments that can be easily ana-
lyzed and that are well integrated with the rest of the
code; make sure that analyses results can be lifted back
at the domain level. Incrementally define and enlarge the
language fragment that is supported by the analyses.

2) Make users aware of whether a program is cur-
rently analyzable or not. Give users the choice between
writing code that is analyzable (by using a restricted
subset of the language) or not analyzable (by using the
unrestricted, but more expressive language).

(set-evidence! true)
(set-verbosity! 2)
;;each feature is declared as a boolean variable
(define Root::bool) ...
;;the root feature is always present
(assert Root)
;;"sub-feature -> feature"
(assert (=> Diagnosis Root)) ...
;;mandatory sub-features: "feature -> sub-feature"
(assert+ (=> Root Diagnosis)) ...
;;feature with a sub-feature with Xor constraint
(assert+ (=> Diagnosis (xor Logging HeartBeat)) ...
;;“requires“ cross-constraint
(assert+ (=> Logging CAN)) ...
;;“conflicts“ cross-constraint
(assert+ (xor HeartBeat CAN))
(check)

> yices IntelligentSensorFamily.ys

id: 1
id: 2
id: 3
id: 4
id: 5
id: 6
id: 7
id: 8
id: 9
id: 10
id: 11
searching...

unsat
unsat core ids: 3 4 9 11

a) d)

c)b)

Figure 8. Analyzing Feature Models: a) feature models DSL; b)
fragment of encoding feature models in Yices; c) results of running
Yices; d) lifting analysis results at the domain level by mapping
the unsat core to the intention behind the unsatisfied asserts

3) Design the analyses with the user in mind: enable
them to easily write properties and lift the analysis
results such that they are easy to interpret.

4) Decouple the analysis tool from the analysis use
cases. An analysis tool can be used for a wide range of
analyses of conceptually different C extensions.

Our proposed methodology has the following steps:

1) Choose the set of analyses that will be performed
and at the same time decide on the language ab-
stractions that are necessary to make the analysis
feasible and run in a reasonable time. This may
include the restriction of existing languages or the
definition of additional abstractions.

2) Choose an analysis tool which will perform the
actual analysis, translate the DSL fragment and
the DSL-level properties in the modeling and spec-
ification language of the analysis tool

3) Lift the analysis results back at the domain level

V. Discussion

Soundness: Defining the analyses in an agile man-
ner, based on domain-specific language extensions that
inherently do not have formally defined semantics can

easily lead to unsound analyses. It might not always
be clear what exactly is verified: since from a DSL we
translate to the analysis tool and to target language,
keeping the two transformations consistent is challeng-
ing. We currently mitigate this issue by manual reviews
and some automated tests.

Incrementality: Our approach is based on the def-
inition of a subset of a language that, if users stick
to it, enables advanced formal analyses. Our approach
is incremental both in defining the analyses as well as
in using them. At first, the supported language frag-
ment can be kept small, and over time, if the need
arises, the fragment can be enlarged by allowing more
constructs. The trade-offs between the complexity of
implementing the analyses, their usefulness to end users,
and the size of the supported language fragment can be
continuously evaluated. End users can decide whether to
use a restricted language fragment that is analyzable or
to use a more expressive fragment and thereby losing
the analyzability. While the language extensions are
modular, they are nonetheless integrated into the code-
based IDE, enabling a smooth migration between the
two choices, and no tool integration headaches.

VI. Related Work

The use of (formal) analysis techniques for GPLs
is supported by a range of tools; most prominent are
static analyzers for run-time errors like Polyspace [14] or
Spec# [13]. However, experiences show that a substan-
tial amount of annotation is often needed to capture con-
straints, which are lost when implementing higher-level
concepts like state transition systems. Avoiding GPLs,
on the other hand, altogether and resigning completely
to DSLs like state transition systems, has proven to often
be impractical as these language fragments often limit
the expressibility, e.g., of actions, too much.

Therefore, in contrast to the work cited above, the
presented approach demonstrates the advantages of us-
ing a modularization of the implementation language,
combining the analyzability of restricted DSLs with the
the expressiveness of GPLs. Leaving the choice to the
language user, an individual trade-off is possible to ease
practical application.

Formal Analyses: The analyses we have presented
in this paper have been well known in the literature
for many years. Our contribution is the integration of
these analyses with language engineering technologies.
Thereby we hope to contribute to a wider application
of formal methods with practitioners. [4] is an early
work that translates a fragment of the StateCharts
language into SMV. [2] presents in detail meta-properties
of state machines that represent vulnerabilities and de-
fects introduced by developers that can be automatically
verified. The properties are classified into minimality,

completeness and consistency and are similar to the
default properties that we check.

Our analysis method of feature models is similar to
the one presented by Mendonca et. al. in [12].

[7] proposes an approach for defining and analysing
tabular expressions in Simulink similar to our analysis of
decision tables. In addition to using an SMT solver (as
we do as well); they also use a theorem prover, mainly
for dealing with non-linear expressions.

Correct-by-Construction: [8] defines a methodology
for constructing programs that are analyzable. In the
correct-by-construction methodology programs are con-
tinuously checked by using only polynomial time algo-
rithms. In this manner the verification is done contin-
uously and is integral part of the development process.
The mbeddr technology stack can be seen as a prag-
matic operationalization of the correct-by-construction
approach where the analyzable language fragments are
incrementally extended.

Usability of Formal Analyses: [11] characterizes the
challenges in three categories: firstly, it is difficult to
formalize the problem in the language of the verifica-
tion tool (known as the model construction problem);
secondly, it is difficult to formalize the properties to be
verified, and, finally, once the result is obtained (at the
abstraction level of the verification tool) it is difficult
to lift it and interpret it at the domain level. All these
challenges are due to the gap between domain specific
abstractions and how they are reflected in programs on
the one hand, and the abstractions of the analysis tool
on the other hand. With deeply integrated analyses in
mbeddr we tackle many of these challenges.

VII. Conclusions and Future Work

In this paper we propose a novel approach for pursuing
formal analyses based on language engineering technolo-
gies. Specifically, we define language fragments that are
”easily analyzable” and embed them in C. This way,
when implementing a (part of a) program, developers
can choose between either using a more restricted lan-
guage and thereby gaining analyzability, or using a more
expressive language and thereby losing analyzability.

This way we empower and encourage developers to
write code in high-level and expressive DSLs that are
appropriate for the problem at hand, while remaining
in a fundamentally code-based environment. We further
provide a set of DSL-specific out-of-the-box analyses
that are based on the fundamental abstraction of the
problem domain. The analysis results are lifted back to
the domain level made available in the IDE, making the
results much simpler to interpret.

Our future work is focused on two directions. First,
at the framework level we plan to extend infrastructure
for the definition of languages and analyses, with focus

on the assurance of consistency between the translation
of the DSL to the target language and to the analysis
tool. Second, we plan to integrate new analysis tools that
provide a high degree of automation, to add new analyses
to the existing languages and to explore new languages
and the relevant analyses.

References

[1] The yices homepage, http://yices.csl.sri.com.

[2] P. Arcaini, A. Gargantini, and E. Riccobene. Automatic
review of abstract state machines by meta property
verification. In Proceedings of the Second NASA Formal
Methods Symposium, pages 4–13. NASA, 2010.

[3] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia,
M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella.
Nusmv 2: An opensource tool for symbolic model check-
ing. In CAV, 2002.

[4] E. M. Clarke and W. Heinle. Modular translation of
statecharts to smv. Technical report, Carnegie Mellon
University, 2000.

[5] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S.
Păsăreanu, Robby, and H. Zheng. Bandera: extracting
finite-state models from java source code. In ICSE, 2000.

[6] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns
in property specifications for finite-state verification. In
ICSE, 1999.

[7] C. Eles and M. Lawford. A tabular expression toolbox
for matlab/simulink. In Proceedings of the Third inter-
national conference on NASA Formal methods, 2011.

[8] E. K. Jackson and J. Sztipanovits. Correct-ed through
construction: A model-based approach to embedded sys-
tems reality. In ECBS, pages 164–176, 2006.

[9] R. Janicki, D. L. Parnas, and J. Zucker. Tabular
representations in relational documents, pages 184–196.
Springer-Verlag New York, Inc., 1997.

[10] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peter-
son. Feature-oriented domain analysis (foda) feasibility
study. Technical report, SEI, 1990.

[11] K. Loer and M. Harrison. Towards usable and relevant
model checking techniques for the analysis of dependable
interactive systems. In ASE, 2002.

[12] M. Mendonca, A. W ↪asowski, and K. Czarnecki. Sat-
based analysis of feature models is easy. In SPLC, 2009.

[13] D. A. Naumann and M. Barnett. Towards Imperative
Modules: Reasoning about Invariants and Sharing of
Mutable State. In 19th IEEE Symposium on Logic in
Computer Science, pages 313–323. IEEE CS, 2004.

[14] K. Wissing. Static Analysis of Dynamic Properties -
Automatic Program Verification to Prove the Absence
of Dynamic Runtime Errors. In INFORMATIK 2007:
Informatik trifft Logistik, volume 110 of LNI, pages 275–
279. GI, 2007.

