Integrating Prose as First-Class Citizens
with Models and Code

Markus Voelter

independent/itemis, voelter@acm.org

Abstract. In programming and modeling we strive to express structures
and behaviors as formally as possible to support tool-based processing.
However, some aspects of systems cannot be described in a way that
is suitable for tool-based consistency checking and analysis. Examples
include code comments, requirements and software design documents.
Consequently, they are often out-of-sync with the code and do not reflect
the current state of the system. This paper demonstrates how language
engineering based on language workbenches can help solve this problem
by seamlessly mixing prose and program nodes. These program nodes
can range from simple references to other elements over variables and
formulas to embedded program fragments. The paper briefly explains
the language engineering techniques behind the approach as well as a
number of prose-code integrated languages that are part of mbeddr, an
integrated language and tool stack for embedded software engineering.

1 Introduction

Even though developers and systems engineers would love to get rid of prose
as part of the development process and represent everything with machine-
processable languages and formalisms, prose plays an important role.

In requirements engineering, prose is the starting point for all subsequent for-
malizations. Classical requirements engineering uses prose in Word documents or
Doors databases, together with tables, figures and the occasional formula. Since
these requirements are not versioned together with the code, it is hard to branch
and tag them together with the implementation. In safety-critical domains such
as aerospace, medicine or automotive, requirements tracing is required by stan-
dards such as IEC61508 to connect the requirements to implementation artifacts.
Traceability across tools is challenging in terms of tool integration.

During the implementation phase, developers add comments to the code.
These comments must be associated with program elements expressed in var-
ious languages including architecture description languages, state machines or
business rule languages. Comments also refer to code (for example, a comment
on a function typically refers to the arguments of that function), and it is hard
to keep these code references in sync with the actual code as it evolves.

Depending on the process, various design documents must be created during
in software projects. These are different from code comments in that they look
at the bigger picture and "tell a story”; they are not embedded in the code, they
are separate documents. Nonetheless they are tightly integrated with the code,

for example, by referring to program elements or by embedding code fragments.
Today, such documents are usually written in IXTEX, Docbook or Word — and
are often synchronized manually with the implementation code.

Problem Prose is is often badly integrated with the artifacts it relates to. It
cannot be checked for consistency with those artifacts. Mixing prose and code or
models is hard: either they reside in separate files, or, if pseudo-code is embedded
into a requirements document, no syntax or type system checks are performed.
No IDE support for the programming or modeling language is available. This
leads to a lot of tedious and error-prone manual synchronization work.

Contribution This paper proposes an integrated approach for handling prose
in the context of model-driven engineering tools that solves the above challenges.
The approach relies on language engineering and language workbenches, and an
implementation has been developed as part of the mbeddr platform.

2 mbeddr and MPS

mbeddr! is an open source project supporting embedded software development
based on incremental, modular domain-specific extension of C [8,9]. It also sup-
ports languages that address other aspects of software engineering such as re-
quirements or documentation (which is what is discussed in this paper).

mbeddr Overview mbeddr builds on the JetBrains MPS language work-
bench?, a tool that supports the definition, composition and use of general pur-
pose or domain-specific languages. MPS uses a projectional editor, which means
that, although a syntax may look textual, it is not represented as a sequence of
characters which are transformed into an abstract syntax tree (AST) by a parser.
Instead, a user’s editing actions change the AST directly. Projection rules ren-
der a concrete syntax from the AST. Consequently, MPS supports non-textual
notations such as tables or mathematical symbols, and it also supports uncon-
strained language composition and extension — no parser ambiguities can ever
result from combining languages (see [6] for details).

mbeddr is a set of languages implemented with MPS centered around an
extensible implementation of C99 (see Fig. 1). On top of that, mbeddr ships with
a library of reusable extensions relevant to embedded software, including test
cases, components, state machines, decision tables and data types with physical
units. For many of these extensions, mbeddr provides an integration with static
verification tools (model checking state machines, verifying interface contracts
or checking decision tables for consistency and completeness; see also [5]).

Users can use or build languages at any abstraction level and at any degree of
rigor. For example, the C implementation is very rigorous and low level, the state
machines are more abstract but just as rigorous, and the prose support discussed
in this paper is not very rigorous at all. While C99 artifacts would probably be
called code, state machines would likely be called models. Since both are tightly

! http://mbeddr.com
2 http://jetbrains.com/mps

LlseF tobe defined by users
Extensions
Test Decision . Use Cases &
Support | Tables Glassaries Scenarios
Default
Extensions Compo- | Physical State State Machine | Decision Contracts
nents Units Machines Verification Tables
Core G core Model SMT Dataflow | Visual- PLE Documen- | Requirements &
Checking Solving Analysis ization | Variability tation Tracing
Platform JetBrains MPS
Backend C Compiler,
Tool Debugger and Importer NusSmv Yices. CBMC PlantUML
Implementation Concern Analysis Concern Process Concern

Fig. 1. The core building blocks of mbeddr; see Section 2 for details.

integrated in mbeddr, the distinction makes no sense. The terms model and code
are used interchangeably.

Finally, mbeddr supports three important aspects of the software engineering
process: requirements engineering and tracing [10], product line variability and
documentation. All are implemented in a generic way that makes them reusable
with any mbeddr-based language. The rest of this paper discusses the prose
aspect of requirements, documentation and code comments.

Multiline Text Editing The projectional nature of the MPS editor has im-
portant advantages with regards to language extension and composition. How-
ever, traditionally, projectional editors have had usability challenges: they way
users had to interact with the editor were very different from how users interact
with text editors. MPS largely solves these problems. A detailed discussion of
how MPS achieves this improved usability can be found in Section 7.3.1 of [7].

To support multiline text editing, developers can use the mps-multiline3
MPS plugin, developed by Sascha Lisson. In addition, the mps-richtext plugin®
supports embedding program nodes into this multiline prose. At any location
in the multiline text, a user can press Ctrl-Space and select from the code
completion menu a language concept. An instance of this concept is then inserted
at the current location, "flowing” with the rest of the text during edit operations.
Other editing gestures can also be used to insert nodes. For example, an existing
regular text word can be selected, and, using a quick fix, it can wrapped with
an emph(...) node, to mark the word as emphasized.

It is crucial to emphasize that embedded program nodes are not just simple
tags; they can be any language concept, from simple tags (emphasize, bold)
through complete, type-checked expressions or sophisticated textual or tabular
structures. To make a language concept embeddable in text, it has to implement
the IWord interface. For a developer who is familiar with MPS, implementing a
Word takes only a few minutes. Note also, that MPS as a language workbench
provides complete IDE support for any language developed with MPS. This
is also true for embeddable Words. The code completion menu (available via
Ctrl-Space) allows users to only add those Words that are compatible in the

3 http://github.com/slisson/mps-multiline
4 http://github.com/slisson/mps-richtext

current context. The next paragraphs show how to implement such a Word (the
paragraph may be skipped, it is not essential for the rest of the paper.)

Implementing an Embeddable Word In MPS, language concepts have
children, references and properties. They can also inherit from other concepts and
implement concept interfaces. The multiline editor widget works with concepts
that implement IWord; by implementing this interface, new language concepts
can be plugged into the multiline editor. An example is ArgRefWord which can
be embedded into function comments to reference an argument of that function:

concept ArgRefWord implements IWord
references: concept properties:
Argument arg 1 transformKey = @arg

It states that the concept implements IWord, that it references one Argument
(by the role name arg) and it uses the @arg transformation key: typing @arg in
a comment, followed by Ctrl-Space, instantiates an ArgRefWord. A reference to
an argument is rendered as @arg(argName), so an appropriate editor is defined:

’[_ @arg (%arg%->{name}) -]

The editor defines a list of cells [- -]. The list contains the constant @arg, fol-
lowed by the name property of the referenced Argument, enclosed in parentheses.
To restrict this IWord to comments of functions, a constraint is used:

can be child constraint for ArgRefWord {
(node, parent, operationContext)->boolean {
node<> comment = parent.ancestor<DocumentationComment>;
node<> owner = comment.parent;
return owner.isInstanceOf(Function) }

The scope for the arg reference expresses that only those arguments owned by
the function under which the documentation comment lives are valid targets:

link {arg} scope: (refNode, enclosingNode)->sequence<node<Argument>>) {
enclosingNode.ancestor<Function>.arguments; }

Finally, a generator has to be defined that is used when HTML or IXTEXoutput is
generated. In this case it is sufficient to override a behavior method that returns
the text string that should be used:

public string toTextString() overrides IWord.toTextString {
"@arg(" + this.arg.name + ")"; }

3 Integrating Prose with Code and Models

This section looks at various examples of integrating prose with code, addressing
the challenges discussed in Section 1.

3.1 Requirements Engineering

As discussed in [10], mbeddr’s requirements engineering support builds on the
following three pillars. First, requirements can be collected as part of mbeddr
models and they are persisted along with any other code artifact. A requirement

1] Once a flight 1lifts off, you get 100 points
PointsForTakeoff /functional:
[... points are multiplied by the §req(PointsFactor), discussed below.]

Fig. 2. Requirements descriptions can contain references to other requirements (the
§req node in the text above), as well as references to actors, use cases and scenarios.

has an ID, a prose description, relationships to other requirements (refines,
conflicts with) as well as child requirements. Second, the requirements lan-
guage is extensible in the sense that arbitrary additional attributes (described
with arbitrary DSLs) can be added to a requirement. Examples include business
rules or use cases, actors and scenarios. The third pillar is traceability: trace
links can be attached to any program element in any language.

In the context of this paper, the interesting aspect is that the prose descrip-
tion can contain additional nodes, such as references to other requirements (the
greq nodes in Fig. 2). References to actors, use cases and scenarios are also
supported. Since these are real references, they are automatically renamed if the
target element is renamed. If the target element is deleted, the reference breaks
and leads to an error. Referential integrity can easily be maintained.

3.2 Code Comments

In classical tools, a comment is just specially marked text in the code, often
referring to program elements (such as module names or function arguments).
This approach has two problems. First, in textual editors, the association of the
comment with the commented element is only by proximity and convention —
usually, a comment sits above the commented element. This can pose a problem
to refactorings. Second, references to other program elements are by name only
— if the name changes, the reference is invalid.

mbeddr improves on both counts. First, a comment is actually attached to
the element it comments: structurally the comment is a child of the commented
node, even though the editor may show it on top (Fig. 3); alternatively, based
on the editor definition, it could also be shown on any other side of the of the
state machine, or even in a separate view. If the element is moved, copied, cut,
pasted or deleted, the comment always goes along with the commented element.

Second, comments can contain IWords that refer to other program elements.
For example, the comment on the state machine in Fig. 3 references two of the
states in the state machine. Some of the Words that can be used in comments
can be used in any comment (such as those that reference other modules or func-
tions), whereas others are restricted to comments for certain language concepts
(references to states can only be used in comments on or under a state machine).

Some IDEs support real references in comments for a specific language (for
example, Eclipse JDT renames argument names in JavaDoc method comments
if an argument is renamed). mbeddr’s support is more generic in that it auto-
matically works for any kind of reference inside an IWord. This is important,
since a cornerstone of mbeddr is the ability to extend any languages (C, the

//| This state machine has separate states for the
important flight phases, such as
@child(beforeFlight) or @child(airborne).

statemachine FlightAnalyzer initial = beforeFlight {

state beforeFlight {
on next [tp-»alt » @ m] -» airborne
exit { points += TAKEOFF; }

}

Fig. 3. A state machine with a comment attached to it. Inside the comment, two of
the states of the state machine are referenced.

mbeddr supports physical units. For example, \code(struct) members can have
physical units in addition to their types. An example is the @cc(Trackpoint/)
in the @cm(DataStructures) module. Here is the \code(struct):

Fig. 4. This document uses \code tags to format parts of the text in code font. It also
references C program elements (using the cm and cc tags). The references are actual,
refactoring-safe references. In the output, the references are also formatted in code font.

state machine language or the requirements language). The commenting facility
must be similarly generic.

3.3 Design Documents

mbeddr supports a documentation language. Like other languages for writing
documents (such as BTEX or Docbook), it supports nested sections, text para-
graphs and images. Special IWords are used to mark parts of texts as emphasized,
code-formatted or bold. Documents expressed in this language live inside MPS
models, which means that they can be versioned together with any other mbeddr
artifact. The language comes with generators to WTEX and HTML, new ones (for
example, to Docbook) can be added.

Referencing Code The documentation language also supports tight integra-
tion with mbeddr languages, i.e. C, exiting C extensions or any other language
developed on top of MPS. The simplest case is a reference to a program element.
Fig. 4 shows an example.

Embedding Code Code can also be embedded into documents. In the doc-
ument source, the to-be-embedded piece of code is referenced. When the output
is generated, the actual source code is embedded either as text or as a screen-
shot (since non-textual notations such as tables cannot be sensibly embedded
as text). Since the code is only embedded when the document is generated, the
document is always automatically consistent with the actual implementation.

Visualizations A language concept that implements the IVisualizable in-
terface can contribute visualizations, the context menu for instances of the ele-
ment has a Visualize item that users can select to render a diagram in the IDE.
The documentation language supports embedding these visualizations. As with

term: Vehicle
[A vehicle is ->(the generalization of [Car|]). It typically has four [Wheel|Wheels]]

Fig. 5. A modular extension of the documentation language that supports the definition
of glossary terms and the relationships between them.

The Drake equation calculates the number of civilizations in the galaxy. As input, it uses
the average rate of star[_f_nnma_.‘-_i__an_—tth_car_ﬁfs of those stars that have planets and
the average number of pllErertypeintdis notasubrype ofboolean b\\yng g 14 fe . The number of

civilizations can be calculated as $N

Fig. 6. An example where variable declarations and equations are integrated directly
with prose. Since the expressions are real C expressions, they are type checked. To
make this possible, the variables have types; these are specified in the properties view,
which is not shown in the figure. To provoke the type error shown above, boolean has
been defined as the type of the N variable.

embedding code, the document source references a visualizable element. During
output generation, the diagram is rendered and embedded in the output.

4 Extensibility

A hallmark of mbeddr is that everything can be extended by end users (without
invasively changing the extended languages), and the prose-oriented languages
are no exception. The mechanism based on concepts that implement the IWord
interface has already been discussed. This section discusses a few example of
further extensions, particularly of the documentation language (Section 3.3).

Glossaries A glossary defines terms which can be referenced from other term
definitions or from regular text paragraphs or even requirements or code com-
ments. A term definition is a subconcepts of AbstractParagraph, so they can
be plugged into regular documents. Fig. 5 shows an example of a term definition.

The term in Fig. 5 also shows how other terms are referenced using the
[Term|Text] notation (such references, like others, are generated to hyperlinks
when outputting HTML). The first argument is a (refactoring-safe) reference to
the target term. The optional second argument is the text that should be used
when generating the output code; by default, it is the name of the referenced
term. Terms can also express relationships to other terms using the ->(...)
notation, which creates a dependency graph between the terms in the glossary.
A visualization is available that renders this graph as a diagram.

Formulas Another extension adds variable definitions and formulas to prose
paragraphs (Fig. 6) which are exported to the math mode of the respective target
formalism. However, the variables are actual symbols and the equations are C
expressions. Both can be are checked for syntax and type correctness (see the
red underline under N in Fig. 6). mbeddr’s interpreter for C expressions can
be plugged in to evaluate the formulas. By adding tables with test values for
the expressions, users could even express tests for the formulas embedded in the
prose code. Using the interpreter, these could be evaluated directly in the IDE.

Cross-Cutting Concerns mbeddr supports two cross-cutting concerns that
can be applied to any language. Since the documentation language is just an-
other language, it can be used together with these cross-cutting languages. In
particular, the following two facilities are supported. First, requirements traces
can be attached to parts of documents such as sections, figures or paragraphs.
This way, requirements traceability can extend into, for example, software de-
sign documents. This is an important feature in safety-critical contexts. Second,
mbeddr supports product line variability. In particular, static negative variabil-
ity is supported generically. Using this facility, variant markup can be added
to documents such as user guides, configuration handbooks or software design
documents. This way, it is easy to create variants of these documents along with
variants of the software system they relate to.

Generating Documents Documents cannot just be written manually, they
can also be generated from other artifacts, for example from requirements col-
lections (introduced in Section 3.1) Such collections can be transformed to doc-
uments, and then, using the generators that come with the documentation lan-
guage, they can be used to generate the PDFs.

5 Related Work

The idea of more closely integrating code and text is not new. The most promi-
nent example is probably Knuth’s literate programming [4], where code frag-
ments are embedded directly into documents; the code can be compiled and
executed. A prototype of this approach has been built with mbeddr. However,
it turned out that referencing the code from documents (and generating it into
the final PDF) more scalable and useful.

The closest related work is Racket’s Scribble [2]. Following their paradigm
of documentation as code, Scribble supports writing structured documentation
(with IWTEX-style syntax) as part of Racket. Racket is an syntax-extensible ver-
sion of Scheme, and this extensibility is exploited for Scribble. Scribble supports
referencing program elements from prose, embedding scheme expressions (which
are evaluated during document generation) and embedding prose into code (for
JavaDoc-like comments). The obligatory literate programming example has also
been implemented. The main differences between mbeddr’s approach and Racket
Scribble is that Scribble is implemented as Racket macros, whereas mbeddr’s fa-
cility are based on projectional editing. Consequently, the range of document
styles and syntactic extensions is wider in mbeddr. Also, mbeddr directly sup-
ports embedding figures and visualizations.

Essentially all mainstream tools (incl. modeling tools, requirements man-
agement tools or other engineering tools) treat prose as an opaque sequence of
characters. None of the features discussed in this paper are supported. Only a few
exceptions exist. One exception are Wiki-based tools such as Fitnesse (used for
acceptance testing®). There, executable test cases are embedded in Wiki code. A
big limitation is that there is no IDE support for the (formal) test case descrip-
tion language embedded into the Wiki markup. mbeddr provides this support for

® http://fitnesse.org/

arbitrary languages. Another exception is Mathematica®, which supports mixing
prose with mathematical expressions. It even supports sophisticated typesetting
and WYSIWYG editing. Complete books, such as the Mathematica book itself,
are written with Mathematica. mbeddr does not support WYSIWYG. However,
mbeddr documents support integration with arbitrary MPS-based languages,
whereas Mathematica has a fixed programming language.

One way of integrating program code and prose that is often used in book
publishing are custom tool chains, typically based on TEX or Docbook. Program
files are referenced by name from within the documents, and custom scripts copy
in the program code as part of the generation of the output. mbeddr’s approach
is much more integrated and robust, since, for example, even the references to
program fragments are actual references and not just names.

mbeddr’s approach to integrating references (to, for example, text sections,
figures or program nodes) into documents relies on user-supplied mark up: a ref-
erence must be inserted explicitly, either when creating the document, or using
a refactoring later. mbeddr makes no attempt at automatically understanding,
parsing or checking natural language (in contrast to some approaches in require-
ments engineering [1,3]). However, it would be possible to add automatic text
recognition to the system; an algorithm would examine existing text-only doc-
uments and introduce the corresponding nodes. We have built a prototype for
the trivial case where a term is referenced from another term in the glossaries
extension: by running a quick fix on a glossary document, plain-text references
to terms are replaced by actual term references.

mbeddr relies on MPS, whose projectional editor is one of the core enablers for
modular language extension. This means that arbitrary language constructs with
arbitrary syntax can be embedded into prose blocks. I have seen a prototype of
embedding program nodes into comments in Rascal”. However, at this point I do
not understand in detail the limitations and trade-offs of this approach. However,
one limitation is that the syntax is limited to parseable textual notations.

6 Conclusions and Future Work

mbeddr is a scalable and practically usable tool stack for embedded software de-
velopment. However, a secondary purpose of mbeddr is to serve as a convincing
demonstrator for the generic tools, specific languages paradigm, which empha-
sizes language engineering over tool engineering: instead of adapting a tool for a
specific domain, this paradigm suggests to use generic language workbench tools
and then use language engineering for all domain-specific adaptations.

As this paper shows, this approach can be extended to prose. Through the
ability to embed program nodes into prose, prose can be checked for consistency
with other artifacts. Of course, this does not address all aspects of prose. For
example, consider a program element (such as a function) that is referenced
from a prose document that explains the semantics of this program element.
If the semantics changes (by, for example, changing the implementation of the

S http://www.wolfram.com/mathematica/
" http://www.rascal-mpl.org/

function), the explaining prose does not automatically change. However, Find
Usages can always be used to find all locations where in prose a program element
is referenced. This simplifies the subsequent manual adaptations significantly.

Since prose is now edited with an IDE, some of the IDE services can be used
when editing documents: go-to-definition, find usages, quick fixes, refactorings
(to split paragraphs or to introduce term references in prose) or visualizations.
Taken together with the direct integration with code artifacts, this leads to a very
productive environment for managing requirements or writing documentation.

As part of our future work, we will integrate MPS’ support for tabular and
graphical notations with the support for prose, allowing users to embed prose
paragraphs in table cells or graphical shapes.

Acknowledgements I thank the mbeddr and MPS development teams for
creating an incredibly powerful platform that can easily accommodate the fea-
tures described in this paper. I also thank Sascha Lisson for building developing
the multiline and richtext plugins for MPS.

References

1. V. Ambriola and V. Gervasi. Processing natural language requirements. In Pro-
ceedings of the 12th IEEFE Intl. Conf. on Automated Software Engineering, 1997.

2. M. Flatt, E. Barzilay, and R. B. Findler. Scribble: closing the book on ad hoc
documentation tools. In Proceedings of the 14th ACM SIGPLAN international
conference on Functional programming, ICFP '09. ACM, 2009.

3. V. Gervasi and B. Nuseibeh. Lightweight validation of natural language require-
ments. Software: Practice and Ezperience, 32(2):113-133, 2002.

4. D. E. Knuth. Literate programming. The Computer Journal, 27(2):97-111, 1984.

5. D. Ratiu, M. Voelter, B. Schaetz, and B. Kolb. Language Engineering as Enabler
for Incrementally Defined Formal Analyses. In FORMSERA’12, 2012.

6. M. Voelter. Language and IDE Development, Modularization and Composition
with MPS. In 4th Summer School on Generative and Transformational Techniques
in Software Engineering (GTTSE 2011), LNCS. Springer, 2011.

7. M. Voelter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L. Kats, E. Visser,
and G. Wachsmuth. DSL FEngineering — Designing, Implementing and Using
Domain-Specific Languages. CreateSpace Publishing Platform, 2013.

8. M. Voelter, D. Ratiu, B. Kolb, and B. Schaetz. mbeddr: Instantiating a language
workbench in the embedded software domain. Journal of Automated Software
Engineering, 2013.

9. M. Voelter, D. Ratiu, B. Schaetz, and B. Kolb. mbeddr: an extensible c-based
programming language and ide for embedded systems. In Proc. of the 3rd conf. on
Systems, programmang, and applications: software for humanity, SPLASH ’12.

10. M. Voelter and F. Tomassetti. Requirements as first-class citizens: Tight integra-
tion between requirements and code. In Proc. of the 2018 Dagstuhl Workshop on
Model-Based Development of Embedded Software, 2013.

	Integrating Prose as First-Class Citizens with Models and Code

