
XWeave: Models and Aspects in Concert

 Iris Groher

Siemens AG, CT SE 2
Otto-Hahn-Ring 6

81730 Munich, Germany
+49 89 636 49477

iris.groher.ext@siemens.com

 Markus Voelter
Independent Consultant

Ziegelaecker 11
89520 Heidenheim, Germany

www.voelter.de

voelter@acm.org

ABSTRACT
Model-driven software development improves the way software is
developed by capturing key features of the system in models
which are developed and refined as the system is created. During
the system’s lifecycle models are combined and transformed
between different levels of abstraction and viewpoints. Aspect-
oriented techniques improve software development by providing
modularization constructs for the encapsulation of crosscutting
concerns. Existing research has already investigated many ways
of combining the two paradigms. This paper contributes by
presenting XWeave, a model weaver that supports weaving of
both models and meta models. XWeave supports the composition
of different architectural viewpoints and eases model evolution.
Furthermore, the tool plays an important role in software product
line engineering, as variable parts of architectural models can be
woven according to some product configuration. The concepts are
illustrated with an example of a home automation system.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques.
D.2.11 [Software Engineering]: Software Architectures.

General Terms
Design, Languages.

Keywords

Model-Driven Software Development, Aspect-Oriented Software
Development, Model Weaving.

1. INTRODUCTION
Model-driven software development (MDSD) [1] improves the
way software is developed by capturing key features of the
system in models which are developed and refined as the system
is created. During the systems lifecycle models are combined and
transformed between different levels of abstraction and
viewpoints. The key difference to traditional modeling is that in

MDSD models do not constitute documentation but are processed
by tools. Models are first class entities; they essentially play the
role of source code. Model transformations are most commonly
used for processing and refining models. Such transformations are
similar to functions: based on one or more input models an output
model is produced. Model weaving is a special case of
transformation where input models are woven together based on a
weaving specification to produce the desired output.

Aspect-oriented (AO) techniques [2][3] improve software
development by providing constructs for the encapsulation of
crosscutting concerns. Aspects encapsulate crosscutting concerns
and are subsequently composed with other software artifacts using
powerful composition mechanisms. A join point model captures
the set of possible composition points and pointcut expressions
quantify over the join point model to select the desired set of
composition points for a specific aspect. Aspects are
automatically composed with the rest of the system by an aspect
weaver, either statically during compilation, dynamically at
runtime, or at load-time. Asymmetric AO approaches such as
AspectJ [4] provide constructs for the encapsulation of
crosscutting concerns that are woven to some (non-AO) base
system. Symmetric approaches such as CaesarJ [5] and CME [6]
provide constructs for the encapsulation of all kinds of concerns
which are then composed to form the final system.
While the two approaches are different in many ways – MDSD
adds domain-specific abstractions and AOSD offers concerns
modularization and composition mechanisms – they also have
many things in common. Existing research has already
investigated many ways [7][8][9][10][11][12] of combining the
two paradigms. Both, MDSD and AOSD are promising
technologies that improve the modularity, composability,
evolvability, and reusability of software systems. The two
paradigms are complementary in nature and can benefit from each
other when used in combination. For example, by modularizing
crosscutting concerns in models or using AO to simplify model
transformations.

This paper contributes to the integration of MDSD and AOSD by
presenting XWeave, a model weaver that supports weaving of
both models and meta models. The weaver is based on the Eclipse
Modeling Framework (EMF) [13] Ecore meta meta model. This
means that the approach can weave models that are either
instances of Ecore (meta models) or instances of those models.
XWeave weaves crosscutting concerns encapsulated as aspect
models into (non-AO) base models. This is a form of asymmetric
model weaving, where there is a designated base model into

__

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
AOM Workshop’07, March 12, 2007, Vancouver, British Columbia.
Copyright 2007 ACM 978-1-59593-658-5…$5.00.

which a number of aspect models are woven (as opposed to
symmetric weaving, where there is no designated base model).
Weaving is done based on matching names of elements in the
aspect and the base model. Additionally, pointcuts based on the
openArchitectureWare (oAW) expression language [14] can be
defined to select sets of model elements as join points. The oAW
expression language is a statically typed language based on OCL.
It is part of the oAW framework [15], a framework for building
MDSD tools.

The concepts introduced in this paper are illustrated with an
example of a home automation system, called Smart Home. Smart
Home networks the devices installed in a house and allows
inhabitants to monitor and control their status. Devices can even
coordinate their behavior to fulfill complex tasks without human
intervention. The example is based on real system requirements
from Siemens AG and demonstrates the benefits of automated
model weaving of both homogeneous and heterogeneous aspects
[16] at meta model as well as at model level.

The remainder of the paper is organized as follows: Section 2
introduces our view on the relationship between MDSD and
AOSD. Section 3 demonstrates the home automation example.
The concepts and capabilities of XWeave are motivated,
described and evaluated in Section 4. Related work is discussed in
Section 5. Section 6 summarizes the paper and provides an
outlook on future work.

2. MODELS AND ASPECTS
In MDSD systems are continuously described in terms of models
that are subsequently developed and refined. Models do not only
constitute documentation but are first class entities that are
processed by tools. Every model conforms to a meta model. The
meta model defines the vocabulary and grammar that can be used
to build the model. Hence, models are instances of their
respective meta models. A meta model also has a meta model
which is called the meta meta model. There are different meta
meta model formalisms such as MOF [17] or Ecore [13]. Figure 1
shows two examples of the various (meta) models for MOF and
Ecore.

Figure 1: Meta Levels
Models are combined and transformed between different levels of
abstraction and viewpoints during the systems lifecycle. Usually,
model transformations are used for processing and refining
models. During a model transformation an output model is
produced based on one or more input models. The input models
are not changed during a model transformation. Model
modification and model weaving are special kinds of
transformations. Model modification is about changing the input

model(s) in order to produce the desired output. Model weaving is
about taking a base model as well as one or more aspect models
and weaving them together in a user controllable way.
Extensive research has been conducted in combining MDSD and
AOSD as they have many things in common
[7][8][9][10][11][12]. There are many ways that these emerging
paradigms may be integrated to achieve the complementary
benefits of both AOSD and MDSD:

• Aspect-oriented modeling [9][10] aims at providing means
for expressing aspects and their crosscutting relationships at
modeling level.

• Model weaving [21] assists in the composition of different
separated models into a consistent whole.

• AO templates [14] can be used when implementing a code
generator. Aspect templates advice the standard code
generation templates with code that is specific to some
crosscutting concern.

• AO-like introductions [14] allow the contribution of
additional properties to meta classes that implement a
specific meta model.

• It is even possible to integrate an AOP language [4][5] into
the MDSD infrastructure. Specifically, a number of pre-built
advice can be defined as part of the platform and pointcuts
are generated based on specifications in the model. The AOP
language’s standard weaver then integrates the aspects with
the generated code.

3. HOME AUTOMATION EXAMPLE
The example we use to illustrate our approach is a home
automation system (see also [18]), called Smart Home. In homes
you typically find a wide range of electrical and electronic
devices such as lights, thermostats, electric blinds, fire and smoke
detection sensors, white goods such as washing machines,
entertainment equipment such as TVs and communication devices
such as phones. Smart Home connects those devices and enables
inhabitants of a home to monitor and control the status of devices
from a common user interface. The home network also allows the
devices to coordinate their behavior in order to fulfill complex
tasks without human intervention.
Sensors are devices that measure physical values of their
environment and make them available to Smart Home.
Controllers activate devices whose state can be monitored and
changed. All installed devices are part of the Smart Home
network. The status of devices can either be changed by
inhabitants operating on the user interface or by Smart Home
using predefined event plans. Event plans let the system act
autonomously in case of certain events. For example in case of
fire and smoke detection windows get closed automatically and
the fire brigade is called.
Figure 2 shows a simplified meta model of Smart Home. A house
contains floors and floors contain rooms. In a room, different
devices are installed and every device is controlled by a
controller. Rooms also contain sensors.

Figure 2: Smart Home Meta Model
Figure 3 shows an instance of the Smart Home meta model, i.e. a
concrete home automation system. The example house only
contains one floor where only one room is located. The bedroom
contains one light sensor and one light device which is controlled
by a light controller.

Figure 3: Smart Home Model
Various types of houses and different customer demands drive the
need for different kinds of home automation systems. This kind of
variability and the evolution of models over time require models
to change often and quickly. The next section will show how
variability within models and model evolution can be handled in
an elegant way using our XWeave approach.

4. XWEAVE
4.1 The Purpose of Model Weaving
4.1.1 Model Evolution
One important application of model weaving is model evolution,
the change of models over time, which can be handled easier
using a model weaving approach. Changes can be localized in
aspects which eases traceability and change management.

4.1.2 Product Line Engineering
Model weaving is also an important issue in software product line
engineering (PLE). Product lines take advantage of the
commonality within a portfolio of similar products [18]. Products
usually differ by the set of features they include in order to fulfill
customer requirements. Products that are part of a product line
typically have a common architecture with well-defined
differences among them. In PLE, these differences are formally
captured, for example using feature models. In the case where
MDSD is used as an implementation technique for PLE, the
commonalities and variabilties between the models need to be
managed. Here, model weaving can help by capturing variable
parts of models in aspect models, and weaving them into a given
minimal core. The core then only contains elements common to
all products; the optional parts are automatically added when

needed. A clear separation of optional model parts improves
traceability of variability. For software product lines it is essential
to know the relationship between features and the derived
architectural models. The effects of variability and especially new
variability brought by evolution cannot be easily modeled and
managed. A model weaving approach allows the clear separation
of optional parts of the model from core parts.
This approach allows variant management on model level. In
PLE, two forms of variability are known: negative and positive
variability. Negative variability is about removing optional parts
from a given structure, whereas positive variability is about
adding optional parts to a given core. Figure 4 illustrates the
difference between negative and positive variability.

Figure 4: Negative vs. Positive Variability
An existing approach [19] combines variant specification in
feature models with negative variability mechanisms in models.
The basis is a complete model with all possible features included.
Optional elements are associated with features in the feature
model. A model element is then only present in a model if the
feature it is associated with is selected in the respective
configuration. By unselecting features in the feature model, the
original model is “cut down” to a model that is specific to one
concrete variant. This approach has the drawback that one has to
start by modeling the overall, large model.
Model weaving supports positive variability within models. Based
on whether a feature is selected in the variant specification, a
certain model aspect is woven or not.

4.1.3 Architectural Viewpoints
Another important application of model weaving is the
combination of different architectural viewpoints. When creating
the final system the different viewpoint models have to be
combined into a consistent whole. Using a model weaving
approach different viewpoints can be modeled in separation and
later composed to form the final system.

4.2 Concepts and Capabilities of XWeave
XWeave is a model weaver based on EMF’s Ecore meta meta
model [13]. This means that the tool can weave models that are
either instances of Ecore (these are called meta models) or
instances of those models (we call these models). Ecore is Eclipse
EMF’s implementation of the Essential MOF (EMOF), a
simplified version of the original OMG MOF [17] standard. We
have selected Ecore as the meta meta modelling formalism
because it integrates with a large number of tools such as Eclipse
GMF [20] for graphical modelling and oAW [15] for model-to-
model transformations and code generation. Figure 5 (highlighted
part) shows the relevant core of the Ecore meta meta model.

Figure 5: The Ecore Meta Meta Model
XWeave takes a base model as well as one or more aspect models
as input and weaves the content of the aspect model into the base
model. This is a form of asymmetric AO. There are two ways of
specifying pointcuts: name matching and explicit pointcut
expressions (note that we will provide examples for both of these
mechanisms below):

• Name matching means that if a model element in the aspect
model has a corresponding element in the base model
(corresponding means that both name and type are equal) the
element is woven.

• Pointcuts can be defined with a dedicated expression
language. Expressions can select one or more elements of the
base model and are defined external to both models. Every
expression has a name and can be referenced by this name.
The expression language used in XWeave is the oAW
expression language [14] which will be introduced in Section
4.2.3. The named expressions (pointcuts) can be used in the
aspect model. If an aspect element’s name starts with %
followed by the name of a defined expression, the expression
will be evaluated for this element.

Weaving an element means that all properties of the element
including its child elements are woven into the base model.
Using the capabilities of XWeave, both heterogeneous as well as
homogeneous aspects can be woven. To illustrate the concepts of
XWeave, let’s look at the following examples.

4.2.1 A Homogeneous Aspect Model
Homogeneous aspects apply the same piece of advice to several
places [16].
Consider the Smart Home example introduced Section 3. You
might want to provide an optional feature Fire Detection. This
means that, for all the rooms in the house, you have to add a fire
detection sensor (and many other things we don’t discuss here).
This example requires a homogeneous aspect model to be woven

into the model as the same aspect element (FireSensor) is applied
to several places (rooms). Figure 6 illustrates the resulting model.
The base model is grey, the elements added by the aspect are
highlighted in black.

Figure 6: Resulting Model after Homogeneous Weaving
Figure 7 shows a graphical representation of the aspect woven
into the base model. Note how we use the different line styles to
distinguish the various meta classes.

Figure 7: A Homogeneous Aspect
The pointcut expression allRooms collects all the rooms of all the
floors in a given house. As we explained above, all attributes and
references of the selected elements are woven, so each of the
rooms is supplied with a new FireSensor.
This example shows a homogeneous aspect, since the same advice
(the FireSensor) is woven “into many locations” in the model in
the same way. We used a pointcut expression to identify those
locations.

4.2.2 A Heterogeneous Aspect Model
Heterogeneous aspects add different pieces of advice to different
places [16]. In this example we show a heterogeneous aspect that
uses name matching to identify the target join points. To illustrate
XWeave’s capability to also work at the meta model level, we
show how to vary the meta model. Consider the following
scenario: You are the vendor of smart home systems. As part of
your product, you also provide a tool to plan (i.e. model) smart
home systems. As part of your product line of smart home
systems, you have several levels of sophistication: for example,
your customers can optionally buy a Presence Management
feature. This is a feature that tracks who is in which room. In
order to support this feature, the meta model needs to be varied as
shown in Figure 8.

Figure 8: Meta Model with Heterogeneous Aspect Woven

The aspect that can be used to effect this variant looks as
illustrated in Figure 9.

Figure 9: A Heterogeneous Aspect
Here we weave two additional elements into the meta model at
well defined locations – a heterogeneous aspect. We use name
matching to identify the join points, hence, no pointcut expression
is necessary.

4.2.3 The Expression Language
Like all the other components of the openArchitectureWare
toolkit, XWeave also uses the oAW expression language [14].
This language is statically typed and based on OCL [26]. It
contains a number of additional features, mainly convenience
functions and syntactic sugar. oAW provides a powerful syntax
highlighting and code-completing editor for expressions.
Like OCL, the oAW expression language provides the following
features (only the features that are relevant for XWeave are listed
here):

• Path expressions allow the navigation over several steps
(using the familiar dot-notations). This navigation also works
for multi-value properties, in which case the expression
returns the leaves of the tree created by the expression.

• Working with collections: The expression language provides
primitives to work with sets: union, difference, without, etc.
aCollection.forAll(predicate) checks whether predicate is
true for all elements of a collection.
aCollection.exisits(predicate) checks whether there is at least
one element in the collection for which the predicate is true.

• Selection/Filtering: A given set of elements can be filtered
based on a boolean predicate. aCollection.select(e|
e.someProp == someValue) picks all elements from
aCollection whose property someProp has the value
someValue.

4.3 Evaluation
The current state of XWeave supports the purposes of model
weaving that we defined in Section 4.1. We are able to weave one
or more homogeneous and heterogeneous aspects into a given
base model. The join point model is based on the base models’
meta model and is thus very generic. Weaving can be based on
name equivalence, or using pointcut expressions.
However, the advice is currently limited. We cannot remove
change, or override existing base model elements using aspects.
XWeave thus currently supports essentially only additive
weaving, where additional elements are added to the base model.
For our short term purpose this is sufficient but we will address
these limitations in the future.

5. RELATED WORK
5.1 AMW
AMW, the Atlas Model Weaver [21], is a tool created by INRIA
as part of the ATLAS Model Management Architecture. It’s
primary goal is to establish links between models. In the first
phase of working with AMW, a number of links are established
between two or more models. This process can be manual or
semi-automatic. The result is called the weaving model. Based on
that model, you can then generate model transformations that
merge models.
AMW is similar to XWeave as you can merge or weave models.
It is, however, also different in several ways. For example, AMW
contains an interactive tool to build the weaving model, whereas
XWeave uses name correspondence or pointcut expressions. An
important reason for building XWeave is its integration with the
rest of the openArchitectureWare tools, e.g. being compatible
with oAW’s workflow engine and using the oAW expression
language.

5.2 C-SAW
The C-SAW project [22] is developed by the University of
Alabama at Birmingham. It is a general transformation engine for
manipulating models and is a plug-in for GME. C-SAW modifies
complex models based on aspect specifications using ECL (a
variant of the Object Constraint Language, OCL). The weaver
traverses the model and selects a set of elements to which the
aspect should be applied – essentially, a procedurally
implemented pointcut. The advice then modifies the selected
element in some way, for example by adding a precondidition or
changing the element structure somehow.
C-SAW has been developed to tackle the challenge of evolving
potentially very large models in consistent ways. Instead of
applying a set of changes manually, you merely write an aspect
that applies the changes to all selected elements in the model.
Comparing it to XWeave reveals that C-SAW doesn’t weave
models (in the sense of merging them) as XWeave does. Rather, it
efficiently applies (crosscutting) changes to a collection of
elements in a large model.

5.3 Others
Theme/UML [23][10] is a design modeling language that
provides modeling constructs for separating aspects during
design. It is suitable for both symmetric as well as asymmetric
AO. The separated design models can be composed using defined
composition operators. In contrast to XWeave, Theme/UML does
not provide any tool support for the automatic composition of
models.
Join point designation diagrams (JPDD) [24] provide new means
for modeling pointcuts, i.e. the places where crosscutting occurs.
UML classifiers are used to represent join points in structural
models and UML messages to represent join points in behavioral
models. XWeave uses name matching and pointcut expressions to
represent join points at modeling level.

6. SUMMARY AND FUTURE WORK
AOSD and MDSD are both emerging new paradigms that
improve software development and provide even more benefits
when used in combination. One possible way of integrating the

two approaches is model weaving. In this paper we have
presented XWeave, a model weaver that supports weaving of both
meta models and models. XWeave is based on the EMF Eore
meta meta model. The tool takes a base model as well as one or
more aspect models and weaves them together in a user
controllable way. Pointcuts can be defined based on matching
names of model elements or expressions. We have demonstrated
the weaving of both homogeneous and heterogeneous aspect
models based on examples of a home automation system.
XWeave improves model evolution as changes can be localized in
aspect models which eases traceability and change management.
Furthermore optional parts of the model can be separated as
aspect models and only woven into the base model when needed.
This is especially helpful in software product line development. In
cases where different architectural viewpoints have to be
combined XWeave can be used as well. The viewpoints can be
developed in isolation and the tool composes them to form a final
system.
In the future we will combine XWeave with a variant
management tool such as pure::variants [25]. Users can then
model optional parts of the model as aspect models, relate them to
features in the feature model and let the tool weave the relevant
aspect models according to some configuration (i.e. selection of
features).
We will also address the limitations stated in Section 4.3,
specifically, the fact that we currently only support additive
weaving. In the future we plan to extend XWeave in order to
support removing, changing, or overriding of existing base model
elements using aspects.
Another possible extension of XWeave is support for symmetric
model weaving. This kind of weaving does not distinguish
between aspect and base models. Models are woven together
according to defined rules to form the final system.

7. ACKNOWLEDGMENTS
This work is supported by AMPLE Grant IST-033710. The
authors would like to thank Christa Schwanninger and Andrew
Jackson for their valuable comments on earlier drafts of this
paper.

8. REFERENCES
[1] Stahl, T., and Völter, M. Model-Driven Software

Development. Wiley & Sons, 2006.
[2] AOSD website, http://www.aosd.net
[3] Filman, R., Elrad, T., Clarke, S., and Aksit M. Aspect-

Oriented Software Development. Addison-Wesley, 2004.
[4] AspectJ website, http://www.eclipse.org/aspectj/
[5] CaesarJ website, http://www.caesarj.org/
[6] Concern Manipulation Environment (CME) website,

http://www.research.ibm.com/cme/
[7] First Workshop on Models and Aspects – Handling

Crosscutting Concerns in MDSD, Glasgow, UK, July, 2005.
http://www.st.informatik.tu-
darmstadt.de:8080/ecoop2005/maw/

[8] Second Workshop on Models and Aspects – Handling
Crosscutting Concerns in MDSD, Nantes, France, July,

2006. http://www.kircher-
schwanninger.de/workshops/MDD&AOSD/

[9] Aspect-oriented Modelling Workshops, http://www.aspect-
modeling.org/

[10] Clarke, S., and Baniassad, E. Aspect-Oriented Analysis and
Design. The Theme Approach. Addison-Wesley, 2005.

[11] Simmonds, D., Solberg, A., Reddy, R., France, R., and
Ghosh, R. “An Aspect Oriented Model Driven Framework”.
In Proceedings of the Ninth IEEE “The Enterprise
Computing Conference” (EDOC), Enschede, Netherlands,
September, 2005.

[12] Sánchez, P., Magno, J., Fuentes, L., Moreira, A., and Araújo,
J. “Towards MDD Transformations from AO Requirements
into AO Architecture”. In Proceedings of the Third European
Workshop on Software Architecture (EWSA), Nantes,
France, September, 2006.

[13] Eclipse Modeling Framework website,
http://www.eclipse.org/emf

[14] openArchitectureWare Documentation website,
http://www.eclipse.org/gmt/oaw/doc/

[15] openArchitectureWare website,
http://www.eclipse.org/gmt/oaw

[16] Lopez-Herrejon, R., E. “Towards Crosscutting Metrics for
Aspect-Based Features”. In Proceedings of the First
Workshop on Aspect-Oriented Product Line Engineering
(AOPLE), Portland, Oregon, October, 2006.

[17] OMG MetaObject Facility website,
http://www.omg.org/mof/

[18] Pohl, K., Böckle, G., and van der Linden, F. Software
Product Line Engineering. Foundations, Principles, and
Techniques. Springer, 2005.

[19] Czarnecki, K., and Antkiewicz, M. “Mapping Features to
Models: A Template Approach Based on Superimposed
Variants”. In Proceedings of the Fourth International
Conference on Generative Programming and Component
Engineering (GPCE), Tallinn, Estonia, September, 2005.

[20] Eclipse Graphical Modeling Framework website,
http://www.eclipse.org/gmf

[21] Atlas Model Weaver website,
http://www.eclipse.org/gmt/amw

[22] C-SAW website, http://www.cis.uab.edu/gray/Research/C-
SAW/

[23] Clarke, S. Composition of Object-Oriented Design Models.
PhD thesis, Dublin City University, 2001.

[24] Stein, D., Hanenberg, S., and Unland, R. “Modeling
Pointcuts“. In Proceedings of the Early Aspects Workshop,
Lancaster, UK, March, 2004.

[25] pure::variants Variant Management Tool website,
http://www.pure-systems.com/3.0.html

[26] OMG UML 2.0 Object Constraint Language website,
http://www.uml.org

