
Handling Variability in Model Transformations and Generators
Markus Voelter1, Iris Groher2

1 Independent Consultant, Heidenheim, Germany
2 Siemens AG, CT SE 2, Munich, Germany

voelter@acm.org, iris.groher.ext@siemens.com

Abstract
Software product line engineering aims to reduce

development time, effort, cost, and complexity by tak-
ing advantage of the commonality within a portfolio of
similar products. The effectiveness of a software prod-
uct line approach directly depends on how well feature
variability within the portfolio is implemented and ma-
naged throughout the development lifecycle, from early
analysis through maintenance and evolution. Using
DSLs and AO to implement product lines can yield
significant advantages, since the variabilities can be
implemented in higher level, less detailed models. This
paper illustrates how variabilities can be implemented
in model-to-model transformations and code genera-
tors. The backbone of the presented approach is to use
aspect-oriented techniques for transformations and
generators. These techniques are important ingredients
for the model-driven product line engineering ap-
proach presented in [SPLC Paper].

1 Introduction and Motivation

Most high-tech companies provide products for a
specific market; thus the products have many things in
common. An increasing number of these companies
realize that product line development [1,2] fosters
reuse at all stages of the lifecycle, shortens develop-
ment time and helps staying competitive.

The effectiveness of a software product line ap-
proach directly depends on how well feature variability
within the portfolio is managed from early analysis to
implementation and through maintenance and evolu-
tion. Commonalities, as well as the flexibility to adapt
to different product requirements are captured in core
assets. Those reusable assets are created during domain
engineering. During application engineering, products
are either automatically or manually assembled, using
the assets created during the domain engineering
process and completed with product-specific artifacts.
Products usually differ by the set of features they in-
clude in order to fulfill customer requirements. A fea-
ture is an increment in functionality provided by one or
more members of a product line [3].

Variability management is the activity concerned
with identifying, designing, implementing, and tracing
flexibility in software product lines (SPLs). Variability
of features often has widespread impact on multiple

artifacts in multiple lifecycle stages, making it a pre-
dominant engineering challenge in software product
line engineering (SPLE).

In traditional SPLE approaches, variability is main-
ly handled using either mechanisms provided by the
implementation language, such as patterns, frame-
works, polymorphism, reflection, and pre-compilers or
using configuration and build tools to set compile time
variables and select variants of assets. The approach
described in this paper facilitates variability implemen-
tation, management, and tracing from architectural
modeling to implementation of product lines by inte-
grating both model-driven (MDSD) and aspect-
oriented software development (AOSD). Here is a de-
finition of what we call model-driven, aspect-oriented
product line engineering:

MDD-AO-PLE uses models to describe product
lines. Variants are defined on model-level.
Transformations generate running applications.
AO techniques are used to help define the va-
riants in the models as well as in the transfor-
mers and generators.

Model Implementation
ArtefactsTransformation

more abstract
less detailed

less abstract
more detailed

Figure 1: Mapping abstract models to detailed im-
plementations

The core idea is to express variability in models and

generators, since, as a consequence of the higher ab-
straction level in models (Figure 1), the number of var-
iation points is lower (Figure 2).

For companies that are already building product
lines, MDSD and AOSD can further increase produc-
tivity because:
• Variability can be described more concisely since

in addition to the traditional mechanisms, variabili-
ty is also described on model level.

• The mapping from problem to solution domain can
be formally described and automated using model-

to-model transformations (Figure 3).

 Transformation

= Variation Point

Figure 2: Variation Point Mapping in PDD-PLE

• Aspect-oriented techniques enable the explicit
expression and modularization of crosscutting va-
riability on model, code, and generator level.

• Fine grained traceability is supported since tracing
is done on model element level rather than on the
level of code artifacts.

Domain
Requirements

Formal
Domain

MetaModel

Product
Requirements

Formal
Domain
Model

Formal
Solution Space

MetaModel

Formal
Solution Space

Model

M

M

Problem Space Solution Space

D
om

ai
n

En
gi

ne
er

in
g

A
pp

lic
at

io
n

En
gi

ne
er

in
g

...

Core Assets

Product

Figure 3: The various models in MDD-AO-PLE

The rest of the paper is organized as follows: The
rest of section 1 introduces the main concepts of mod-
el-driven aspect-oriented product line engineering and
introduces the case study as well as the tool environ-
ment we use. Section 2 is the main section of the paper
and introduces transformation and generator aspects,
and how they are coupled with a configuration model.
Section 3 looks at related work, while section 4 sum-
marizes the paper and provides and outlook on future
work.

1.1 Concepts and Building Blocks
This paper explores an approach that integrates

model-driven and aspect-oriented techniques in order
to facilitate variability implementation, management
and tracing in SPLE.

The general approach we are going to propose is as
follows:
• Express as many artifacts as possible using models

as this allows for processing these artifacts using
model transformations.

• Mappings from problem to solution domain are

implemented as model-to-model (M2M) transfor-
mations. This enables to formally describe map-
pings and automate their execution.

• Variable parts of the resulting system are either
assembled from pre-build assets generated from
models or implemented via interpreters. This is
more efficient and less error-prone than manual
coding in a third generation language (3GL).

• Aspect-oriented modeling (AOM) [8,11] is used to
implement variability in models. This supports the
selective adaptation of models. Details on this can
be found in [IrisPaper]

• AO techniques are used to define variants of trans-
formations and code generators.

A more detailed description of this overall approach
is presented in [SPLC paper]. This paper provides de-
tails on the last of these points. Specifically, it show-
cases the tools we use for implementing these tech-
niques. Techniques for building variants of models are
described in [Iris Paper].

This paper uses a case study to illustrate the con-
cepts.

1.2 Introduction to Case Study: Home Auto-
mation

The case study to illustrate our approach is a home
automation system (see also [1]), called Smart Home.
In homes you will find a wide range of electrical and
electronic devices such as lights, thermostats, electric
blinds, fire and smoke detection sensors, white goods
such as washing machines, as well as entertainment
equipment. Smart Home connects those devices and
enables inhabitants to monitor and control them from a
common UI. The home network also allows the devices
to coordinate their behavior in order to fulfill complex
tasks without human intervention.

Sensors are devices that measure physical proper-
ties of the environment and make them available to
Smart Home. Controllers activate devices whose state
can be monitored and changed. All installed devices
are part of the Smart Home network. The status of de-
vices can either be changed by inhabitants via the UI or
by the system using predefined policies. Policies let the
system act autonomously in case of certain events. For
example in case of smoke detection windows get
closed and the fire brigade is called. Varying types of
houses, different customer demands, the need for short
time-to-market and saving of costs drive the need for a
Smart Home product line and are the main causes of
variability.

1.3 Introduction to the Tooling
A central goal of our work is to build usable tooling

for the concepts we introduce. It is important that the
tooling is usable and available as widely as possible.
Hence we’re building the tooling on top of widely used
open source tools, naming Eclipse (including the Ec-
lipse Modeling Framework, EMF [ref]) and openAr-
chitectureWare [ref].

In this paper we will be talking specifically about
three parts of openArchitectureWare. Let’s introduce
them briefly:
• Workflow files are XML files that describe the

steps that need to be executed in a generator run.
Each of these steps is specified with what we call a
workflow component. A typical oAW workflow
consist of loading one or more models, checking
constraints on them, transforming them into anoth-
er model and then generating code from them.

• Code generation in oAW is done with a language
called Xpand. It is an object-oriented template lan-
guage. An Xpand file consists of a number of tem-
plates, each of them declared by a DEFINE name
FOR metaclass clause.

• Model-to-Model transformation is done with a
language called Xtend. It is a textual and (more or
less) functional language for querying and navigat-
ing existing models as well as building new mod-
els. The expression sub-language is a simplified
version of OCL.

2 Building Variants of Transformations
and Generators

The following section illustrates various ways of
building variants of transformers and generators. While
the mechanisms are different in the way they change
the actual behavior of the transformation or generator,
they have one thing in common: The behavior change
they implement is only applied to the system if a cer-
tain feature is selected in our configuration feature
model. This is a form of orthogonal variability [ref]. A
central feature model (Figure 4) represents all the con-
figurative variability for our family of transfor-
mers/generators.

In our tooling, this feature model (and the corres-
ponding configuration models, Figure 5) is imple-
mented using pure::variants [ref] (other tools could be
used – the dependency is well isolated).

Figure 4: Part of the Feature Model

Figure 5: A specific configuration

2.1 Variants of M2M Transformations
In our case study, the solution space model is built

from component instances connected by connectors. A
model transformtion creates these models from a prob-
lem space model that contains buildings and their
SmartHome equipment. Figure 6 shows the process for
an example building. Our component framework sup-
ports interceptors. It is possible to configure a set of
interceptors into a set of component instances. Hence,
whenever an operation is invoked on a component in-
stance, the interceptor is notified and can execute be-
fore and after behavior.

Figure 6: Example Transformation Process

So, in order to add logging (or anything else that
can be handled via an interceptor) to the system we
need to make sure a suitable interceptor is configured
into the respective component instances. The way we
do this is to write a transformation aspect that advices
the problem space to solution space transformation
accordingly. The transformation aspect is only applied
to the transformation workflow if the respective feature
is selected in the configuration model. Figure 7 shows
a thumbnail of the approach.

transform

transformation

workflow

around ...

transformation aspect

transform-
aspect

configuration model

Figure 7: Implemting the Logging Feature

Implementing the transformation aspect
The aspect that actually modifies the transformation

is shown in the following piece of code. It is imple-
mented in oAW’s Xtend language.
extension ps2cbd;

around ps2cbd::transformPs2Cbd(Building building):
 let s = ctx.proceed(): (
 building.createBuildingConfiguration().
 deployedInterceptors.addAll(
 { utilitiesib().interceptors.findByName("TracingInterceptor") }
) -> s
);

In this aspect, we advice the
ps2cbd::transformPs2Cbd function which is the “main
method” of the problem space to solution space trans-
formation used in the system. Inside the advice, we
execute the original definition (ctx.proceed()) and then
we add the TracingInterceptor to the list of deployed

interceptors of the top level configuration. Interceptors
are loaded from a library of reusable components. A
configuration is a container for a set of component in-
stances; instances inherit the interceptors configured in
their owning configuration.

Connecting the aspect with the configuration
Remember that we only want to have these inter-

ceptors in the system iff the feature logging is selected
in the global configuration model. This dependency is
expressed in the workflow.

Somewhere in that workflow, an XtendComponent
is used to execute the original problem to solution
space transformation:
<component id="xtendComponent.ps2cbd"
 class="oaw.xtend.XtendComponent">
 …
</component>

We now need to make sure that this XtendCompo-
nent is aware of the aspect we want to add to the trans-
formation in order to add the interceptor. However, we
don’t want to modify the declaration of the actual
workflow component as shown above, since that would
mean an invasive change to an existing workflow file.
For reasons of modularity, this is something we need to
avoid. Consequently, the oAW workflow language also
supports aspects. Here is the workflow code we need to
write:
<feature exists="logging">
 <component adviceTarget="xtendComponent.ps2cbd"
 class="oaw.xtend.XtendAdvice">
 <extensionAdvices value="logging"/>
 </component>
</feature>

The XtendAdvice component is used to add addi-
tional sub-elements to the component referenced by the
adviceTarget attribute (which references the Xtend-
Component declared above). However, that component
is only seen by the workflow engine if the feature log-
ging exists. This is expressed by the surrounding <fea-
ture…> tag.

2.2 Variants of Code Generators
In this section we will look at building variants of

code generators. oAW uses a template-based code ge-
nerator, which is why a code generator is not the same
as a model-to-model transformation (we do not instan-
tiate the AST of the target language).

Let us look at another example from the Smar-
tHome case study. In order to debug and control the
demonstrator, we can run a GUI with the generated
application. The GUI itself is not generated. It is part of
the platform and accesses the system using reflection.
In order for it to be able to do this, certain parts of the

system need to include a specific reflection layer that is
used by that GUI. Specifically, if you want to be able
to inspect component instance states, the following two
things need to be done:
• The data structures representing the state need to

be “reflective”
• Upon system startup, the state objects of each in-

stance need to be registered with the GUI
Of course, since this functionality is for debugging

purposes only, it is optional – i.e. depending on wheth-
er a certain feature is selected. Figure 8 shows the
thumbnail of the solution.

generate (osgi)

workflow

template aspect

generator-
aspect

configuration model

template file

AROUND

template aspect

… x() ...

generate (cbd)

generator-
aspect

around ...

extend file

x(): ...

extend aspect

template file

AROUND

Figure 8: Implementing the features necessary for
the debug GUI

In the following, we will only show the code gene-
rator aspect that is used to add the reflection layer to
the state data structures.

The code generator for the data structures contains
the following templates. typeClass generates a Java
class that represents the state data structure (basically a
bean with getters and setters). That template in turn
calls the imports and body templates. Those will be the
templates that will be advices by the aspect shown be-
low.
«DEFINE typeClass FOR ComplexType»
 «FILE fileName()»
 package «implClassPackage()»;

 «EXPAND imports»
 public class … {
 «EXPAND body»
 }
 «ENDFILE»
«ENDDEFINE»

«DEFINE imports FOR ComplexType»
«ENDDEFINE»

«DEFINE body FOR ComplexType»
 …
«ENDDEFINE»

The following piece of Xpand code is the template
aspect that adds the reflection layer to the generated
data structures. Note how the AROUND declarations
reference existing DEFINEs in order to advice them.
targetDef.proceed() calls the original template.
«AROUND data::api::data::body FOR ComplexType»
 «targetDef.proceed()»
 «EXPAND reflectionImplementation»
«ENDAROUND»

«AROUND data::api::data::imports FOR ComplexType»
 «targetDef.proceed()»
 import smarthome.common.platform.MemberMeta;
 import smarthome.common.platform.ComplexTypeMeta;
«ENDAROUND»

«DEFINE reflectionImplementation FOR ComplexType»
 private transient ComplexTypeMeta __meta = null;
 public ComplexTypeMeta __metaObject() {
 …
 }
 public void __metaSet(MemberMeta member, Object value) {
 …
 }
 public Object __metaGet(MemberMeta member) {
 …
 }
«ENDDEFINE»

Of course, to make this work as desired, we have to
couple the aspect to the configuration model. We do
this by modifying the workflow in the same way as in
case of the M2M aspects:
• We add a GeneratorAadvice component (as op-

posed to an XtendAdvice, since we now want to
advice a code generator, and not a model-to-model
transformation). It specifies the original Generator
as its advice target and makes the Xpand file with
the AROUND templates known.

• We encapsulate this GeneratorAdvice with a <fea-
ture…> tag to make it depend on a certain feature
in the configuration model.

2.3 More features
This section introduces a couple of additional fea-

tures that don’t deserve their own section.

Querying the feature model directly
In addition to the tooling introduced above, we can

also access the configuration model directly from with-
in transformations or code generation templates. For
example, the following piece of transformation code
optionally adds burglar detection facilities to our build-
ing. The same function can be called from inside a
template (typically, as part of an IF statement).
create System transformPs2Cbd(Building building):
 …
 hasFeature("burglarAlarm") ? (handleBurglarAlarm() -> this) : this;

handleBurglarAlarm(System this):
 let conf = createBurglarConfig(): (
 configurations.add(conf) ->
 …
 conf.connectors.add(connectSimToPanel(createSimulatorInstance(),
 createControlPanelInstance())) ->
 hasFeature("siren") ? conf.addAlarmDevice("AlarmSiren") : null ->
 hasFeature("bell") ? conf.addAlarmDevice("AlarmBell") : null ->
 hasFeature("light") ? conf.addAlarmDevice("AlarmLight") : null
);

In principle, the hasFeature()-based approach
shown here is similar to the AOP-based approach in-
troduced in the previous section. You can handle each
variability with both facilities. But just as in regular
programming, there are tradeoffs a developer has to
consider:
• The conditional hasFeature() is simpler, but re-

quires invasive changes to existing transformations
(which you might not be able to do because they
are bought as part of a third party catridge). Espe-
cially in cases where you have to query for the
same feature in many locations, this creates a
maintenance nightmare.

• The AO-based approach is a bit more complex
(write the aspect, write the workflow aspect, tie it
to the feature model) but supports non-invasive
changes. Also, if a given feature requires several
advises targeting different locations in existing as-
sets, all of these advices can be bundled in the
same Xtend or Xpand file, thereby enhancing fea-
ture modularity significantly.

Feature Attributes
It is also possible to address properties or attributes

of features. For example, you might want to be able to
configure the volume of the siren in the configuration
model. The transformation would read this value from
the configuration model and parametrize the siren
component instance accordingly. Here’s the code:
handleBurglarAlarm(System this):
 …
 isFeatureSelected("siren") ? (
 let siren = conf.addAlarmDevice("AlarmSiren"):
 siren.configParamValues.add(siren.createParamForLevel())

) : null ->
 …
);

private create ConfigParameterValue
 createParamForLevel(ComponentInstance instance):
 setName("level") ->
 setValue((String)getFeatureAttributeValue("siren", "level"));

Quantification in the Aspects
An important characteristic of AO is that a given

aspect should be able to not just advice one specific
join point in the base system, but rather query the base
system and advice a set of matching join points. Al-
though we think this feature is not very important for
building variants of generators (on the meta level,
there’s less crosscutting), oAW’s AO facilities for
Xtend and Xpand support polymorphic matching as
well as wildcards in the name of the adviced entity.

3 Related Work

Let us first look at the related work developed and
published by us. The SPLC paper [SPLC] explains the
general idea of model-driven aspect oriented product
line engineering, and how the case study illustrates the
approach overall. While the paper you’re currently
reading looks at building variants of generators, the
paper [Iris Paper] looks at the other important ingre-
dient: building variants of models. These two tech-
niques together form the backbone of the MD-AO-
PLE.

TODO: Other People’s work

4 Summary and Future Work

In this paper we have presented an approach to
build families of generators. The main tools for imple-
menting the respective variability are
• Isolation of the variant-specific code (transforma-

tion or template) into a separate file, a transforma-
tion or generator aspect aspect

• Contribute that aspect to an existing workflow file
without changing the original workflow file using
XtendAdvice and GeneratorAdvice components.

• Implement orthogonal variability of aspects and
workflows by making the deployment of the as-
pects depend on the presence of certain features in
a configuration model.

Our next steps will be concerned with implement-
ing better tooling for the features we’ve introduced in
this paper. The tooling with make working with fea-
ture-dependencies more effective, for example by
• Finding all the workflow components that depend

on a given feature

• Find the workflow component that is addressed by
an adviceTarget attribute of an advice component

Many of the tooling improvements will also con-
cern the variability management in models, as de-
scribed in [Iris Paper].

5 Acknowledgments

This work is supported by AMPLE Grant IST-
033710. References

6 Refernces

[1] K. Pohl, G. Böckle, and F. v. d. Linden, Software Product
Line Engineering Foundations, Principles, and Techniques.
Berlin: Springer, 2005.
[2] P. Clements, and L. M. Northrop, Software Product
Lines: Practices and Patterns: Addison Wesley, 2001.
[3] P. Zave, “FAQ Sheet on Feature Interaction”:
http://www.research.att.com/~pamela/faq.html
[4] T. Stahl, and M. Voelter, Model-Driven Software Devel-
opment: Wiley & Sons, 2006.
[5] R.E. Filman, T. Elrad, S. Clarke, and M. Aksit, Aspect-
Oriented Software Development. Amsterdam: Addison-
Wesley Longman, 2004.
[6] AOSD website, http://www.aosd.net
[7] M. Voelter, “Patterns for Handling Cross-cutting Con-
cerns in Model-Driven Software Development”, In Proceed-
ings of the 10th European Conference on Pattern Languages
of Programs (EuroPLoP). Irsee, Germany, July, 2005.
[8] Aspect-Oriented Modelling Workshops website,
http://www.aspect-modeling.org/
[9] First Workshop on Models and Aspects – Handling
Crosscutting Concerns in MDSD, ECOOP, Glasgow, UK,
July, 2005.
[10] Second Workshop on Models and Aspects – Handling
Crosscutting Concerns in MDSD, ECOOP, Nantes, France,
July, 2006.
[11] S. Clarke and E. Baniassad, Aspect-Oriented Analysis
and Design. The Theme Approach. Amsterdam: Addison-
Wesley Longman, 2005.
[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J.
Palm, and W. Griswold, "Getting started with ASPECTJ,"
Communications of the ACM, vol. 44, pp. 59 - 65, October
2001.
[13] I. Aracic, V. Gasiunas, K. Ostermann, and M. Mezini,
"An Overview of CaesarJ" in Transactions on AO Software
Development I. vol. 3880/2006 Berlin/Heidelberg Springer,
2006, pp. 135-173.
[14] OMG Query/Views/Transformations (QVT) specifica-
tion, http://www.omg.org/cgi-bin/doc?ptc/2005-11-01
[15] K. Czarnecki and U. W. Eisenecker, Generative Pro-
gramming. Methods, Tools, and Applications. Amsterdam:
Addison-Wesley Longman, 2000.
[16] P. Maeder, M. Riebisch, and I. Philippow, “Traceability
for Managing Evolutionary Change - A Roadmap”, In Pro-
ceedings of the 15th International Conference on Software
Engineering and Data Engineering (SEDE). Los Angeles,
USA, July, 2006.

[17] K. Mohan and B. Ramesh, “Managing Variability with
Traceability in Product and Service Families”, In Proceed-
ings of the 35th Hawaii International Conference on System
Sciences (HICCS). Hawaii, January, 2002.
[18] M. Voelter, “A Collection of Patterns for Program Gen-
eration”, In Proceedings of the 8th European Conference on
Pattern Languages of Programs (EuroPLoP). Irsee, Ger-
many, July, 2003.
[19] OSGi Alliance website, http://osgi.org
[20] M. Pinto, L. Fuentes, and J. M. Troya, "A Component
and Aspect Dynamic Platform", The Computer Journal, vol.
48(4), pp. 401-420, 2005.
[21] Eclipse Foundation website, http://eclipse.org
[22] Eclipse Modeling Framework (EMF) website,
http://eclipse.org/emf
[23] openArchitectureWare (oAW) website,
http://www.eclipse.org/gmt/oaw/
[24] XFeature Feature Modelling Tool website,
http://www.pnp-software.com/XFeature/
[25] M. Antkiewicz and K. Czarnecki, “FeaturePlugin: Fea-
ture Modeling Plug-in for Eclipse”, In Proceedings of the
2004 OOPSLA Workshop on Eclipse Technology eXchange,
OOPSLA, Vancouver, British Columbia, Canada, Pages 67 -
72, ACM Press, 2004.
[26] pure::variants Variant Management Tool website,
http://www.pure-systems.com/3.0.html
[27] Eclipse Graphical Modeling Framework (GMF) website,
http://eclipse.org/gmf
[28] F. Jouault and J. Bézivin, “On the Specification of Tex-
tual Syntaxes for Models”, In Proceedings of the Eclipse
Summit Europe (Eclipse Modeling Symposium), Esslingen,
Germany, October, 2006.
[29] ATL Model Transformation Language website,
http://www.eclipse.org/m2m/atl/
[30] Eclipse M2M project website,
http://www.eclipse.org/m2m/
[31] K. Czarnecki and M. Antkiewicz, “Mapping features to
models: A template approach based on superimposed va-
riants”, In Proceedings of the 4th Conference on Generative
Programming and Component Engineering (GPCE), Tallinn,
Estonia, September, 2005, pp. 422 - 437, Springer, 2005.
[32] M. Didonet del Fabro, J. Bézivin and P. Valduriez,
“Weaving Models with the Eclipse AMW plugin”, In Pro-
ceedings of the Eclipse Summit Europe (Eclipse Modeling
Symposium), Esslingen, Germany, October, 2006.
[33] I. Groher and M. Voelter, “XWeave – Models and As-
pects in Concert”, In Proceedings of the 10th Workshop on
AO Modeling, Vancouver, Canada, March, 2007.
[34] M. Mezini and K. Ostermann, “Variability Management
with Feature-Oriented Programming and Aspects”, In Pro-
ceedings of the 12th International Symposium on Foundations
of Software Engineering (FSE), Newport Beach, CA, USA,
2004, pp. 127-136.
[35] S. Apel, T. Leich, and G. Saake, “Aspectual Mixin Lay-
ers: Aspects and Features in Concert”, In Proceedings of the
28th International Conference on Software Engineering
(ICSE), Shanghai, China, 2006, pp. 122-131.
[36] N. Loughran and A. Rashid, “Framed Aspects: Support-
ing Variability and Configurability for AOP”, In Proceedings
of the 8th International Conference on Software Reuse

(ICSR), Madrid, Spain, 2004.
[37] DOORS Requirements Management Tool website,
http://www.telelogic.com/products/doors/
[38] N. Ubayashi, S. Sano, Y. Maeno, S. Murakami, and T.
Tamai, “Model Evolution with Aspect-Oriented Mecha-
nisms”, In Proceedings of the 8th International Workshop on
Principles of Software Evolution (IWPSE), Lisbon, Portugal,
2005, pp. 187-194.
[39] J. Liu, R. Lutz, and H. Rajan, “The Role of Aspects in
Modeling Product Line Variabilities”, In Proceedings of the
1st Workshop on Aspect-Oriented Product Line Engineering
(AOPLE), GPCE, Portland, Oregon, October, 2006.
[40] K. Czarnecki, M. Antkiewicz, C.H.P. Kim, S. Lau, and
K. Pietroszek, “Model-Driven Software Product Lines”,
Poster Session, OOPSLA, San Diego, USA, October, 2005.
[41] Model-Driven Architecture (MDA) website,
http://www.omg.org/mda/

