
Expressing Feature-Based Variability in Structural Models 
 

Iris Groher1, Markus Voelter2 
1 Siemens AG, CT SE 2, Munich, Germany 

2Independent Consultant, Goeppingen, Germany 
iris.groher.ext@siemens.com, voelter@acm.org 

 
Abstract 

Software product line engineering aims at reducing 
development time, effort, cost, and complexity by tak-
ing advantage of the commonality within a portfolio of 
similar products. The effectiveness of a software prod-
uct line approach directly depends on how well feature 
variability within the portfolio is implemented and ma-
naged throughout the development lifecycle, from early 
analysis through maintenance and evolution. This pa-
per presents a tool-supported approach that improves 
variability management and tracing by providing 
means to express feature-based variability on model 
level. Features are separated in models and automati-
cally composed. The approach supports both positive 
variability, i.e. adding optional parts to a model, as 
well as negative variability, i.e. removing parts from a 
model. Tools are provided that implement the pre-
sented concepts. The approach is illustrated with a 
case study of a home automation system. 

1 Introduction and Motivation 

The effectiveness of a software product line ap-
proach directly depends on how well feature variability 
within the portfolio is managed from early analysis to 
implementation and through maintenance and evolu-
tion [1][2]. Commonalities, as well as the flexibility to 
adapt to different product requirements are captured in 
core assets. Those reusable assets are created during 
domain engineering. During application engineering, 
products are either automatically or manually assem-
bled, using the assets created during the domain engi-
neering process and completed with product-specific 
artifacts. Products usually differ by the set of features 
they include in order to fulfill customer requirements. 
A feature is an increment in functionality provided by 
one or more members of a product line [3]. 

Variability management is the activity concerned 
with identifying, designing, implementing, and tracing 
flexibility in software product lines (SPLs). Variability 
of features often has widespread impact on multiple 
artifacts in multiple lifecycle stages, making it a pre-
dominant engineering challenge in software product 
line engineering (SPLE). 

Our approach integrates model-driven software de-
velopment [4] and product line engineering by provid-
ing means for expressing variability on model level. 
We argue that due to the fact that models are more ab-
stract and hence less detailed than code, variability on 

model-level is inherently less scattered and therefore 
simpler to manage. Variability can be described more 
concisely since in addition to the traditional mecha-
nisms (e.g. patterns, frameworks, polymorphism), vari-
ability can be described on the more abstract level of 
models. This paper focuses on concepts and tools that 
support the expression of feature-based variability in 
structural models and hence the selective adaptation of 
models.  

Tools are provided that support both positive and 
negative variability on model level. In the case of nega-
tive variability, models are tailored based on the ab-
sence of features defined in a configuration model. 
This means that if a certain feature is not part of the 
configuration, the model elements implementing this 
feature are removed from the model. In the case of 
positive variability, optional parts are defined in a 
separate model and only added to the core model if a 
certain feature is present in a configuration. This is 
what we call model weaving, an application of aspect-
orientation on model level [14][15]. 

The tools and concepts presented in this paper are 
important ingredients of what we call Aspect-Oriented 
Model-Driven Product Line Engineering (AO-MD-
PLE). While this paper concentrates of the techniques 
to define structural variants of models, another paper 
[8] focuses on the creation of variants of model-to-
model transformations and code generators. 

The overall approach is illustrated in [7]. Here is a 
short summary of the core idea: 

 
AO-MD-PLE uses models to describe product lines. 

Variants are defined on model-level. Transformations 
generate running applications. AO techniques are used 
to help define the variants in the models as well as in 
the transformers and generators. 
 

Figure 1 illustrates the key parts and the corre-
sponding models of AO-MD-PLE. Domain require-
ments are captured in a problem space meta model. 
Based on product requirements, a problem space model 
is created that is an instance of the problem space meta 
model. A formal mapping is defined between the prob-
lem space meta model and the solution space meta 
model which allows for the automatic transformation 
of the problem space model into the solution space 
model. Based on this model a product is automatically 
generated using the core assets created during domain 
engineering. 



 

Domain
Requirements

Formal 
Domain

MetaModel

Product
Requirements

Formal 
Domain
Model

Formal 
Solution Space

MetaModel

Formal 
Solution Space

Model

M

M

Problem Space Solution Space

D
om

ai
n 

En
gi

ne
er

in
g

A
pp

lic
at

io
n 

En
gi

ne
er

in
g

...

Core Assets

   

Product

 

Figure 1: Aspect-Oriented Model-Driven Product 
Line Engineering 

The remainder of the paper is organized as follows: 
Section 2 demonstrates how to implement feature-
based variability in structural models and tools that 
realize the presented concepts. Section 3 illustrates the 
case study and how the introduced concepts were ap-
plied there. Related work is discussed in Section 4, 
while Section 5 summarizes the paper and provides an 
outlook on future work. 

2 Expressing Variability in Structural 
Models 

2.1 Model-Driven Software Development 
Model-driven software development (MDSD) [4] 

improves the way software is developed by capturing 
key features of the system in models which are devel-
oped and refined as the system is created. During the 
system’s lifecycle, models are combined and trans-
formed between different levels of abstraction. In order 
to be processable by tools, models have to be formal. 
This means that every model is an instance of a well-
defined meta model representing the abstract syntax of 
the model. 

A Domain Specific Language (DSL) [4] is a for-
malism for building models: It encompasses a meta 
model as well as a definition of a concrete syntax that 
is used to represent models. The concrete syntax can be 
textual, graphical or using other means such as tables, 
or trees. 

2.2 Kinds of Variability in Models 
We distinguish between two kinds of variability: 

structural and non-structural. Structural variability is 
described using creative construction DSLs, whereas 
non-structural variability can be described using con-
figuration languages. Figure 2 illustrates the spectrum 
of languages commonly used for expressing and bind-

ing variability.  

 
Figure 2: Expressive power of DSLs 

Figure 3 shows the meta model of a creative con-
struction DSL. It is a meta model that can be used for 
creatively constructing data structures. Any number of 
models can be defined, by instantiating and composing 
meta model elements. Figure 4 presents two example 
models a) and b) that can be constructed with a DSL 
(using the familiar concrete syntax of UML) that im-
plements the meta model in Figure 3. 

 
Figure 3: Creative construction meta model 

Figure 5 shows a feature model of a stack using the 
notation defined in [9]. The feature model expresses a 
certain configuration space, i.e. the model is an expres-
sion of configurative variability. A specific configura-
tion is described by selecting a valid subset of those 
features according to the constraints expressed by the 
feature model.  

 
Figure 4: Example models 

To align feature modeling with general MDSD ter-
minology, it is useful to consider the feature model a 
meta model and the concrete configurations models.  

 
Figure 5: Feature model of a stack 

We have shown that there are two fundamentally 
different kinds of variability, and consequently, two 
different kinds of DSLs: creative construction DSLs 
and configuration DSLs. Models built with creative 



construction DSLs (we call those structural models) 
often have to be adapted based on a product configura-
tion. In other words, we want to use a configuration 
model to define variants of a structural model. This is 
especially useful in the context of software product line 
engineering.  

As an example consider a creative construction 
DSL for home automation systems. Such a DSL allows 
to creatively connect devices to rooms and floors. Such 
a model can be adapted using a configuration DSL. 
Additional features such as security can change the 
creative construction model by for example adding 
motion detectors and fire sensors. 

The next sections show how this can be achieved 
using our approach and how available tools implement 
the presented concepts. 

2.3 Implementing Positive Variability in Struc-
tural Models 

Positive variability starts with a minimal core and 
selectively adds additional parts based on the presence 
or absence of features in the configuration models (see 
Figure 6). 

 
 

Figure 6: Positive variability 

Model weaving assists in the composition of differ-
ent separated models into a consistent whole. It allows 
to capture variable parts of models in aspect models 
and weave them into a base model. Consequently, the 
base model is minimal in that it only contains elements 
common to all products. Product-specific parts are 
added when needed. 

 

 
Figure 7: Model weaving 

Figure 7 shows how model weaving works. A giv-
en base model (M A) and an aspect model (M Aspect) 
are woven. The aspect model consists of pointcut defi-
nitions that capture the points where in the base model 
the additional model elements should be added. The 
aspect model also contains these additional model ele-
ments (the “advice”, in AO terms). After the weaving 

process a result model (M A’) is created that contains 
the original base model elements plus the aspect ele-
ments added at the appropriate points. 

This technique allows for a clear separation of op-
tional model parts and supports automatic composition 
to create a complete model. We developed a tool called 
XWeave [10] that implements the presented concepts. 
We will give more details on the tool in Section 2.5 
and present how it was used to implement features in 
the Smart Home case study. 

2.4 Implementing Negative Variability in 
Structural Models 

Negative variability selectively takes away parts of 
a creative construction model based on the presence or 
absence of features in the configuration models (see 
Figure 8). 

This technique is fundamentally different to the 
technique introduced in the previous section. When 
using negative variability to implement feature-based 
variability in structural models, one has to build the 
“overall” model manually and connect elements to cer-
tain features in a configuration model. 

 

 
Figure 8: Negative variability 

Figure 9 illustrates how negative variability on 
model level works. It shows a simple feature model of 
a party (in the sense of participant, e.g. in a contract). 
A party can either have an international phone number 
or a local phone number and is variable in how it is 
made persistent. There are two optional features, 
namely the possibility of adding state information and 
multiple addresses. Features of the configuration model 
are linked to elements of the structural model below. In 
this case, attributes and relationships between classes 
are connected to the features. Those elements are only 
present in the model iff the corresponding features are 
part of a configuration.  

2.5 Tool Support 
The tools we built are based on Eclipse [11] as a 

tool platform, Ecore [12] as the basis for modeling and 
openArchitectureWare (oAW) [13] as the tool for 
model processing. 

The tool for implementing positive variability is 
called XWeave1 [10]. It is a model weaver that can 

                                                           
1 XWeave and XVar can be downloaded from 



weave models that are either instances of Ecore (these 
are called meta models) or instances of these models 
(these are called models). XWeave takes a base model 
as well as one or more aspect models as input and 
weaves the content of the aspect model into the base 
model. There are two ways of specifying pointcuts: 
name matching and explicit pointcut expressions. 
Name matching means that if a model element in the 
aspect model has a corresponding element in the base 
model (both name and type have to be equal), the ele-
ments are combined. Pointcuts can also be defined us-
ing a dedicated expression language. Expressions can 
select one or more elements of the base model and are 
defined in a separate expression file. Expression have a 
name and can be referenced by this name. It is possible 
to use wildcards within pointcut expressions to select 
several join points in the model with only one declara-
tive statement (“quantification”, in AO terms). The 
language for building those pointcut expressions is 
oAW’s extension language [13], a variation of OCL. 

 
Figure 9: Negative variability 

Figure 10 illustrates how XWeave can be linked to 
configuration models. Aspects that implement optional 
parts of structural models are linked to features defined 
in the configuration model. Based on a selection of 
features, the corresponding model aspects are woven to 
the base model.  

 
Figure 10: Linking positive variability to configura-

tion models 

The tool for implementing negative variability is 
called XVar1. It tailors either models or meta models. 

                                                                                          
http://www.eclipse.org/gmt/oaw/ 

Figure 11 illustrates how the tool is linked to configu-
ration models. A dependency model captures the rela-
tionships between model elements and features. Ac-
cording to a selection of features, the structural model 
is tailored to only contain the model elements needed 
for the respective configuration. 

 
Figure 11: Linking negative variability to configura-

tion models 

Concrete examples on how to use the tools are pro-
vided in the next section that illustrates the case study. 

3 Home Automation Case Study 

The case study to illustrate our approach is a home 
automation system (see also [1]), called Smart Home. 
In homes you will find a wide range of electrical and 
electronic devices such as lights, thermostats, electric 
blinds as well as fire and smoke detection sensors. 
Smart Home connects those devices and enables in-
habitants to monitor and control them from a common 
UI. The home network also allows the devices to coor-
dinate their behavior in order to fulfill complex tasks 
without human intervention. 

Sensors are devices that measure physical proper-
ties of the environment and make them available to 
Smart Home. Controllers activate devices whose state 
can be monitored and changed. Varying types of 
houses, different customer demands, the need for short 
time-to-market and saving of costs drive the need for a 
Smart Home product line and are the main causes of 
variability. Figure 12 shows an example house. It con-
tains one floor, the cellar, and two rooms including 
several devices. 

 
Figure 12: Example house 

In the remainder of this section we will explain how 
to use the techniques introduced in Section 2 to imple-



ment the Smart Home product line.  

3.1 Implementing Features using Positive Va-
riability 

This section provides an example of using positive 
variability to implement an optional feature of the 
home automation product line. The automaticWindows 
feature automatically opens the windows if the tem-
perature is a room is above a certain threshold and 
closes them again if the temperature is below a certain 
threshold.   
 

 
Figure 13: Window automation aspect 

In order for this feature to be included in a configu-
ration, the necessary devices have to be woven into the 
building model. Figure 13 shows the aspect model that 
is responsible for weaving the respective features into 
the example house shown in Figure 12. The pointcut 
expressions used in the aspect model are the following: 
rooms (Building this) :     
 floors.rooms.select (e|e.windows.size > 0);  
windows (Building this) : 
 rooms().windows; 
thermoName (Thermometer this) :  
 ((Room)eContainer).name.toFirstLower() + “Thermometer”; 

Rooms returns all rooms that have windows. To 
all of them a thermometer should be added and ther-
moName is a helper function that creates a sensible 
name for this thermometer. Windows returns all win-
dows of these rooms and a window actuator is added to 
it. 

The resulting (woven) model has a thermometer in 
each room to measure the current temperature and a 
window actuator for each window to be able to auto-
matically open the windows. 

The dependency between the aspect and the feature 
is specified in the workflow. If the automaticWindows 
feature is present in the configuration model, XWeave 
weaves the content of the aspect model into the house 
model. The following code snippet shows the respec-
tive workflow: 
<feature exists="automaticWindows"> 
  <cartridge file="org/openarchitectureware/util/xweave/wf-weave-expr" 
 baseModelSlot="houseModel"  
 aspectFile= “windowAutomationAspect.xmi” 
 expressionFile="windowAutomation::expressions"/> 
</feature> 

3.2 Implementing Features using Negative Va-
riability 

This section provides an example of using negative 
variability to implement an optional feature of Smart 
Home. The dimmableLights feature enables inhabitants 
to set the light level of lights instead of only turning 
them on and off. 

 
Figure 14: Dependency model 

The interface of the light driver contains all opera-
tions, including the optional operations to set the light 
level (see Figure 15). The dependency model shown in 
Figure 14 manages the relationships between the dim-
mableLights feature and model elements. According to 
this dependency model, the base model is tailored in 
case the feature is not part of the configuration. The 
interface then only contains operations to turn lights on 
and off. 

 
Figure 15: Light driver interface 

4 Related Work 

AMW, the Atlas Model Weaver [16], is a tool cre-
ated by INRIA as part of the ATLAS Model Manage-
ment Architecture. It’s primary goal is to establish 
links between models. In the first phase of working 
with AMW, a number of links are established between 
two or more models. This process can be manual or 
semi-automatic. The result is called weaving model. 
Based on that model, one can generate model transfor-
mations that merge models. AMW is similar to 
XWeave as both tools can weave or merge models. 
There are, however, important differences. For exam-
ple, AMW contains an interactive tool to build the 
weaving model, whereas XWeave uses name corre-
spondence or pointcut expressions. XWeave integrates 
well with the rest of the oAW tools. For example, it is 
compatible with OAW’s workflow engine and uses the 



oAW expression language. 
The C-SAW project [18] is developed by the Uni-

versity of Alabama at Birmingham. It is a general 
transformation engine for manipulating models based 
on aspect specifications using ECL (a variant of the 
Object Constraint Language, OCL). The weaver trav-
erses the model and selects a set of elements to which 
the aspect should be applied. The advice then modifies 
the selected element in some way, for example by add-
ing a precondition or changing the element structure 
somehow. C-SAW has been developed to tackle the 
challenge of evolving large models in consistent ways. 
Instead of applying a set of changes manually, one 
merely writes an aspect that applies the changes to all 
selected elements in the model. Comparing it to 
XWeave reveals that C-SAW doesn’t weave models 
(in the sense of merging them) as XWeave does. 
Rather, it efficiently applies (crosscutting) changes to a 
collection of elements in a large model. 

In [17] structural models are connected with vari-
ability models to implement negative variability. A 
feature model is linked to a UML model via stereo-
types and depending on the selected features, the UML 
model changes. XVar also implements negative vari-
ability for structural models but in contrast to [17] it 
provides a generic EMF based solution. Another im-
portant difference is that the links between model ele-
ments and features are managed in a separate depend-
ency model in XVar. In [17] the links are managed 
using stereotypes which requires invasive changes to 
the model that should be tailored.  

5 Summary and Future Work 

In this paper we have shown how feature-based va-
riability can be expressed in structural models. When 
integrating MDSD into software product line develop-
ment, structural models play an important role. Meta 
model describe the abstract syntax of DSLs which are 
used to specify products. Both, meta models and their 
instances have to be adapted according to the presence 
or absence of features in configuration models.  

We have presented two different approaches of im-
plementing variability on model level: positive and 
negative variability. Positive variability adds optional 
parts to a given base, whereas negative variability re-
moves optional parts from a given base. We also pre-
sented two different tools that implement those con-
cepts. XWeave uses aspects on model level to weave 
optional parts into a given base model. XVar uses a 
dependency model to specify how parts of the model 
relate to features in the configuration model. 

Our approach allows to effectively adapt structural 
models according to configuration models which is 

especially useful in the context of software product 
lines. Features can therefore be expressed on the higher 
level of models and code generators can remain un-
touched.  

XWeave currently only supports additive weaving. 
In the future we will also support changing or overrid-
ing of model elements in the base model.  

6 Acknowledgments 

This work is supported by AMPLE Grant IST-
033710. The authors would like to thank Christa 
Schwanninger for her valuable comments on earlier 
drafts of this paper. 

7 References 

[1] K. Pohl, G. Böckle, and F. v. d. Linden, Software Product 
Line Engineering Foundations, Principles, and Techniques. 
Berlin: Springer, 2005. 
[2] P. Clements, and L. M. Northrop, Software Product 
Lines: Practices and Patterns: Addison Wesley, 2001. 
[3] P. Zave, “FAQ Sheet on Feature Interaction”: 
http://www.research.att.com/~pamela/faq.html 
[4] T. Stahl, and M. Voelter, Model-Driven Software Devel-
opment: Wiley & Sons, 2006. 
[5] R.E. Filman, T. Elrad, S. Clarke, and M. Aksit, Aspect-
Oriented Software Development. Amsterdam: Addison-
Wesley Longman, 2004. 
[6] AOSD website, http://www.aosd.net 
[7] M. Voelter and I. Groher, “Product Line Implementation 
using Aspect-Oriented and Model-Driven Software Devel-
opment”, To appear in Proceedings of the 11th International 
Software Product Line Conference (SPLC), Kyoto, Japan, 
September, 2007.  
[8] M. Voelter and I. Groher, “Handling Variability in Trans-
formations and Generators”, Submitted for publication, 2007. 
[9] K. Czarnecki and U. W. Eisenecker, Generative Pro-
gramming. Methods, Tools, and Applications. Amsterdam: 
Addison-Wesley Longman, 2000. 
[10] I. Groher and M. Voelter, “XWeave – Models and As-
pects in Concert”, In Proceedings of the 10th Workshop on 
AO Modeling, Vancouver, Canada, March, 2007. 
[11] Eclipse Foundation website, http://eclipse.org 
[12] Eclipse Modeling Framework (EMF) website, 
http://eclipse.org/emf 
[13] openArchitectureWare (oAW) website, 
http://www.eclipse.org/gmt/oaw/ 
[14] Aspect-Oriented Modelling, http://aspect-modeling.org/ 
[15] S. Clarke and E. Baniassad, Aspect-Oriented Analysis 
and Design. The Theme Aproach. Addison-Wesley, 2005. 
[16] Atlas Model Weaver (AMW) website, 
http://www.eclipse.org/gmt/amw/ 
[17] K. Czarnecki and M. Antkiewicz, “Mapping features to 
models: A template approach based on superimposed vari-
ants”, GPCE 2005, Tallinn, Estonia, September, 2005.  
[18] C-SAW project website, 
http://www.cis.uab.edu/gray/Research/C-SAW/ 


