
1

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 1 -

SOA and MDSD

Markus Völter
voelter@acm.org
www.voelter.de

SOA and MDSD –
Why SOA is only really useful in

combination with MDSD

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 2 -

SOA and MDSD

Markus Völter
voelter@acm.org
www.voelter.de

• Independent Consultant

• Based out of Heidenheim,
Germany

• Focus on
• Model-Driven Software

Development
• Software Architecture
• Middleware

About me

2

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 3 -

SOA and MDSD

C O N T E N T S

• Overview
• SOA Perspectives
• Requirements to SOAs

• Models

• Programming

• Issues
• Data Ownership
• Typing
• Service Reuse
• Process Issues
• Infrastructure vs. App Development
• The spaghetti misunderstanding

• BPM

• Technologies

• Summary & Recommendations

• Appendix: An SOA Metamodel

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 4 -

SOA and MDSD

C O N T E N T S

• Overview
• SOA Perspectives
• Requirements to SOAs

• Models

• Programming

• Issues
• Data Ownership
• Typing
• Service Reuse
• Process Issues
• Infrastructure vs. App Development
• The spaghetti misunderstanding

• BPM

• Technologies

• Summary & Recommendations

• Appendix: An SOA Metamodel

3

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 5 -

SOA and MDSD

Overview

• SOA has become the hype topic.

• Several of my customers are currently in the process of
establishing a SOA – however, all do something
different ☺

• Thus, SOA is not a sharpy defined term

• In this session I want to convey a number of best
practices when building SOAs with a special focus on
MDSD.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 6 -

SOA and MDSD

C O N T E N T S

• Overview
• SOA Perspectives
• Requirements to SOAs

• Models

• Programming

• Issues
• Data Ownership
• Typing
• Service Reuse
• Process Issues
• Infrastructure vs. App Development
• The spaghetti misunderstanding

• BPM

• Technologies

• Summary & Recommendations

• Appendix: An SOA Metamodel

4

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 7 -

SOA and MDSD

SOA Perspectives

• SOA == CBD, i.e. SOA is components done right:
building blocks with a well-defined responsibility that
provide and use formally defined services.

• SOA == EAI: focuses on asynchronous, loosely coupled
(message based) communication. Data structures have to
be routed, filtered and mapped.

• SOA == BPM, i.e. emphasizes the potentials for the
business department, the term „business driven“ is often
used here. The definition and management of business
processes is important.

• All views agree that SOA is important for large and
complex enterprise systems – or groups of such
systems.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 8 -

SOA and MDSD

SOA Perspectives II

• These views fit together quite well:
• Components form the base layer
• On top of them you can orchestrate business processes
• Using legacy adapter, filter and mapping components you can

use it for EAI

• It is also useful to distinguish public services (those used by
external clients) as a separate layer on top.

5

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 9 -

SOA and MDSD

SOA Perspectives III

• Two more points that are considered advantages of SOAs:

• Separation of technical and business concerns:
Service interfaces only expose business data/operations, and
service implementation does not need to care about technical
concerns ((Security, Persistence, Failover, …)

• Managability:
You can manage components & services, version them, install
them, and you know, which components are used (by whom),
which business rocess are running

• However, while both of these are important, these things have
been around for a while and are nothing new (specifically in
component infrastructures)

• In short: if you talk about SOAs, you need to talk about
components.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 10 -

SOA and MDSD

C O N T E N T S

• Overview
• SOA Perspectives
• Requirements to SOAs

• Models

• Programming

• Issues
• Data Ownership
• Typing
• Service Reuse
• Process Issues
• Infrastructure vs. App Development
• The spaghetti misunderstanding

• BPM

• Technologies

• Summary & Recommendations

• Appendix: An SOA Metamodel

6

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 11 -

SOA and MDSD

Requirements to SOAs

• To maintain complex systems (such as SOAs) over a long period
of time, you need to make sure that:

• When implementing business logic, you don‘t want to care about
runtime platform artifacts or transfer formats. Implementation
must be technology-independent (not necessary language
independent!) to keep business logic implementation efficient

• Application logic needs to remain testable, i.e. testable without
complex infrastructure. Otherwise developers will not adopt
regular unit testing.

• You need some level of technology independence, since
technology changes faster than your architecture. You want to be
able to adapt to new technologies.

• There is more…

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 12 -

SOA and MDSD

Requirements to SOAs II

• The involved parties must be able to communicate effectively
about the SOA – thus, you need a common language and formal
definition of concepts.

• You need to stay agile wrt. changing service definitions, data
structures and business logic. It is unacceptable that it takes
weeks to add a new attribute to a data structure.

• You need to consider certain organizational realities: for
example, business departments (and their IT projects) might not
be able to willing to stick to centrally defined rules, tools or
processes.

7

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 13 -

SOA and MDSD

C O N T E N T S

• Overview
• SOA Perspectives
• Requirements to SOAs

• Models

• Programming

• Issues
• Data Ownership
• Typing
• Service Reuse
• Process Issues
• Infrastructure vs. App Development
• The spaghetti misunderstanding

• BPM

• Technologies

• Summary & Recommendations

• Appendix: An SOA Metamodel

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 14 -

SOA and MDSD

Abstraction is Key

• Formal models are a good way to attack many of these issues.
Defining such models (and the associated metamodels and
DSLs) is quite essential for building an SOA.

• To use MDA terms: you need to build an Architecture-PIM. In
this PIM you will find the central building blocks of your SOA,
such as
• Services,
• Componnets,
• QoS Constraints
• Deployment information.

• This PIM is independent of the concrete deployment
platform (web services, JBI, SCA). Automatic mappings
(transformations, generation) produce the runtime
infrastructure.

8

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 15 -

SOA and MDSD

Metamodels

• To be able to „draw“ the above Architecture PIM you need a
suitable modelling language – it, in turn builds on a metamodel
representing your architecture.

• A metamodel defines the language elements („words“) that
you can use to build models, as well as how they can be
combined (how „sentences“ can be built)

• In our case, the metamodel thus contains all the relevant „kinds
of things“ you might need to describe your SOA (services,
components, networks, etc.)

• To be able to describe the lowest layer of an SOA (the
component layer) we need three viewpoints:
• Type models
• Composition models
• And Deployment models

• We will take a look at the metamodels for each of these in turn.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 16 -

SOA and MDSD

The Type Model

• The type model defines
• service interfaces
• Components
• data types.

9

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 17 -

SOA and MDSD

The Type Model II

• Core building block is the Service. Services are „interaction
contracts“.

• A service has a number of operations.

• These use data types in their signatures. Types are often
defined using (simplified) XML Schema.

• Often, Services also define protocols of how to use the
operations (often a protocol state machine)

• Components provide services through Provided Ports and
connect to services consumed by the component using Required
Ports. Components realize interaction contracts (defined by
services)

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 18 -

SOA and MDSD

The Composition Model

• The composition model declares component instances and
shows how they are logically connected.

10

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 19 -

SOA and MDSD

The Composition Model II

• Connectors connect a provided port with (one or more)
Required Ports.

• Additional constraints have to be considered, such as: you can
only connect ports that provide/require the same (or a
compatible) service.

• Although it looks like static (modelling time) wiring, this
approach works also in more dynamic environments: Instead of
specifying the target port directly, you specify a number of
search criteria for the to-be-connected port that are then
evaluated at runtime using some kind of naming or trading
service.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 20 -

SOA and MDSD

The Deployment Model

• The deployment model associates component instances with
• Hardware
• Application server/processes
• Communication middleware

11

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 21 -

SOA and MDSD

Model Dependencies

• Dependencies between the models (and metamodels,
respectively) are important.

• You have to make sure that
• you can deploy the same compositions on different systems

(e.g. for testing)
• You want to use the same components in many compositions

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 22 -

SOA and MDSD

Aspect Models

• Often, the described three viewpoints are not enough,
additional aspects need to be described.

• These go into separate aspect models, each describing
a well-defined aspect of the system.
• Each of them uses a suitable DSL/syntax
• The generator acts as a weaver

• Typical Examples are
• Persistence
• Security
• Forms, Layout, Pageflow
• Timing, QoS in General
• Packaging and Deployment
• Diagnostics and Monitoring

Type/Data

Model

Aspect2

12

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 23 -

SOA and MDSD

Rountine Configuration vs. Creative Contruction

• This slide (adopted from K. Czarnecki) is important for the
selection of DSLs in the context of MDSD in general:
• The more you can move your DSL „form“ to the configuration

side, the simpler it typically gets.
• We will see why this is especially important for behavior

modelling.

Framworks

Routine
Configuration

Creative
Construction

Wizards

Property Files

Feature-Model
Based

Configuration

Graph-Like
Languages

Tabular
Configurations

Manual
Programming

Guidance,
Efficiency

Complexity,
Flexibility

Configuration
Parameters

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 24 -

SOA and MDSD

C O N T E N T S

• Overview
• SOA Perspectives
• Requirements to SOAs

• Models

• Programming

• Issues
• Data Ownership
• Typing
• Service Reuse
• Process Issues
• Infrastructure vs. App Development
• The spaghetti misunderstanding

• BPM

• Technologies

• Summary & Recommendations

• Appendix: An SOA Metamodel

13

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 25 -

SOA and MDSD

How to program with these things II

• You start by defining the component model; you define
components in a model.

• Here we use a textual model for this.

serviceinterface IDatabase {
readData(…);
writeData(…);

}

serviceinterface IScripting {
executeScript(String script);

}

component Copier {
provides script: IScripting;
requires srcDB: IDatabase;
requires targetDB: IDatabase;

}

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 26 -

SOA and MDSD

How to program with these things II

• You can now generate an implementation skeleton that helps
you implementing stuff.

• For example, here we generate a base class:

public abstract class CopierImplementationBase
implements IScripting_script {

public void ctx_setSrcDB(IDatabase db) {
sourceBD = db;

}

public void ctx_setTargetDB(IDatabase db) {
targetDB = db;

}

public abstract void
script_execScript(String script);
// from the interface IScripting
// provided by the script port

}

14

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 27 -

SOA and MDSD

How to program with these things III

• … from which we can inherit to actually implement our
component:

public class CopierImplementation
extends CopierImplementationBase {

public void script_execScript(String script) {
// interpret the script.... assume it
// contains some commands that require copying
// data from sourceDB to targetDB
data = sourceDB.readData(…);
targetDB.writeData(data);
// here you can see how the "port proxies"
// sourceDB and targetDB are used.

}

}

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 28 -

SOA and MDSD

How to program with these things IV

• We can also use asynchronous communication. Here is the
declaration in the component.

• The implementation could look as follows:

component CustomerRater {
requires poll schufa: ISchufaService;

}

public class CustomerRaterImplementation {

public void someMethode() {
GetSchufaRatingPO poll = schufa.getSchufaRating(kundenID);
// now we can do all kinds of things
if (poll.hasResult()) return handleResult(poll.getResult());
// do some more stuff, now we wait, blocking, until result comes in,
// then we handle the result
return handleResult(poll.getResultBlocking());

}
private boolean handleResult(SchufaReport r) {

// do something with it.
return true if Schufa is good, otherwise false....

}
}

15

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 29 -

SOA and MDSD

Where does this get us to?

• So, we can now write component implementations
• Without a technology dependency
• Without deployment information
• Without knowing with whom we actually interact
• Without knowing on which platform we will run.

• We can now describe and implement component based software.

• We can add additional models (e.g. based on XML) that
describe composition and deployment and generate all the
necessary
• Adapters
• Glue code
• Build scripts
• Deployment scripts

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 30 -

SOA and MDSD

Another Example – Type Model

• Here we use UML to define type-level artefacts

16

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 31 -

SOA and MDSD

Another Example – Composition

• … using XML

<configurations>
<configuration name="addressStuff">

<instance name="am" type="AddressManager">
<wire name="personDAO" target="personDAO"/>

</instance>
<instance name="personDAO" type="PersonDAO"/>

</configuration>
<configuration name="customerStuff">

<instance name="cm" type="CustomerManager">
<wire name="addressStore"

target=":addressStuff:am"/>
</instance >

</configuration>
<configuration name="test"

includes="addressStuff, customerStuff"/>
</configurations>

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 32 -

SOA and MDSD

Another Example – Deployment

• … using XML again

<systems>
<system name="production">

<node name="server" type="spring"
configuration="addressStuff"/>

<node name="client" type="eclipse"
configuration="customerStuff"/>

<system>
<system name="test">

<node name="test" type="spring" configuration="test"/>
<system>

</systems>

17

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 33 -

SOA and MDSD

C O N T E N T S

• Overview
• SOA Perspectives
• Requirements to SOAs

• Models

• Programming

• Issues
• Data Ownership
• Typing
• Service Reuse
• Process Issues
• Infrastructure vs. App Development
• The spaghetti misunderstanding

• BPM

• Technologies

• Summary & Recommendations

• Appendix: An SOA Metamodel

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 34 -

SOA and MDSD

Data Type Ownership

• To stay agile, an important question is: who owns data types?

• If you try to agree on a central business object model in a
large enterprise, you typically will never reach an agreement –
and if you do, there are the following consequences:

• You will have a hard time changing the data structures if
necessary because everybody else wants them to remain
unchanged.

• Also, the data structures will be large, bloated and complex
because they have to fulfil everybody‘s needs.

• Working with such global data structures is thus tedious and
not very agile. The BOM approach obviously does not work.

18

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 35 -

SOA and MDSD

Data Type Ownership II

• An extreme solution of that problem is to define data structures
strictly local to a service.
• Only the service provides and users can use the data.
• No sharing of data structures is possible.
• Data structures must only be agreed among the service

stakeholders.

• However, this will result in similar data structure remodeled
again and again, for each service using it.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 36 -

SOA and MDSD

Data Type Ownership III

• Basically the visibility of a data structure is restricted to the
domain in which it is defined.

• Services and components in the same domain can use the data
structures.

• If you‘re in domain B, you can only use data structures defined
in domain A if you declare a dependency on domain A and
explicitly import the data structure.

• Consequently, dependencies on data structures are explicitly
modelled and can be cautiously managed.

19

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 37 -

SOA and MDSD

C O N T E N T S

• Overview
• SOA Perspectives
• Requirements to SOAs

• Models

• Programming

• Issues
• Data Ownership
• Typing
• Service Reuse
• Process Issues
• Infrastructure vs. App Development
• The spaghetti misunderstanding

• BPM

• Technologies

• Summary & Recommendations

• Appendix: An SOA Metamodel

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 38 -

SOA and MDSD

Typing

• To further simplify working with data, make sure the data
structures are interpreted by the components.

• These allows you to more easily migrate and evolve that data
structures over time without have to redeploy the whole
infrastructure
• as opposed to changing the IDL definition of a CORBA struct. You

need to recompile, redeploy, ..

• In an interpreted scenario you can
• Ignore unknown attributes
• Automatically add defaults
• Use different (versions of) the defining XML schema to verify the

data structure in different components.

• Note that interpreting data does not relieve you from defining
data structures and coordinating them with stakeholders, but it
simplifies the technical aspects of dependencies and deployment.

• End users of a data structure should always verify it (e.g. using
schemas, but the intermediary infrastructure should not!)

20

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 39 -

SOA and MDSD

C O N T E N T S

• Overview
• SOA Perspectives
• Requirements to SOAs

• Models

• Programming

• Issues
• Data Ownership
• Typing
• Service Reuse
• Process Issues
• Infrastructure vs. App Development
• The spaghetti misunderstanding

• BPM

• Technologies

• Summary & Recommendations

• Appendix: An SOA Metamodel

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 40 -

SOA and MDSD

Service Reuse

• Building a SOA often goes along with the idea of standardizing
and harmonizing things.

• This is very useful on the meta level (i.e. standardizing on
metamodels).

• But on the concrete level this is not that easy.

• Assume you want to agree on a service that returns customer
information for a customer ID.

• You will first have the problems of harmonizing data structures –
as just discussed.

• The second problem: various clients have different QoS
requirements:
• The call-center requires the data very quickly, but only few

data items are required initially. The rest is lazily loaded if
required.

• Other clients require more data all the time (i.e. in one call) and
are willing to wait a bit longer upon the first call.

21

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 41 -

SOA and MDSD

Service Reuse II

• This shows that the harmonization of services (interfaces, data
structures, etc) will not work in practice.

• … if only because the services develop over time (versioning).

• To address this topic systematically, you should view the various
services as a product line and manage variants and version
explicitly.

• This can be achieved, for example, using feature modelling.
• Specifically, you can systematically describe the variations in the

data structures.
• Using code generation you can then generate all kinds of

dependent artifacts automatically (e.g. schemas).

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 42 -

SOA and MDSD

Service Reuse III
GetCustomerInfo returns
only the customer
identity, basic data as
well as the billing
address

22

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 43 -

SOA and MDSD

Service Reuse III

Optionally, you can request
the ShippingAddress
feaure.
This results in the
„activation“ of the
association to the shipping
address.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 44 -

SOA and MDSD

Service Reuse III

Another option is Billing.
After selecting it, you have
to decide if you want only
the CreditRating or the
complete InvoicingHistoy.
You cannot have both

23

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 45 -

SOA and MDSD

Service Reuse III

In addition, you
can request
information about
the open orders.
Optionally, you
can add all the
items of the
orders and the
invoices.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 46 -

SOA and MDSD

C O N T E N T S

• Overview
• SOA Perspectives
• Requirements to SOAs

• Models

• Programming

• Issues
• Data Ownership
• Typing
• Service Reuse
• Process Issues
• Infrastructure vs. App Development
• The spaghetti misunderstanding

• BPM

• Technologies

• Summary & Recommendations

• Appendix: An SOA Metamodel

24

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 47 -

SOA and MDSD

Process Issues

• The goal of harmonization and centralization often also has other
consequences:
• centralized service repository
• Heavy-weight, centralized processes

• Consequently,
• developers have to be online all the time to access the

repository when developing services,
• They have to coordinate „with the whole company“ to devlop a

(possibly simple) service

• This kills productivity and makes development unagile.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 48 -

SOA and MDSD

Process Issues II

• To avoid this, make sure that
• service definition, implementation and test can be done locally

withoug access to the central repository
• The repository uses a checkin/checkout methaphor to

support offline work (just like CVS)
• Coordination with central processes becomes necessary only

when the service becomes „public“

• You need to establish a status model:
• Developer-local: you can do everything that is technically

possible with the SOA, no access to enterprise service bus
• Repositoy global: service has to conform to enterprise-wide

standards
• Staging: Only bugfixes possible
• Production: no changes to service possible, need to define new

versions, etc.

25

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 49 -

SOA and MDSD

C O N T E N T S

• Overview
• SOA Perspectives
• Requirements to SOAs

• Models

• Programming

• Issues
• Data Ownership
• Typing
• Service Reuse
• Process Issues
• Infrastructure vs. App Development
• The spaghetti misunderstanding

• BPM

• Technologies

• Summary & Recommendations

• Appendix: An SOA Metamodel

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 50 -

SOA and MDSD

Infrastructure vs. Application Development

• Often, the introduction of an SOA is driven by a central IT
department

• Goal: standardization and harmonization of the IT
infrastructure to simplify deployment and management

• Consequence: a focus on middleware and technologies

• However, application developers have different goals:
• To get the to-be-developed application out of the door ASAP
• Satisfy business requirements of their stakeholders

• Conflict of interest:
• Application developers don‘t see benefits when using the SOA
• Their life becomes often more complicated
• Slow Adoption

26

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 51 -

SOA and MDSD

Infrastructure vs. Application Development II

• To change this, make sure that
• The SOA has advantages for the application developers
• Make developing „correct“ applications as simple as possible
• Hide the SOA technology (WS-*) as much as possible

• Provide good tooling for app developers from the start!

• In a model-driven world, this is quite easy:
• Building an IDE (plugin) that generates skeleton code based

on the models is not too much work
• Glue code, that „connects“ application code with the SOA can be

automatically generated
• Support deployment and testing based on the models is also

feasible

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 52 -

SOA and MDSD

Infrastructure vs. Application Development III

• This approach is especially useful for new services but can also
be used for legacy code:

• You can define the service interfaces using the above models;
you can then generate the usual glue code. Accessing the legacy
system is considered an implementation detail, i.e. it is done
manually and not supported by the tooling.

• The other approach is based on automatically generating
models and implementation code for the components from the
interfaces of the legacy systems (assuming they are somehow
formally defined, e.g. source code).

27

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 53 -

SOA and MDSD

C O N T E N T S

• Overview
• SOA Perspectives
• Requirements to SOAs

• Models

• Programming

• Issues
• Data Ownership
• Typing
• Service Reuse
• Process Issues
• Infrastructure vs. App Development
• The spaghetti misunderstanding

• BPM

• Technologies

• Summary & Recommendations

• Appendix: An SOA Metamodel

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 54 -

SOA and MDSD

The Spaghetti Misunderstanding

• You probably know these kinds of drawings:
An SOA solves the point-to-point communication issue and
attached all components/services to an enterprise bus.

• However, that‘s not that easy in practice.

• And by the way: this same picture has been used by CORBA 10
years ago….

28

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 55 -

SOA and MDSD

The Spaghetti Misunderstanding II

• One of the problems is that every ESB vendors has a different
idea of what an ESB is.

• It is also not very useful to run everything over the same
middleware, since
• You might want to have different organizational partitions
• Different systems need different QoS: External Services need

to be interoperable. Internal Services have to be fast.

• So it is not important that everything uses the same technology,
but rather that you can potentially let everybody talk to
everybody (using a limited number of middlewares, but not just
one!).

• Thus it is essential that services are defined in a technology
independent manner – in models – so that you can generate
mappings to the various middlewares used in the enterprise –
based on the required QoS.

• This approach specifically allows the „Null-Middleware“, i.e.
running everything in one process to support testing.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 56 -

SOA and MDSD

C O N T E N T S

• Overview
• SOA Perspectives
• Requirements to SOAs

• Models

• Programming

• Issues
• Data Ownership
• Typing
• Service Reuse
• Process Issues
• Infrastructure vs. App Development
• The spaghetti misunderstanding

• BPM

• Technologies

• Summary & Recommendations

• Appendix: An SOA Metamodel

29

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 57 -

SOA and MDSD

BPM

• Business Processes typically run over a long time (hours, days,
weeks, months).

• Executing a BP involves access to various services as defined
the SOA.

• You can describe services in different forms.
• State charts
• Activity diagrams
• BPMN

• To keep the definition of BP flexible, it is often useful to
interpret BP definitions at runtime.

• There are two ways of integrating BPM into an SOA:
• Process Components
• External Engines

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 58 -

SOA and MDSD

BPM: Process Components

• In this case we introduce
a special kind (sub-
metatype) of component,
the process component.

• These are ordinary com-
ponents, i.e. they have
required and provided
ports, they can be wired
and deployed.

• Their provided interface
has an operation per
statemachine trigger.
These must be void ops,
since they‘re typically
called asynchronously

30

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 59 -

SOA and MDSD

BPM: Process Components II

• The following is an example where the components, services and
the processes are modelled using UML.

• Using other modelling notations will require different means of
tool integration.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 60 -

SOA and MDSD

BPM: Process Components III

• Integration into the code generation infrastructure: Cascading

• Basic Transformation

31

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 61 -

SOA and MDSD

BPM: Process Components III

• Integration into the code generation infrastructure: Cascading

• Persistence Transformation

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 62 -

SOA and MDSD

BPM: Process Components III

• Integration into the code generation infrastructure: Cascading

• Processes Transformation

32

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 63 -

SOA and MDSD

BPM: External Engine

• You can also run the business processes by an external BPM
engine:
• Such tools often provide convenient process modelling IDEs

(using BPMN, for example).
• Adapters for accessing services using all kinds of technologies

are available. Often, WSDL is the basis for service access.

• Here, too, we use models to access the services and define the
processes.

• Reasons for using such a tool
• It is (seems to be) easier to use by the business people

(remember: „business driven“!)
• Services can be changed more often and more easily while

the services serve as the „solid base“ on which the services
reside.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 64 -

SOA and MDSD

C O N T E N T S

• Overview
• SOA Perspectives
• Requirements to SOAs

• Models

• Programming

• Issues
• Data Ownership
• Typing
• Service Reuse
• Process Issues
• Infrastructure vs. App Development
• The spaghetti misunderstanding

• BPM

• Technologies

• Summary & Recommendations

• Appendix: An SOA Metamodel

33

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 65 -

SOA and MDSD

Data Definition

• For simple data structures, „nested structs“ are enough. These
can be serialized using language serialization or YAML.

• More complex data should be represented using XML

• Performance issues (might want to use binary XML)

• Use XML Schema for data type definition

• More comfortable access can be provided by generated binding
classes (Attention: interpretation advantage is lost!)

• Make sure you restrict the power of XML schema! Otherwise,
• It will be hard to manage dependencies
• It will not be interoperable (redefines, import/include, ...)
• Don’t go too far into details (don’t use schema to define the semantics

of an ISBN numer!)
• You might want to use UML to define the schemas in a restricted way

• Make sure you actually validate the data “at both ends”, but
make sure the middleware does not care!

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 66 -

SOA and MDSD

Communication Middleware

• You can use all kinds of middlewares for the communication
aspect.

• The default choice is Web Services (WS-I Basic Profile 1.1,
typically), but it is only required (and often only suitable) for
external services
• Note that WSDL 1.1 contents are not enough to build an SOA
• In WSDL 2.0 things will get a little bit better (notion of

„component“)
• Potential performance issues because of XML/Web Services

• Other infrastructures are also ok,
• RPC-style: CORBA, RMI, .NET Remoting, HTTP/Rest
• Messaging-style: JMS, MQSeries, MSMQ, Tibco‘s products

• Decision should be based on
• What‘s already there
• Non-functional requirements

34

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 67 -

SOA and MDSD

Component Runtime Platforms (Containers)

• You can use all the well-known component runtime platforms
in an SOA. Examples include
• J2EE (servlets, EJBs, MDBs, WS)
• Spring
• OSGi/Eclipse
• WCF/Indigo
• CCM
• COM+

• Again, the choice should be based on experience and non-
functional requirements.

• A new breed of SOA component platforms is emerging:
• Java Business Integration (JBI)
• Service Component Architecture (SCA)

• Both approaches leverage existing component infrastructures
by integrating (at least some of) them.

• Note that both of these are still „bleeding edge“

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 68 -

SOA and MDSD

JBI

• JBI is a Middleware Middleware, specific to Java
• it provides a unified view on various middlware systems,
• maps communication to a standardized message format (the

Normalized Messages)
• And routes the messages among the various components in a JBI

container (using the NM Router)

• JBI Components come in one of two flavors:
• Services Engines: implementing business logic or

transformations
• Binding Components: those serve as communication adapters to

communicate with „outside“ middleware

• Services are described in WSDL (more specifically: using the
Abstract Message Definitions from WSDL 2)

• Distributed JBI implemenations will become available

• Personal Opinion: Sceptical, I am specifically missing the
„system view“, i.e. the stuff described in the composition and
deployment models.

35

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 69 -

SOA and MDSD

SCA

• SCA is an upcoming standard developed by IBM, SAP, Oracle,
BEA, Sybase, Iona, and Siebel. It is language independent.

• SCA encourages an SOA organization of business application code
based on components that implement business logic, which
offer their capabilities through service-oriented interfaces and
which consume functions offered by other components through
service-oriented interfaces, called service references. SCA
divides up the steps in building a service-oriented application into
two major parts:

• The implementation of components which provide services and
consume other services

• The assembly of sets of components to build business
applications, through the wiring of service references to services.

• SCA emphasizes the decoupling of service implementation and
of service assembly from the details of infrastructure
capabilities and from the details of the access methods used to
invoke services.

• Personal opinion: looks interesting, since it considers the whole
system (i.e. including composition & deployment)

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 70 -

SOA and MDSD

SCA II

• System definition is based on XML
• Programming Model based on Annotations
• Two prototype implementations:

Apache Tuscany and Eclipse SOA Tools Project

36

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 71 -

SOA and MDSD

C O N T E N T S

• Overview
• SOA Perspectives
• Requirements to SOAs

• Models

• Programming

• Issues
• Data Ownership
• Typing
• Service Reuse
• Process Issues
• Infrastructure vs. App Development
• The spaghetti misunderstanding

• BPM

• Technologies

• Summary & Recommendations

• Appendix: An SOA Metamodel

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 72 -

SOA and MDSD

Summary & Recommendations

• SOA is not about technology. And SOA is not about business.
SOA is first & foremost about architecture.

• Keep all important information in models – separated by
different concerns and viewpoints.

• Define your own metamodel so that it suits your needs. This is
the strategic architecture repository that should be under your
control.

• Consider technology an implementation detail – keep the
models and the (business logic) development process free from
it.

• Do not build your own communication middleware or
execution platform. Select 3rd party tooling based on your non-
functional requirements.
• don‘t start with the technology!
• Limit yourself to a small number of middleware technologies

37

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 73 -

SOA and MDSD

Summary & Recommendations II

• Consider application developers the primary user group of
your SOA – provide tooling to simplify their life.

• Make sure service implementations remain testable and
consider (developer and integration) testing an important aspect
of an SOA.

• Consider deployment, operations and monitoring another
important stakeholder – support these folks by generating
deployment/monitoring relevant artefacts for them.

• On the concrete level, harmonize only where absolutely
necessary – do it with refactorings, don‘t slow down application
development because of „global coordination“

• Integrate BPM on top of a well-defined component/service
architecture, don‘t start with BPM!

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 74 -

SOA and MDSD

Summary & Recommendations III

• And don‘t forget: There are many more challenges to
establishing an enterprise-wide SOA that I consciously ignored,
such as:
• Required organizational changes
• Different compensation schemes
• A lesser focus on technology,

38

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 75 -

SOA and MDSD

C O N T E N T S

• Overview
• SOA Perspectives
• Requirements to SOAs

• Models

• Programming

• Issues
• Data Ownership
• Typing
• Service Reuse
• Process Issues
• Infrastructure vs. App Development
• The spaghetti misunderstanding

• BPM

• Technologies

• Summary & Recommendations

• Appendix: An SOA Metamodel

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 76 -

SOA and MDSD

Enterprise SOA Metamodel Example: Services & Data

39

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 77 -

SOA and MDSD

Enterprise SOA Metamodel Example II: Components

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 78 -

SOA and MDSD

Enterprise SOA Metamodel Example III: Composition

40

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 79 -

SOA and MDSD

Enterprise SOA Metamodel Example IV: Deployment

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 80 -

SOA and MDSD

C O N T E N T S

• Overview
• SOA Perspectives
• Requirements to SOAs

• Models

• Programming

• Issues
• Data Ownership
• Typing
• Service Reuse
• Process Issues
• Infrastructure vs. App Development
• The spaghetti misunderstanding

• BPM

• Technologies

• Summary & Recommendations

• Appendix: An SOA Metamodel THE END.

41

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2006 Markus Völter- 81 -

SOA and MDSD

Some advertisement ☺

• For those, who speak
(or rather, read) german:

Völter, Stahl:

Modellgetriebene
Softwareentwicklung
Technik, Engineering, Management

dPunkt, 2005

www.mdsd-buch.de

• A very much updated translation is
under way:
Model-Driven
Software Development,
Wiley, Q2 2006

www.mdsd-book.org

